Assessment of Purchasing Influence of Email Campaigns Using Eye Tracking
Abstract
:1. Introduction
2. Related Work
2.1. Email Marketing
2.2. Neuromarketing
2.2.1. Neuromarketing Techniques
2.2.2. Ethical Concerns
2.3. Eye Tracking Technique
2.3.1. Basic Elements of Eye Tracking Measurements
2.3.2. Data Visualizations
2.3.3. Factors Influencing Purchasing Decisions
3. Materials and Methods
3.1. Participants
3.2. Experiment Design and Data Analysis
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Silic, M.; Back, A.; Silic, D. Email: From Hero to Zero–the Beginning of the End? J. Inf. Technol. Teach. Cases 2015, 5, 84–91. [Google Scholar] [CrossRef]
- George, M.; Wakefield, K.L. Modeling the Consumer Journey for Membership Services. J. Serv. Mark. 2018, 32, 113–125. [Google Scholar] [CrossRef]
- Thomas, J.S.; Chen, C.; Iacobucci, D. Email Marketing as a Tool for Strategic Persuasion. J. Interact. Mark. 2022, 57, 377–392. [Google Scholar] [CrossRef]
- Barbosa, B.; Carneiro, R. Opening E-Mail Marketing Messages on Smartphones: The Views of Millenial Consumers. In Proceedings of the CBU Economics and Business 2022, Prague, Czech Republic, 16 March 2022; Volume 3, pp. 13–18. [Google Scholar] [CrossRef]
- Leung, D.; Tsou, M. The Impact of Incentive Framing Format and Language Congruency on Readers’ Post-Reading Responses to Email Advertisements. Int. J. Contemp. Hosp. Manag. 2019, 31, 3037–3057. [Google Scholar] [CrossRef]
- Ligaraba, N.; Chuchu, T.; Nyagadza, B. Opt-in e-Mail Marketing Influence on Consumer Behaviour: A Stimuli–Organism–Response (S–O–R) Theory Perspective. Cogent Bus. Manag. 2023, 10, 2184244. [Google Scholar] [CrossRef]
- Zhang, L.; Shen, J.; Zhang, J.; Xu, J.; Li, Z.; Yao, Y.; Yu, L. Multimodal Marketing Intent Analysis for Effective Targeted Advertising. IEEE Trans. Multimed. 2022, 24, 1830–1843. [Google Scholar] [CrossRef]
- Tirandazi, P.; Bamakan, S.M.H.; Toghroljerdi, A. A Review of Studies on Internet of Everything as an Enabler of Neuromarketing Methods and Techniques. J. Supercomput. 2023, 79, 7835–7876. [Google Scholar] [CrossRef]
- Mullen, J.; Daniels, D. Email Marketing: An Hour a Day; Wiley Publication: Indianapolis, IN, USA, 2009; ISBN 978-0-470-38673-6. [Google Scholar]
- Valenti, A.; Srinivasan, S.; Yildirim, G.; Pauwels, K. Direct Mail to Prospects and Email to Current Customers? Modeling and Field-Testing Multichannel Marketing. J. Acad. Mark. Sci. 2024, 52, 815–834. [Google Scholar] [CrossRef]
- Rabab’ah, G.; Yagi, S.; Alghazo, S.; Malkawi, R. Persuasive Strategies in Email Marketing: An Analysis of Appeal and Influence in Business Communication. J. Intercult. Commun. 2024, 24, 12–25. [Google Scholar] [CrossRef]
- Kingsnorth, S. Digital Marketing Strategy: An Integrated Approach to Online Marketing; KoganPage: London, UK, 2019; ISBN 978-0-7494-8422-4. [Google Scholar]
- Grewal, R.; Gupta, S.; Hamilton, R. Marketing Insights from Multimedia Data: Text, Image, Audio, and Video. J. Mark. Res. 2021, 58, 1025–1033. [Google Scholar] [CrossRef]
