Transmissive Polarizer Metasurfaces: From Microwave to Optical Regimes
Abstract
:1. Introduction
2. Why Polarization Conversion Is Required
3. History and Modeling of MSs
4. Polarization Manipulation Using MSs
5. Theory of Polarization Conversion
6. Review of Recent Progress of MSs Based Polarization Conversion
6.1. Single Band Transmissive MS-Based Converters
6.2. Multiband Transmissive MS-Based Polarization Converters
6.3. Reconfigurable Transmissive MS Based Converters
6.3.1. Controllability through Circuit Elements
6.3.2. Controllability through State Change
6.3.3. Controllability Using Structural Change
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Huygens, C. Traité de la Lumière; Gauthier-Villars: Leyden, The Netherlands, 1690. [Google Scholar]
- Jones, E. Paraboloid reflector and hyperboloid lens antennas. Trans. IRE Prof. Group Antennas Propag. 1954, 2, 119–127. [Google Scholar] [CrossRef]
- Born, M.; Wolf, E. Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light; Elsevier: Singapore, 2013. [Google Scholar]
- Hsu, S.H.; Han, C.; Huang, J.; Chang, K. An offset linear-array-fed Ku/Ka dual-band reflectarray for planet cloud/precipitation radar. IEEE Trans. Antennas Propag. 2007, 55, 3114–3122. [Google Scholar] [CrossRef]
- Ryan, C.G.; Chaharmir, M.R.; Shaker, J.R.B.J.; Bray, J.R.; Antar, Y.M.; Ittipiboon, A. A wideband transmitarray using dual-resonant double square rings. IEEE Trans. Antennas Propag. 2010, 58, 1486–1493. [Google Scholar] [CrossRef]
- Li, M.; Al-Joumayly, M.A.; Behdad, N. Broadband true-time-delay microwave lenses based on miniaturized element frequency selective surfaces. IEEE Trans. Antennas Propag. 2012, 61, 1166–1179. [Google Scholar] [CrossRef]
- Ali, A.; Mitra, A.; Aïssa, B. Metamaterials and Metasurfaces: A Review from the Perspectives of Materials, Mechanisms and Advanced Metadevices. Nanomaterials 2022, 12, 1027. [Google Scholar] [CrossRef]
- Cai, W.; Chettiar, U.K.; Kildishev, A.V.; Shalaev, V.M.; Milton, G.W. Nonmagnetic cloak with minimized scattering. Appl. Phys. Lett. 2007, 91, 111105. [Google Scholar] [CrossRef] [Green Version]
- Pendry, J.B.; Schurig, D.; Smith, D.R. Controlling electromagnetic fields. Science 2006, 312, 1780–1782. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Q.; Yuan, W.; Qu, J.; Cheng, Z.; Peng, G.-D.; Yu, C. Optical Fiber-Integrated Metasurfaces: An Emerging Platform for Multiple Optical Applications. Nanomaterials 2022, 12, 793. [Google Scholar] [CrossRef]
- Holloway, C.L.; Kuester, E.F.; Gordon, J.A.; O’Hara, J.; Booth, J.; Smith, D.R. An overview of the theory and applications of Metasurfaces: The two-dimensional equivalents of metamaterials. IEEE Antennas Propag. Mag. 2012, 54, 10–35. [Google Scholar] [CrossRef]
- Su, V.C.; Chu, C.H.; Sun, G.; Tsai, D.P. Advances in optical MSs: Fabrication and applications. Opt. Express 2018, 26, 13148–13182. [Google Scholar] [CrossRef]
- Glybovski, S.B.; Tretyakov, S.A.; Belov, P.A.; Kivshar, Y.S.; Simovski, C.R. Metasurfaces: From microwaves to visible. Phys. Rep. 2016, 634, 1–72. [Google Scholar] [CrossRef]
- Ren, J.; Leung, K.W. Generation of high-purity millimeter-wave orbital angular momentum modes using horn antenna: Theory and implementation. arXiv 2017, arXiv:1710.00035. [Google Scholar]
