Synthesis of SDS-Modified Pt/Ti3C2Tx Nanocomposite Catalysts and Electrochemical Performance for Ethanol Oxidation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Instruments
2.2. Synthesis of Ti3C2Tx
2.3. Preparation of Ti3C2Tx-Pt Composites Modified with Different Content of SDS
2.4. Characterization
3. Results and Discussion
3.1. Physical Characterization
3.2. Electrochemical Characterization
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, M.; Bi, X.; Wang, R.; Li, Y.; Jiang, G.; Li, L.; Zhong, C.; Chen, Z.; Lu, J. Relating Catalysis between Fuel Cell and Metal-air Batteries. Matter 2020, 2, 32–49. [Google Scholar] [CrossRef]
- Khan, Z.; Vagin, M.; Crispin, X. Can Hybrid Na–Air Batteries Outperform Nonaqueous Na–O2 Batteries. Adv. Sci. 2020, 7, 1902866. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Zhao, Z.; Zhang, W.; Luo, M.; Tao, L.; Sun, Y.; Xia, Z.; Chao, Y.; Yin, K.; Zhang, Q. Sub-monolayer YOx/MoOx on ultrathin Pt nanowires boosts alcohol oxidation electrocatalysis. Adv. Mater. 2021, 33, 2103762. [Google Scholar] [CrossRef]
- Stamaenkovic, V.R.; Strmcnik, D.; Lopes, P.; Markovic, N.M. Energy and fuels from electrochemical interfaces. Nat. Mater. 2017, 16, 57–69. [Google Scholar] [CrossRef]
- Zhang, J.; Zhao, T.; Yuan, M.; Li, Z.; Wang, W.; Bai, Y.; Liu, Z.; Li, S.; Zhang, G. Trimetallic synergy in dendritic intermetallic PtSnBi nanoalloys for promoting electrocatalytic alcohol oxidation. J. Colloid Interface Sci. 2021, 602, 504–512. [Google Scholar] [CrossRef]
- Qi, W.; Zhou, D.B.; Chen, S.L.; Huang, Y.; Chen, X. Preparation and electrocatalytic properties of Fe, Co, Ni-polymer-C complex catalysts for ethanol electro-oxidation. Acta Chim. Sin. 2009, 67, 917–922. [Google Scholar]
- Elsheikh, A.; McGregor, J.L. Synthesis and characterization of PdAgNi/C trimetallic nanoparticles for ethanol electrooxidation. Nanomaterials 2021, 11, 2244. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.; Lu, S.; Hu, H.; Xu, F.; Li, H.; Duan, F.; Zhu, H.; Gu, H.; Du, M. Hyper-dendritic PdZn nanocrystals as highly stable and efficient bifunctional electrocatalysts towards oxygen reduction and ethanol oxidation. Chem. Eng. J. 2021, 420, 130503. [Google Scholar] [CrossRef]
- Bin, D.; Yang, B.; Zhang, K.; Wang, C.; Wang, J.; Zhong, J.; Feng, Y.; Guo, J.; Du, Y. Design of PdAg hollow nanoflowers through galvanic replacement and their application for ethanol electrooxidation. Chem. Eur. J. 2016, 22, 1. [Google Scholar] [CrossRef] [PubMed]
- Liang, J.; Liu, X.; Li, Q. Principles, strategies, and approaches for designing highly durable platinum-based catalysts for proton exchange membrane fuel cells. Acta Phys.-Chim. Sin. 2012, 37, 2010072. [Google Scholar] [CrossRef]
- Kottayintavide, R.; Gopalan, N.K. PdAu alloy nano wires for the elevated alcohol electro-oxidation reaction. Electrochim. Acta 2021, 384, 138405. [Google Scholar] [CrossRef]
- Wang, W.; Yang, Y.; Liu, Y.Q.; Zhang, Z.; Dong, W.K.; Lei, Z.Q. Hybrid NiCoOx adjacent to Pd nanoparticles as a synergistic electrocatalyst for ethanol oxidation. J. Power Sources 2015, 273, 631–637. [Google Scholar] [CrossRef]
- Bin, D.; Ren, F.F.; Wang, Y.; Zhai, C.Y.; Wang, C.Q.; Guo, J.; Yang, P.; Du, Y.K. Pd-nanoparticle-supported, PDDA-functionalized graphene as a promising catalyst for alcohol oxidation. Chem. Asian J. 2015, 10, 667–673. [Google Scholar] [CrossRef]