- Purnomo, Y.J. Digital Marketing Strategy to Increase Sales Conversion on E-Commerce Platforms. J. Contemp. Adm. Manag. ADMAN 2023, 1, 54–62. [Google Scholar] [CrossRef]
- John, S.P.; De’Villiers, R. Elaboration of Marketing Communication through Visual Media: An Empirical Analysis. J. Retail. Consum. Serv. 2020, 54, 102052. [Google Scholar] [CrossRef]
- Goic, M.; Rojas, A.; Saavedra, I. The Effectiveness of Triggered Email Marketing in Addressing Browse Abandonments. J. Interact. Mark. 2021, 55, 118–145. [Google Scholar] [CrossRef]
- Cruz, C.M.L.; Medeiros, J.F.D.; Hermes, L.C.R.; Marcon, A.; Marcon, É. Neuromarketing and the Advances in the Consumer Behaviour Studies: A Systematic Review of the Literature. Int. J. Bus. Glob. 2016, 17, 330. [Google Scholar] [CrossRef]
- Murphy, E.R.; Illes, J.; Reiner, P.B. Neuroethics of Neuromarketing. J. Consum. Behav. 2008, 7, 293–302. [Google Scholar] [CrossRef]
- Perrachione, T.K.; Perrachione, J.R. Brains and Brands: Developing Mutually Informative Research in Neuroscience and Marketing. J. Consum. Behav. 2008, 7, 303–318. [Google Scholar] [CrossRef]
- Fisher, C.E.; Chin, L.; Klitzman, R. Defining Neuromarketing: Practices and Professional Challenges. Harv. Rev. Psychiatry 2010, 18, 230–237. [Google Scholar] [CrossRef] [PubMed]
- Ariely, D.; Berns, G.S. Neuromarketing: The Hope and Hype of Neuroimaging in Business. Nat. Rev. Neurosci. 2010, 11, 284–292. [Google Scholar] [CrossRef]
- Lee, N.; Broderick, A.J.; Chamberlain, L. What Is ‘Neuromarketing’? A Discussion and Agenda for Future Research. Int. J. Psychophysiol. 2007, 63, 199–204. [Google Scholar] [CrossRef]
- Macdonald, M. Some Ethical Issues in Brain Imaging. Cortex 2011, 47, 1272–1274. [Google Scholar] [CrossRef]
- Hubert, M.; Kenning, P. A Current Overview of Consumer Neuroscience. J. Consum. Behav. 2008, 7, 272–292. [Google Scholar] [CrossRef]
- Kumar, S. Neuromarketing: The New Science of Advertising. Univers. J. Manag. 2015, 3, 524–531. [Google Scholar] [CrossRef]
- Pluta-Olearnik, M.; Szulga, P. The Importance of Emotions in Consumer Purchase Decisions—A Neuromarketing Approach. Mark. Sci. Res. Organ. 2022, 44, 87–104. [Google Scholar] [CrossRef]
- Pradeep, A.K. The Buying Brain: Secrets of Selling to the Subconscious Mind; Wiley: Hoboken, NJ, USA, 2010; ISBN 978-0-470-60177-8. [Google Scholar]
- Zurawicki, L. Neuromarketing; Springer: Berlin/Heidelberg, Germany, 2010; ISBN 978-3-540-77828-8. [Google Scholar]
- Morin, C. Neuromarketing: The New Science of Consumer Behavior. Society 2011, 48, 131–135. [Google Scholar] [CrossRef]
- Fortunato, V.C.R.; Giraldi, J.D.M.E.; De Oliveira, J.H.C. A Review of Studies on Neuromarketing: Practical Results, Techniques, Contributions and Limitations. J. Manag. Res. 2014, 6, 201. [Google Scholar] [CrossRef]
- Cherubino, P.; Martinez-Levy, A.C.; Caratù, M.; Cartocci, G.; Di Flumeri, G.; Modica, E.; Rossi, D.; Mancini, M.; Trettel, A. Consumer Behaviour through the Eyes of Neurophysiological Measures: State-of-the-Art and Future Trends. Comput. Intell. Neurosci. 2019, 2019, 1–41. [Google Scholar] [CrossRef]