- Wang, Y.Z.; Wang, P.L.; Lin, M. Design and experiment of X-Band circularly polarized antenna. Electron. Meas. Tech. 2010, 33, 26–29. [Google Scholar]
- Yang, C.; Zhu, X.W.; Liu, P.; Hong, W.; Feng, H.; Shi, Y.A. Circularly Polarized Horn Antenna Based on an FSS Polarization Converter. IEEE Antennas Wirel. Propag. Lett. 2019, 19, 277–281. [Google Scholar] [CrossRef]
- Jepsen, P.U.; Cooke, D.G.; Koch, M. Terahertz spectroscopy and imaging–Modern techniques and applications. Laser Photonics Rev. 2011, 5, 124–166. [Google Scholar] [CrossRef]
- Katletz, S.; Pfleger, M.; Pühringer, H.; Mikulics, M.; Vieweg, N.; Peters, O.; Scherger, B.; Scheller, M.; Koch, M.; Wiesauer, K. Polarization sensitive terahertz imaging: Detection of birefringence and optical axis. Opt. Express 2012, 20, 23025–23035. [Google Scholar] [CrossRef] [Green Version]
- Vollmer, F.; Arnold, S. Whispering-gallery-mode biosensing: Label-free detection down to single molecules. Nat. Methods 2008, 5, 591–596. [Google Scholar] [CrossRef]
- Tonouchi, M. Cutting-edge terahertz technology. Nat. Photonics 2007, 1, 97–105. [Google Scholar] [CrossRef]
- Yoshida, S.; Yamaguchi, T.; Kinbara, A. Changes of the optical properties of aggregated silver films after deposition. J. Opt. Soc. Am. 1971, 61, 463–469. [Google Scholar] [CrossRef]
- Yamaguchi, T.; Yoshida, S.; Kinbara, A. Optical effect of the substrate on the anomalous absorption of aggregated silver films. Thin Solid Film. 1974, 21, 173–187. [Google Scholar] [CrossRef]
- Gajdardziska-Josifovska, M.; McPhedran, R.C.; Cockayne, D.J.; McKenzie, D.R.; Collins, R.E. Silver–magnesium fluoride cermet films. 1: Preparation and microstructure. Appl. Opt. 1989, 28, 2736–2743. [Google Scholar] [CrossRef] [PubMed]
- Senior, T. Combined resistive and conductive sheets. IEEE Trans. Antennas Propag. 1985, 33, 577–579. [Google Scholar] [CrossRef]
- Simovski, C.R.; Ermutlu, M.E.; Sochava, A.A.; Tretyakov, S.A. Magnetic properties of novel high impedance surfaces. IET Microw. Antennas Propag. 2007, 1, 190–197. [Google Scholar] [CrossRef]
- Kuester, E.F.; Mohamed, M.A.; Piket-May, M.; Holloway, C.L. Averaged transition conditions for electromagnetic fields at a metafilm. IEEE Trans. Antennas Propag. 2003, 51, 2641–2651. [Google Scholar] [CrossRef]
- Holloway, C.L.; Mohamed, M.A.; Kuester, E.F.; Dienstfrey, A. Reflection and transmission properties of a metafilm: With an application to a controllable surface composed of resonant particles. IEEE Trans. Electromagn. Compat. 2005, 47, 853–865. [Google Scholar] [CrossRef]
- Li, X. New Resonances, Gratings, and Slow-Wave Structures Based on 2D Periodic Structures. Ph.D. Thesis, University of California, Los Angeles, CA, USA, 2018. [Google Scholar]
- Hendry, E.; Mikhaylovskiy, R.V.; Barron, L.D.; Kadodwala, M.; Davis, T.J. Chiral electromagnetic fields generated by arrays of nanoslits. Nano Lett. 2012, 12, 3640–3644. [Google Scholar] [CrossRef]
- Papakostas, A.; Potts, A.; Bagnall, D.M.; Prosvirnin, S.L.; Coles, H.J.; Zheludev, N.I. Optical manifestations of planar chirality. Phys. Rev. Lett. 2003, 90, 107404. [Google Scholar] [CrossRef]