- Duan, S.; Du, Z.; Fan, H.; Wang, R. Nanostructure optimization of platinum-based nanomaterials for catalytic applications. Nanomaterials 2018, 8, 949. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, F.; Zhang, Y.P.; Ren, F.F.; Song, T.X.; Du, Y.K. Tiny Ir doping of sub-one-nanometer PtMn nanowires: Highly active and stable catalysts for alcohol electrooxidation. Nanoscale 2020, 12, 12098–12105. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.C.; Hu, L.P.; Tang, Y.F.; Xie, Z.J.; Zhang, H. Recent advances in functional 2D MXene-based nanostructures for next-generation devices. Adv. Funct. Mater. 2020, 30, 2005223. [Google Scholar] [CrossRef]
- Nan, J.; Guo, X.; Xiao, J.; Li, X.; Chen, W.; Wu, W.; Liu, H.; Wang, Y.; Wu, M.; Wang, G. Nanoengineering of 2D MXene-based materials for energy storage applications. Small 2019, 17, 1902085. [Google Scholar] [CrossRef]
- Wang, X.; Kajiyama, S.; Linuma, H.; Hosono, E.; Oro, S.; Moriguchi, I.; Okubo, M.; Yamada, A. Pseudocapacitance of MXene nanosheets for high-power sodium-ion hybrid capacitors. Nat. Commun. 2015, 6, 6544. [Google Scholar] [CrossRef] [Green Version]
- Ma, K.; Jiang, H.; Hu, Y.; Li, C. 2D Nanospace confined synthesis of pseudocapacitance dominated MoS2-in-Ti3C2 superstructure for ultrafast and stable Li/Na-ion batteries. Adv. Funct. Mater. 2018, 28, 1804306. [Google Scholar] [CrossRef]
- Chen, Q.; Jiang, W.; Fan, G. Pt nanoparticles on Ti3C2Tx-based MXenes as efficient catalysts for the selective hydrogenation of nitroaromatic compounds to amines. Dalton Trans. 2020, 49, 14914. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, Z.H.; Zhou, Z. MXene-based materials for electrochemical energy storage. J. Energy Chem. 2018, 27, 73–85. [Google Scholar] [CrossRef] [Green Version]
- Min, S.X.; Xue, Y.; Wang, F.; Zhang, Z.G.; Zhu, H.T. Ti3C2Tx MXene nanosheet-confined Pt nanoparticles efficiently catalyze dye-sensitized photocatalytic hydrogen evolution reaction. Chem. Commun. 2019, 55, 10631–10634. [Google Scholar]
- Li, Z.Y.; Wang, X.Y.; Zhang, W.M.; Yang, S.P. Two-dimensional Ti3C2@CTAB-Se (MXene) composite cathode material for high-performance rechargeable aluminum batteries. Chem. Eng. J. 2020, 398, 125679. [Google Scholar]
- Wang, Y.H.; Zeng, Z.X.; Qiao, J.Y.; Dong, S.Q.; Liang, Q.; Shao, S.J. Ultrasensitive determination of nitrite based on electrochemical platform of AuNPs deposited on PDDA-modified MXene nanosheets. Talanta 2021, 221, 121605. [Google Scholar] [CrossRef]
- Li, X.; Liu, X.; Wang, W.; Li, L.; Lu, X. High loading Pt nanoparticles on functionalization of carbon nanotubes for fabricating nonenzyme hydrogen peroxide sensor. Biosens. Bioelectron. 2014, 59, 221–226. [Google Scholar] [CrossRef]
- Huang, B.; He, Y.; Wang, Z.; Zhu, Y.; Zhang, Y.; Cen, K. High-performance Pt catalyst with graphene/carbon black as a hybrid support for SO2 electrocatalytic oxidation. Langmuir 2020, 36, 20–27. [Google Scholar] [CrossRef] [PubMed]
- Bin, D.; Ren, F.F.; Wang, H.W.; Zhang, K.; Yang, B.B.; Zhai, C.Y.; Zhu, M.S.; Yang, P.; Du, Y.K. Facile synthesis of PVP-assisted PtRu/RGO nanocomposites with high electrocatalytic performance for methanol oxidation. RSC. Adv. 2014, 4, 39612–39618. [Google Scholar] [CrossRef]
- Xiu, L.; Pei, W.; Zhou, S.L.; Wang, Z.; Yang, P.; Zhao, J.; Qiu, J. Multilevel Hollow MXene Tailored Low-Pt Catalyst for Efficient Hydrogen Evolution in Full-pH Range and Seawater. Adv. Funct. Mater. 2020, 30, 1910028. [Google Scholar] [CrossRef]
- Elancheziyan, M.; Eswaran, M.; Shuck, C.E.; Senthilkumar, S.; Elumalai, S.; Dhanusuraman, R.; Ponnusamy, V.K. Facile synthesis of polyaniline/titanium carbide (MXene) nanosheets/palladium nanocomposite for efficient electrocatalytic oxidation of methanol for fuel cell application. Fuel 2021, 303, 121329. [Google Scholar] [CrossRef]