- Miranda Calero, J.A.; Paez-Montoro, A.; Lopez-Ongil, C.; Paton, S. Self-Adjustable Galvanic Skin Response Sensor for Physiological Monitoring. IEEE Sens. J. 2023, 23, 3005–3019. [Google Scholar] [CrossRef]
- Silva, P.; Sebastião, R. Using the Electrocardiogram for Pain Classification under Emotional Contexts. Sensors 2023, 23, 1443. [Google Scholar] [CrossRef]
- Wang, R.; Bush-Evans, R.; Arden-Close, E.; Bolat, E.; McAlaney, J.; Hodge, S.; Thomas, S.; Phalp, K. Transparency in Persuasive Technology, Immersive Technology, and Online Marketing: Facilitating Users’ Informed Decision Making and Practical Implications. Comput. Hum. Behav. 2023, 139, 107545. [Google Scholar] [CrossRef]
- Telpaz, A.; Webb, R.; Levy, D.J. Using EEG to Predict Consumers’ Future Choices. J. Mark. Res. 2015, 52, 511–529. [Google Scholar] [CrossRef]
- Yao, X.; Wang, Y. Using Neural Data to Forecast Aggregate Consumer Behavior in Neuromarketing: Theory, Metrics, Progress, and Outlook. J. Consum. Behav. 2024, 23, 2142–2159. [Google Scholar] [CrossRef]
- Ouzir, M.; Chakir Lamrani, H.; Bradley, R.L.; El Moudden, I. Neuromarketing and Decision-Making: Classification of Consumer Preferences Based on Changes Analysis in the EEG Signal of Brain Regions. Biomed. Signal Process. Control 2024, 87, 105469. [Google Scholar] [CrossRef]
- Stanton, S.J.; Sinnott-Armstrong, W.; Huettel, S.A. Neuromarketing: Ethical Implications of Its Use and Potential Misuse. J. Bus. Ethics 2017, 144, 799–811. [Google Scholar] [CrossRef]
- Alsharif, A.H.; Mohd Isa, S. Revolutionizing Consumer Insights: The Impact of fMRI in Neuromarketing Research. Future Bus. J. 2024, 10, 79. [Google Scholar] [CrossRef]
- Bhardwaj, S.; Rana, G.A.; Behl, A.; Gallego De Caceres, S.J. Exploring the Boundaries of Neuromarketing through Systematic Investigation. J. Bus. Res. 2023, 154, 113371. [Google Scholar] [CrossRef]
- Senior, C.; Lee, N. A Manifesto for Neuromarketing Science. J. Consum. Behav. 2008, 7, 263–271. [Google Scholar] [CrossRef]
- Bromberg-Martin, E.S.; Feng, Y.-Y.; Ogasawara, T.; White, J.K.; Zhang, K.; Monosov, I.E. A Neural Mechanism for Conserved Value Computations Integrating Information and Rewards. Nat. Neurosci. 2024, 27, 159–175. [Google Scholar] [CrossRef]
- Iloka, B.C.; Anukwe, G.I. Review of Eye-Tracking: A Neuromarketing Technique. Neurosci. Res. Notes 2020, 3, 29–34. [Google Scholar] [CrossRef]
- Hu, T.; Wang, X.; Xu, H. Eye-Tracking in Interpreting Studies: A Review of Four Decades of Empirical Studies. Front. Psychol. 2022, 13, 872247. [Google Scholar] [CrossRef] [PubMed]
- Macele, P.; Mueggenburg, J. Playing with the Eyes. A Media History of Eye Tracking. In Disability and Video Games; Spöhrer, M., Ochsner, B., Eds.; Springer International Publishing: Cham, Switzerland, 2024; pp. 117–143. ISBN 978-3-031-34373-5. [Google Scholar]
- Ke, F.; Liu, R.; Sokolikj, Z.; Dahlstrom-Hakki, I.; Israel, M. Using Eye-Tracking in Education: Review of Empirical Research and Technology. Educ. Technol. Res. Dev. 2024, 72, 1383–1418. [Google Scholar] [CrossRef]