- Niemi, T.; Karilainen, A.O.; Tretyakov, S.A. Synthesis of polarization transformers. IEEE Trans. Antennas Propag. 2013, 61, 3102–3111. [Google Scholar] [CrossRef]
- Yu, N.; Capasso, F. Flat optics with designer Metasurfaces. Nat. Mater. 2014, 13, 139–150. [Google Scholar] [CrossRef]
- Li, G.; Zhang, S.; Zentgraf, T. Nonlinear photonic Metasurfaces. Nat. Rev. Mater. 2017, 2, 17010. [Google Scholar] [CrossRef]
- Chen, W.T.; Zhu, A.Y.; Capasso, F. Flat optics with dispersion-engineered Metasurfaces. Nat. Rev. Mater. 2020, 5, 604–620. [Google Scholar] [CrossRef]
- Sandeep, S.; Jin, J.M.; Caloz, C. Finite-element modeling of MSs with generalized sheet transition conditions. IEEE Trans. Antennas Propag. 2017, 65, 2413–2420. [Google Scholar] [CrossRef]
- Albooyeh, M.; Alaee, R.; Rockstuhl, C.; Simovski, C. Revisiting substrate-induced bianisotropy in Metasurfaces. Phys. Rev. B 2015, 91, 195304. [Google Scholar] [CrossRef] [Green Version]
- Yan, M. Metal–insulator–metal light absorber: A continuous structure. J. Opt. 2013, 15, 025006. [Google Scholar] [CrossRef]
- Kontorovich, M.I.; Petrunkin, V.Y.; Yesepkina, N.A.; Astrakhan, M.I. The coefficient of reflection of a plane electromagnetic wave from a plane wire mesh. Radio Eng. Electron. Phys. 1962, 7, 222–231. [Google Scholar]
- Tretyakov, S. Analytical Modeling in Applied Electromagnetics; Artech House: London, UK; Norwood, MA, USA, 2003. [Google Scholar]
- Vardaxoglou, J.C. Frequency Selective Surfaces: Analysis and Design; Research Studies Press: Boston, MA, USA, 1997. [Google Scholar]
- Munk, B.A. Frequency Elective Surfaces: Theory and Design; John Wiley & Sons: Hoboken, NJ, USA, 2000. [Google Scholar]
- Sarabandi, K.; Behdad, N. A frequency selective surface with miniaturized elements. IEEE Trans. Antennas Propag. 2007, 55, 1239–1245. [Google Scholar] [CrossRef]
- Chiu, C.N.; Chang, K.P. A novel miniaturized-element frequency selective surface having a stable resonance. IEEE Antennas Wirel. Propag. Lett. 2009, 8, 1175–1177. [Google Scholar] [CrossRef]
- Bayatpur, F.; Sarabandi, K. Multipole spatial filters using metamaterial-based miniaturized-element frequency-selective surfaces. IEEE Trans. Microw. Theory Tech. 2008, 56, 2742–2747. [Google Scholar] [CrossRef]
- Xu, R.R.; Zong, Z.Y.; Wu, W. Low-frequency miniaturized dual-band frequency selective surfaces with close band spacing. Microw. Opt. Technol. Lett. 2009, 51, 1238–1240. [Google Scholar] [CrossRef]
- Behdad, N. Miniaturized-element frequency selective surfaces (MEFSS) using sub-wavelength periodic structures. In Proceedings of the 2008 IEEE Radio and Wireless Symposium, Orlando, FL, USA, 22–24 January 2008; IEEE: New York, NY, USA, 2008; pp. 347–350. [Google Scholar]
- Hu, X.D.; Zhou, X.L.; Wu, L.S.; Zhou, L.; Yin, W.Y. A miniaturized dual-band frequency selective surface (FSS) with closed loop and its complementary pattern. IEEE Antennas Wirel. Propag. Lett. 2009, 8, 1374–1377. [Google Scholar]
- Amitay, N.; Saleh, A.A.M. Broad-band wide-angle quasi-optical polarization rotators. IEEE Trans. Antennas Propag. 1983, 31, 73–76. [Google Scholar] [CrossRef]