- Cui, C.; Cheng, R.; Zhang, H.; Zhang, C.; Ma, Y.; Shi, C.; Fan, B.; Wang, H.; Wang, X. Ultrastable MXene@Pt/SWCNTs' Nanocatalysts for Hydrogen Evolution Reaction. Adv. Funct. Mater. 2020, 30, 2000693. [Google Scholar] [CrossRef]
- Bai, L.T.; Zhu, H.Z.; Thrasher, J.S.; Street, S.C. Synthesis and Electrocatalytic Activity of Photoreduced platinum nanoparticles in a poly(ethylenimine) matrix. ACS Appl. Mater. Interface 2009, 1, 2304–2311. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, Z.D.; Mai, Y.L.; Guo, C.Q.; Shi, Y.; Tan, H.Y.; Lu, Z.X.; Shen, L.S.; Yan, C.F. Highly active PtCo nanoparticles on hierarchically ordered mesoporous carbon support for polymer electrolyte membrane fuel cells. J. Mater. Sci. 2021, 56, 13083–13095. [Google Scholar] [CrossRef]
- Sharma, R.; Gyergyek, S.; Chamier, J.; Morgen, P.; Andersen, S. Pt/C electrocatalyst durability enhancement by inhibition of Pt nanoparticle growth through microwave pretreatment of carbon support. ChemEletroChem 2021, 8, 1183–1195. [Google Scholar] [CrossRef]
- Zhu, L.D.; Zhao, T.S.; Xu, J.B.; Liang, Z.X. Preparation and Characterization Of Carbon-supported Sub-monolayer Palladium Decorated Gold Nanoparticles For The Electro-oxidation Of Ethanol In Alkaline Media. J. Power Sources 2009, 187, 80–84. [Google Scholar] [CrossRef]
- Mayavan, S.; Sim, J.B.; Choi, S.M. Simultaneous reduction, exfoliation and functionalization of graphite oxide into a graphene-platinum nanoparticle hybrid for methanol oxidation. J. Mater. Chem. 2012, 22, 6953–6958. [Google Scholar] [CrossRef]
- Lai, S.C.; Koper, M.T. Ethanol electro-oxidation on platinum in alkaline media. Phys. Chem. Chem. Phys. 2009, 11, 10446–10456. [Google Scholar] [CrossRef]
- Sun, F.; Wu, B.; Qu, W.L.; Gao, Y.; Lu, T.H.; Liu, C.P.; Xin, W. The effect of activation treatment on electro-catalytic activity of Pt/C electrode for ethanol oxidation. Chin. J. Inorg. Chem. 2005, 21, 1546–1550. [Google Scholar]
- Chauhan, S.; Richards, G.J.; Mori, T.; Yan, P.F.; Hill, J.P.; Ariga, K.; Zou, J.; Drennan, J. Fabrication of a nano-structured Pt-loaded cerium oxide nanowire and its anode performance in the methanol electro-oxidation reaction. J. Mater. Chem. A 2013, 1, 6262–6270. [Google Scholar] [CrossRef]
- Vigier, F.; Coutanceau, C.; Hahn, F.; Belgsir, E.M.; Lamy, C. On the mechanism of ethanol electro-oxidation on Pt and PtSn catalysts: Electrochemical and in situ IR reflectance spectroscopy studies. J. Electroanal. Chem. 2004, 563, 81–89. [Google Scholar] [CrossRef]
- Qu, T.; Tan, Q.; Liu, L.; Guo, S.; Li, S.; Liu, Y. Polymer fiber membrane-based direct ethanol fuel cell with Ni-doped SnO2 promoted Pd/C catalyst. Catal. Sci. Technol. 2020, 10, 4099. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, B.; Qin, T.; Bao, Z.; Lu, W.; Dong, J.; Bin, D.; Lu, H. Synthesis of SDS-Modified Pt/Ti3C2Tx Nanocomposite Catalysts and Electrochemical Performance for Ethanol Oxidation. Nanomaterials 2021, 11, 3174. https://doi.org/10.3390/nano11123174
Yang B, Qin T, Bao Z, Lu W, Dong J, Bin D, Lu H. Synthesis of SDS-Modified Pt/Ti3C2Tx Nanocomposite Catalysts and Electrochemical Performance for Ethanol Oxidation. Nanomaterials. 2021; 11(12):3174. https://doi.org/10.3390/nano11123174
Chicago/Turabian StyleYang, Beibei, Tian Qin, Ziping Bao, Wenqian Lu, Jiayu Dong, Duan Bin, and Hongbin Lu. 2021. "Synthesis of SDS-Modified Pt/Ti3C2Tx Nanocomposite Catalysts and Electrochemical Performance for Ethanol Oxidation" Nanomaterials 11, no. 12: 3174. https://doi.org/10.3390/nano11123174