- Alhilo, T.; Al-Sakaa, A. Eye Tracking Review: Importance, Tools, and Applications. In Emerging Trends and Applications in Artificial Intelligence; García Márquez, F.P., Jamil, A., Hameed, A.A., Segovia Ramírez, I., Eds.; Lecture Notes in Networks and Systems; Springer Nature Switzerland: Cham, Switzerland, 2024; Volume 960, pp. 383–394. ISBN 978-3-031-56727-8. [Google Scholar]
- Ursu, R.M.; Erdem, T.; Wang, Q.; Zhang, Q. Prior Information and Consumer Search: Evidence from Eye Tracking. Manag. Sci. 2024. [Google Scholar] [CrossRef]
- Modi, N.; Singh, J. Understanding Online Consumer Behavior at E-Commerce Portals Using Eye-Gaze Tracking. Int. J. Hum.–Comput. Interact. 2023, 39, 721–742. [Google Scholar] [CrossRef]
- Larsson, L.; Nyström, M.; Andersson, R.; Stridh, M. Detection of Fixations and Smooth Pursuit Movements in High-Speed Eye-Tracking Data. Biomed. Signal Process. Control 2015, 18, 145–152. [Google Scholar] [CrossRef]
- Fairbairn, D.; Hepburn, J. Eye-Tracking in Map Use, Map User and Map Usability Research: What Are We Looking For? Int. J. Cartogr. 2023, 9, 231–254. [Google Scholar] [CrossRef]
- Llapashtica, E.; Sun, T.; Grattan, K.T.V.; Barbur, J.L. Effects of Post-Saccadic Oscillations on Visual Processing Times. PLoS ONE 2024, 19, e0302459. [Google Scholar] [CrossRef] [PubMed]
- Foulsham, T. Eye Movements and Their Functions in Everyday Tasks. Eye 2015, 29, 196–199. [Google Scholar] [CrossRef]
- Startsev, M.; Zemblys, R. Evaluating Eye Movement Event Detection: A Review of the State of the Art. Behav. Res. Methods 2022, 55, 1653–1714. [Google Scholar] [CrossRef]
- Hershman, R.; Milshtein, D.; Henik, A. The Contribution of Temporal Analysis of Pupillometry Measurements to Cognitive Research. Psychol. Res. 2023, 87, 28–42. [Google Scholar] [CrossRef]
- Wedel, M.; Pieters, R.; Van Der Lans, R. Modeling Eye Movements During Decision Making: A Review. Psychometrika 2023, 88, 697–729. [Google Scholar] [CrossRef]
- Zhu, L.; Lv, J. Review of Studies on User Research Based on EEG and Eye Tracking. Appl. Sci. 2023, 13, 6502. [Google Scholar] [CrossRef]
- Li, S.; Duffy, M.C.; Lajoie, S.P.; Zheng, J.; Lachapelle, K. Using Eye Tracking to Examine Expert-Novice Differences during Simulated Surgical Training: A Case Study. Comput. Hum. Behav. 2023, 144, 107720. [Google Scholar] [CrossRef]
- Novák, J.Š.; Masner, J.; Benda, P.; Šimek, P.; Merunka, V. Eye Tracking, Usability, and User Experience: A Systematic Review. Int. J. Hum.–Comput. Interact. 2023, 40, 1–17. [Google Scholar] [CrossRef]
- Peysakhovich, V.; Hurter, C. Scan Path Visualization and Comparison Using Visual Aggregation Techniques. J. Eye Mov. Res. 2018, 10. [Google Scholar] [CrossRef]
- Grootjen, J.W.; Weingärtner, H.; Mayer, S. Highlighting the Challenges of Blinks in Eye Tracking for Interactive Systems. In Proceedings of the 2023 Symposium on Eye Tracking Research and Applications, Tubingen, Germany, 30 May–2 June 2023; pp. 1–7. [Google Scholar]