- Plum, E.; Zhou, J.; Dong, J.; Fedotov, V.A.; Koschny, T.; Soukoulis, C.M.; Zheludev, N.I. Metamaterial with negative index due to chirality. Phys. Rev. B 2009, 79, 035407. [Google Scholar] [CrossRef] [Green Version]
- Torres, R.P.; Catedra, M.F. Analysis and design of a two-octave polarization rotator for microwave frequency. IEEE Trans. Antennas Propag. 1993, 41, 208–213. [Google Scholar] [CrossRef]
- Zhao, Y.; Belkin, M.A.; Alù, A. Twisted optical metamaterials for planarized ultrathin broadband circular polarizers. Nat. Commun. 2012, 3, 870. [Google Scholar] [CrossRef] [Green Version]
- Ye, Y.; He, S. 90° polarization rotator using a bilayered chiral metamaterial with giant optical activity. Appl. Phys. Lett. 2010, 96, 203501. [Google Scholar] [CrossRef]
- Morin, G.A. A Circular Polarization Selective Surface Made of Resonant Helices; Defence Research Establishment Ottawa (Ontario): Ottawa, ON, Canada, 1995. [Google Scholar]
- Quddus, A.U.; Abedi, S.; Evans, B.G.; Tafazolli, R. Blind multiple access interference suppression in a land mobile satellite fading channel. In Proceedings of the 2003 5th European Personal Mobile Communications Conference, Glasgow, UK, 22–25 April 2003. [Google Scholar]
- Hofmann, T.; Schade, U.; Herzinger, C.M.; Esquinazi, P.; Schubert, M. Terahertz magneto-optic generalized ellipsometry using synchrotron and blackbody radiation. Rev. Sci. Instrum. 2006, 77, 063902. [Google Scholar] [CrossRef]
- Parks, B.; Spielman, S.; Orenstein, J. High-frequency Hall effect in the normal state of YBa2Cu3O7. Phys. Rev. B Condens. Matter 1997, 56, 115–117. [Google Scholar] [CrossRef]
- Yamamoto, K.; Kabir, M.H.; Tominaga, K. Terahertz time-domain spectroscopy of sulfur-containing biomolecules. J. Opt. Soc. Am. B 2005, 22, 2417–2426. [Google Scholar] [CrossRef]
- Woodward, R.M.; Cole, B.E.; Wallace, V.P.; Pye, R.J.; Arnone, D.D.; Linfield, E.H.; Pepper, M. Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue. Phys. Med. Biol. 2002, 47, 3853–3863. [Google Scholar] [CrossRef]
- Strikwerda, A.C.; Fan, K.; Tao, H.; Pilon, D.V.; Zhang, X.; Averitt, R.D. Comparison of birefringent electric split-ring resonator and meanderline structures as quarter-wave plates at terahertz frequencies. Opt. Express 2009, 17, 136–149. [Google Scholar] [CrossRef]
- Dietlein, C.; Luukanen, A.; Popovi, Z.; Grossman, E. A W-band polarization converter and isolator. IEEE Trans. Antennas Propag. 2007, 55, 1804–1809. [Google Scholar] [CrossRef]
- Doumanis, E.; Goussetis, G.; Gomez-Tornero, J.L.; Cahill, R.; Fusco, V. Anisotropic impedance surfaces for linear to circular polarization conversion. IEEE Trans. Antennas Propag. 2011, 60, 212–219. [Google Scholar] [CrossRef]
- Lerner, D. A wave polarization converter for circular polarization. IEEE Trans. Antennas Propag. 1965, 13, 3–7. [Google Scholar] [CrossRef]
- Young, L.; Robinson, L.; Hacking, C. Meander-line polarizer. IEEE Trans. Antennas Propag. 1973, 21, 376–378. [Google Scholar] [CrossRef]
- Brand, G.F. The strip grating as a circular polarizing beamsplitter. Int. J. Infrared Millim. Waves 2002, 23, 1271–1285. [Google Scholar] [CrossRef]