- Rathee, R.; Rajain, P. Role Colour Plays in Influencing Consumer Behaviour. Int. Res. J. Bus. Stud. 2019, 12, 209–222. [Google Scholar] [CrossRef]
- Rambabu, L.; Porika, R. Packaging Strategies: Knowledge Outlook on Consumer Buying Behaviour. J. Ind.-Univ. Collab. 2020, 2, 67–78. [Google Scholar] [CrossRef]
- Ozkul, E.; Boz, H.; Bilgili, B.; Koc, E. What Colour and Light Do in Service Atmospherics: A Neuro-Marketing Perspective. In Advances in Culture, Tourism and Hospitality Research; Volgger, M., Pfister, D., Eds.; Emerald Publishing Limited: Leeds, UK, 2019; pp. 223–244. ISBN 978-1-83867-071-9. [Google Scholar]
- Puccinelli, N.M.; Chandrashekaran, R.; Grewal, D.; Suri, R. Are Men Seduced by Red? The Effect of Red Versus Black Prices on Price Perceptions. J. Retail. 2013, 89, 115–125. [Google Scholar] [CrossRef]
- Mehraj, D.; Qureshi, I.H.; Singh, G.; Nazir, N.A.; Basheer, S.; Nissa, V.U. Green Marketing Practices and Green Consumer Behavior: Demographic Differences among Young Consumers. Bus. Strategy Dev. 2023, 6, 571–585. [Google Scholar] [CrossRef]
- Trivedi, V.; Joshi, P.; Chatterjee, K.N.; Pal Singh, G. Effect of Demographic Factors and Apparel Product Categories on Online Impulse Buying Behaviour of Apparel Consumers. Text. Leather Rev. 2023, 6, 57–77. [Google Scholar] [CrossRef]
- Tifferet, S.; Herstein, R. Gender Differences in Brand Commitment, Impulse Buying, and Hedonic Consumption. J. Prod. Brand Manag. 2012, 21, 176–182. [Google Scholar] [CrossRef]
- Hu, L.; Zhang, M.; Wen, X. Optimal Distribution Strategy of Coupons on E-Commerce Platforms: Sufficient or Scarce? Int. J. Prod. Econ. 2023, 266, 109031. [Google Scholar] [CrossRef]
- Cheng, X.; Deng, S.; Jiang, X.; Li, Y. Optimal Promotion Strategies of Online Marketplaces. Eur. J. Oper. Res. 2023, 306, 1264–1278. [Google Scholar] [CrossRef]
Gender | Counts | % of Total | Cumulative % |
---|---|---|---|
Female | 35 | 64.8% | 64.8% |
Male | 19 | 35.2% | 100.0% |
Gender | Age | |
---|---|---|
N | female | 35 |
male | 19 | |
Mean | female | 32.7 |
male | 36.7 | |
Median | female | 29 |
male | 34 | |
Minimum | female | 20 |
male | 23 | |
Maximum | female | 60 |
male | 54 | |
25th percentile | female | 25.5 |
male | 31.0 | |
50th percentile | female | 29.0 |
male | 34.0 | |
75th percentile | female | 34.5 |
male | 43.0 |
Profession | Counts | % of Total | Cumulative % |
---|---|---|---|
Student | 3 | 5.6% | 5.6% |
Private employee | 37 | 68.5% | 74.1% |
Public servant | 9 | 16.7% | 90.7% |
Freelancer | 2 | 3.7% | 94.4% |
Unemployed | 3 | 5.6% | 100.0% |
Monthly Income | Counts | % of Total | Cumulative % |
---|---|---|---|
≤EUR 649 | 9 | 16.7% | 16.7% |
EUR 650–1499 | 41 | 75.9% | 92.6% |
≥EUR 1500 | 4 | 7.4% | 100.0% |
Participant ID | Q1 1 | Fixation | Time Spent | Gaze | TTFG | Q2 2 | Q3 3 |
---|---|---|---|---|---|---|---|
P43 | Discount code | 1 | 0.25 s | 5 | 1.81 s | Yes | Title |
P43 | Clothing suggestions | 17 | 4.15 s | 250 | 3.12 s | Yes | Title |
P37 | Large images | 21 | 6.43 s | 263 | 1.43 s | No | - |
P16 | Large images | 6 | 1.98 s | 117 | 0.53 s | No | - |
P16 | Discount code | 0 | 0 | 4 | 11.34 s | No | - |
P22 | Title | 2 | 0.71 | 29 | 1.48 | Yes | Photos |
P36 | Title | 2 | 0.25 | 18 | 4.46 s | Yes | Discount code and Photos |
P30 | Discount code | 13 | 4.43 s | 194 | 6.16 s | Yes | Photos |
P30 | Title | 0 | 0 | 0 | 0 | Yes | Photos |
P39 | Clothing suggestions | 11 | 3.3 s | 154 | 10.23 s | Yes | Discount code and Photos |
P51 | Large images | 12 | 2.3 s | 144 | 1.24 s | No | - |
P25 | Large images | 25 | 5.27 s | 311 | 0.65 s | Yes | Photos |
P13 | Title | 0 | 0 | 0 | 0 | Yes | Title |
P14 | Clothing suggestions | 19 | 3.31 s | 243 | 6.62 s | Yes | Photos |
P28 | Large images | 5 | 1.75 s | 125 | 2.78 s | Yes | Photos |
P28 | Discount code | 3 | 1.18 s | 39 | 6.74 s | Yes | Discount code |
P52 | Large images | 21 | 5.41 s | 290 | 3.12 s | No | - |
P44 | Large images | 34 | 8.2 s | 412 | 0.55 s | Yes | Photos |
P46 | Discount code | 0 | 0 | 0 | 0 | Yes | Discount code and Photos |
P42 | Large images | 26 | 7.62 s | 414 | 0.98 s | No | - |
P49 | Large images | 12 | 2.91 s | 206 | 0.53 s | Yes | Discount code |
P53 | Discount code | 2 | 0.46 s | 26 | 2.17 s | No | - |
P53 | Clothing suggestions | 11 | 3.69 s | 180 | 6.32 s | No | - |
P54 | Discount code | 3 | 0.78 s | 24 | 3.66 s | Yes | Title |
P54 | Title | 9 | 2.69 s | 99 | 3 s | Yes | Title |
P38 | Large images | 26 | 4.76 s | 318 | 0.86 s | Yes | Discount code |
P38 | Discount code | 4 | 0.64 s | 35 | 1.31 s | Yes | Discount code |
P40 | Title | 0 | 0 | 0 | 0 | No | - |
P47 | Discount code | 0 | 0 | 3 | 5.09 s | Yes | Discount code |
P45 | Clothing suggestions | 6 | 1.66 s | 84 | 6.15 s | Yes | Photos |
P45 | Title | 2 | 0.44 s | 28 | 0.86 s | Yes | Title |
P05 | Discount code | 3 | 0.28 s | 52 | 1.56 s | Yes | Discount code |
P05 | Clothing suggestions | 13 | 3.2 s | 187 | 2.38 s | Yes | Photos |
P05 | Title | 0 | 0 | 0 | 0 | Yes | - |
Participant ID | Q1 1 | Fixation | Time Spent | Gaze | TTFG | Q2 2 | Q3 3 |
---|---|---|---|---|---|---|---|
P32 | Clothing suggestions | 19 | 5.39 s | 279 | 0.53 s | Yes | Images |
P47 | Large images | 11 | 3.6 s | 191 | 0.54 s | No | - |
P47 | Title | 7 | 2.05 s | 96 | 1.11 s | No | - |
P23 | Large images | 17 | 3.03 s | 187 | 2.36 s | No | - |
P23 | Discount code | 3 | 0.76 s | 29 | 4.46 s | No | - |
P41 | Large images | 11 | 1.69 s | 137 | 0.54 s | No | - |
P03 | Large images | 13 | 2.98 s | 165 | 0.53 s | Yes | Discount code |
P03 | Discount code | 3 | 0.9 s | 42 | 5.16 s | Yes | Discount code |
P22 | Title | 4 | 0.93 s | 57 | 1.09 s | No | - |
P25 | Discount code | 3 | 0.56 s | 16 | 9.19 s | No | - |
Participant ID | Q1 1 | Fixation | Time Spent | Gaze | TTFG | Q2 2 | Q3 3 |
---|---|---|---|---|---|---|---|
P27 | Discount code | 0 | 0 | 10 | 1.39 s | No | - |
P17 | Discount code | 1 | 0.12 s | 6 | 7.84 s | No | - |
P31 | Large images | 15 | 3.99 s | 200 | 0.52 s | No | - |
P19 | Discount code | 0 | 0 | 0 | 0 | Yes | Discount code |
P19 | Title | 7 | 2.17 s | 102 | 0.75 s | Yes | Title |
P10 | Discount code | 3 | 1.04 s | 28 | 14.62 s | Yes | Discount code |
P24 | Discount code | 1 | 0.13 s | 3 | 4.82 s | Yes | Discount code |
P24 | Title | 1 | 0.12 s | 21 | 1.24 s | Yes | Images |
P35 | Title | 0 | 0 | 6 | 1.06 s | Yes | Images |
P35 | Discount code | 7 | 1.21 s | 67 | 4.12 s | Yes | Discount code |
P11 | Discount code | 0 | 0 | 0 | 0 | No | - |
P12 | Discount code | 4 | 1.11 s | 44 | 4.65 s | Yes | Discount code |
P12 | Title | 1 | 0.33 s | 17 | 0.56 s | Yes | Title |
P14 | Discount code | 3 | 0.56 s | 32 | 4.56 s | No | - |
P03 | Title | 0 | 0 | 0 | 0 | No | - |
P03 | Discount code | 1 | 0.13 s | 8 | 2.01 s | No | - |
P42 | Large images | 10 | 2.33 s | 97 | 3.59 s | No | - |
P09 | Large images and Colours | - | - | - | - | Yes | Discount code |
Participant ID | Q1 1 | Fixation | Time Spent | Gaze | TTFG | Q2 2 | Q3 3 |
---|---|---|---|---|---|---|---|
P25 | Prices | 4 | 1.08 s | 59 | 9.84 s | No | - |
P20 | Clothing suggestions | 28 | 6.28 s | 348 | 0.63 s | Yes | Prices |
P20 | Prices | 17 | 4.53 s | 223 | 3.02 | Yes | Prices |
P08 | Clothing suggestions | 27 | 5.49 s | 303 | 0.72 s | Yes | Images |
P18 | Prices | 6 | 1.58 s | 84 | 4.88 s | Yes | Images |
P18 | Clothing suggestions | 6 | 1.58 s | 97 | 4.88 s | Yes | Images |
P04 | Clothing suggestions | 9 | 1.95 s | 131 | 1.87 s | No | - |
P04 | Prices | 9 | 1.95 s | 130 | 1.87 s | No | - |
P48 | Clothing suggestions | 3 | 0.65 s | 31 | 2.9 s | Yes | Images |
P36 | Title | 0 | 0 | 0 | 0 | No | - |
P30 | Clothing suggestions | 4 | 1.06 s | 61 | 6.64 s | No | - |
P52 | Prices | 8 | 1.86 s | 115 | 9.84 s | No | - |
P52 | Clothing suggestions | 8 | 1.86 s | 105 | 9.84 s | No | - |
P42 | Large images | 20 | 6.55 s | 267 | 3.53 s | No | - |
P49 | Large images | 26 | 5.14 s | 340 | 1.27 s | No | - |
P40 | Prices | 14 | 2.57 s | 188 | 1.54 s | Yes | Prices |
P40 | Large images | 27 | 4.81 s | 364 | 1.29 s | Yes | Images |
P40 | Clothing suggestions | 13 | 2.37 | 189 | 1.54 s | Yes | - |
Participant ID | Q1 1 | Fixation | Time Spent | Gaze | TTFG | Q2 2 | Q3 3 |
---|---|---|---|---|---|---|---|
P07 | Clothing suggestions | 33 | 8.29 s | 455 | 0.94 s | No | - |
P07 | Title | 0 | 0 | 0 | 0 | No | - |
P07 | Prices | 5 | 1.35 s | 57 | 1.88 s | No | - |
P29 | Title | 0 | 0 | 0 | 0 | No | - |
P29 | Clothing suggestions | 2 | 0.68 s | 20 | 8.4 s | No | - |
P01 | Title | 0 | 0 | 0 | 0 | No | - |
P01 | Clothing suggestions | 30 | 6.59 s | 389 | 4.74 s | No | - |
P02 | Title | 0 | 0 | 0 | 0 | No | - |
P02 | Prices | 1 | 0.32 s | 12 | 8.99 s | No | - |
P06 | Title | 0 | 0 | 0 | 0 | Yes | Title |
P06 | Prices | 15 | 3.46 s | 200 | 2.98 s | Yes | Prices |
P06 | Clothing suggestions | 40 | 9.59 s | 523 | 1.65 s | Yes | Images |
P21 | Title | 0 | 0 | 0 | 0 | Yes | Prices |
P21 | Prices | 4 | 1.12 s | 80 | 2.9 s | Yes | Prices |
P21 | Clothing suggestions | 38 | 7.73 s | 396 | 1.52 s | Yes | Images |
P16 | Large images | 7 | 2.16 s | 135 | 6.75 s | Yes | Images |
P51 | Title | 10 | 2.39 s | 117 | 0.6 s | Yes | Title |
P51 | Title | 10 | 2.39 s | 117 | 0.6 s | Yes | Images |
P13 | Prices | 1 | 0.4 s | 49 | 2.88 s | No | - |
P47 | Prices | 2 | 0.78 s | 25 | 9.53 s | Yes | Prices |
P47 | Clothing suggestions | 13 | 3.13 s | 148 | 0.98 s | Yes | Images |
P53 | Prices | 0 | 0 | 0 | 0 | Yes | Prices |
P53 | Clothing suggestions | 10 | 2.31 s | 122 | 12.16 s | Yes | Images |
P25 | Prices | 5 | 0.98 s | 58 | 7.2 s | No | - |
Participant ID | Q1 1 | Fixation | Time Spent | Gaze | TTFG | Q2 2 | Q3 3 |
---|---|---|---|---|---|---|---|
P26 | Nothing | - | - | - | - | No | - |
P15 | Nothing | - | - | - | - | No | - |
P34 | Nothing | - | - | - | - | No | - |
P33 | Large images | 3 | 0.45 s | 44 | 0.56 s | Yes | Nothing |
Title | Title | ||||||||
---|---|---|---|---|---|---|---|---|---|
Yes | No | Yes | No | ||||||
Av. Time Spent | Av. TTFG | Av. Time Spent | Av. TTFG | Av. Time Spent | Av. TTFG | Av. Time Spent | Av. TTFG | ||
NASH | 2.01 s | 0.78 s | 1.32 s | 2.84 s | Tommy Hilfiger | 0.55 s | 1.26 s | 0.57 s | 1.02 s |
About You | 0.53 s | 1.91 s | 0.82 s | 3.42 s | Pink Woman | 0.47 s | 0.93 s | 0.97 s | 1.08 s |
Lacoste | 1.22 s | 1.09 s | 0.98 s | 0.8 s | Prince Oliver | 0.93 s | 1.12 s | 0 | 0.52 s |
Large Images | Large Images | ||||||||
Yes | No | Yes | No | ||||||
Av. Time spent | Av. TTFG | Av. Time spent | Av. TTFG | Av. Time spent | Av. TTFG | Av. Time spent | Av. TTFG | ||
NASH | 3.15 s | 1.83 s | 3.07 s | 1.66 s | Tommy Hilfiger | 4.43 s | 1.07 s | 3.92 s | 2.22 s |
About You | 0.38 s | 0.56 s | 1.16 s | 0.96 s | Pink Woman | 4.60 s | 0.88 s | 4.87 s | 0.98 s |
Lacoste | 1.75 s | 0.66 s | 1.54 s | 1.29 s | Prince Oliver | 3.92 s | 2.60 s | 3.95 s | 0.51 s |
Discount Code | Discount Code | ||||||||
Yes | No | Yes | No | ||||||
Av. Time spent | Av. TTFG | Av. Time spent | Av. TTFG | Av. Time spent | Av. TTFG | Av. Time spent | Av. TTFG | ||
NASH | 0.86 s | 4.62 s | 0.90 s | 6.70 s | Tommy Hilfiger | 0.86 s | 4.62 s | 0.90 s | 6.70 s |
About You | - | - | - | - | Prices | ||||
Lacoste | 1.53 s | 1.09 s | 1.44 s | 4.80 s | Pink Woman | 4.60 s | 0.88 s | 4.87 s | 0.98 s |
Prince Oliver | 3.92 s | 2.60 s | 3.95 s | 0.51 s |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Skourou, E.; Spiliotopoulos, D. Assessment of Purchasing Influence of Email Campaigns Using Eye Tracking. Multimodal Technol. Interact. 2024, 8, 87. https://doi.org/10.3390/mti8100087
Skourou E, Spiliotopoulos D. Assessment of Purchasing Influence of Email Campaigns Using Eye Tracking. Multimodal Technologies and Interaction. 2024; 8(10):87. https://doi.org/10.3390/mti8100087
Chicago/Turabian StyleSkourou, Evangelia, and Dimitris Spiliotopoulos. 2024. "Assessment of Purchasing Influence of Email Campaigns Using Eye Tracking" Multimodal Technologies and Interaction 8, no. 10: 87. https://doi.org/10.3390/mti8100087
APA StyleSkourou, E., & Spiliotopoulos, D. (2024). Assessment of Purchasing Influence of Email Campaigns Using Eye Tracking. Multimodal Technologies and Interaction, 8(10), 87. https://doi.org/10.3390/mti8100087