- Wang, H.B.; Cheng, Y.J. Single-layer dual-band linear-to-circular polarization converter with wide axial ratio bandwidth and different polarization modes. IEEE Trans. Antennas Propag. 2019, 67, 4296–4301. [Google Scholar] [CrossRef]
- He, J.; Xie, Z.; Wang, S.; Wang, X.; Kan, Q.; Zhang, Y. Terahertz polarization modulator based on Metasurface. J. Opt. 2015, 17, 105107. [Google Scholar] [CrossRef]
- Zhu, H.L.; Cheung, S.W.; Chung, K.L.; Yuk, T.I. Linear-to-circular polarization conversion using Metasurface. IEEE Trans. Antennas Propag. 2013, 61, 4615–4623. [Google Scholar] [CrossRef] [Green Version]
- Martinez-Lopez, L.; Rodriguez-Cuevas, J.; Martinez-Lopez, J.I.; Martynyuk, A.E. Cascaded circular-polarisation-selective surface based on bisected split rings. Electron. Lett. 2014, 50, 1335–1336. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, J.; Qu, S.; Wang, J.; Zheng, L.; Pang, Y.; Xu, Z.; Zhang, A. Achieving wide-band linear-to-circular polarization conversion using ultra-thin bi-layered Metasurfaces. J. Appl. Phys. 2015, 117, 044501. [Google Scholar] [CrossRef]
- Baena, J.D.; Glybovski, S.B.; del Risco, J.P.; Slobozhanyuk, A.P.; Belov, P.A. Broadband and thin linear-to-circular polarizers based on self-complementary zigzag Metasurfaces. IEEE Trans. Antennas Propag. 2017, 65, 4124–4133. [Google Scholar] [CrossRef]
- Wang, D.; Gu, Y.; Gong, Y.; Qiu, C.W.; Hong, M. An ultrathin terahertz quarter-wave plate using planar babinet-inverted Metasurface. Opt. Express 2015, 23, 11114–11122. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Arju, N.; Kelp, G.; Fan, J.A.; Dominguez, J.; Gonzales, E.; Tutuc, E.; Brener, I.; Shvets, G. Spectrally selective chiral silicon Metasurfaces based on infrared Fano resonances. Nat. Commun. 2014, 5, 3892. [Google Scholar] [CrossRef] [PubMed]
- Lin, B.Q.; Guo, J.X.; Huang, B.G.; Fang, L.B.; Chu, P.; Liu, X.W. Wideband linear-to-circular polarization conversion realized by a transmissive anisotropic Metasurface. Chin. Phys. B 2018, 27, 054204. [Google Scholar] [CrossRef]
- Lin, B.Q.; Guo, J.; Wang, Y.; Wang, Z.; Huang, B.; Liu, X. A wide-angle and wide-band circular polarizer using a bi-layer Metasurface. Prog. Electromagn. Res. 2018, 161, 125–133. [Google Scholar] [CrossRef] [Green Version]
- Lin, C.; Ge, Y.; Bird, T.S.; Liu, K. Circularly polarized horns based on standard horns and a Metasurface polarizer. IEEE Antennas Wirel. Propag. Lett. 2018, 17, 480–484. [Google Scholar] [CrossRef]
- Fahad, A.K.; Ruan, C.; Chen, K. A wideband terahertz transmissive polarization manipulator based on Metasurfaces. Electronics 2019, 8, 1068. [Google Scholar] [CrossRef] [Green Version]
- Ghosh, S.; Srivastava, K.V. An equivalent circuit model of FSS-based metamaterial absorber using coupled line theory. IEEE Antennas Wirel. Propag. Lett. 2014, 14, 511–514. [Google Scholar] [CrossRef]
- Meinzer, N.; Barnes, W.L.; Hooper, I.R. Plasmonic meta-atoms and Metasurfaces. Nat. Photonics 2014, 8, 889. [Google Scholar] [CrossRef] [Green Version]
- Akgol, O.; Unal, E.; Altintas, O.; Karaaslan, M.; Karadag, F.; Sabah, C. Design of MS polarization converter from linearly polarized signal to circularly polarized signal. Optik 2018, 161, 12–19. [Google Scholar] [CrossRef]
- Guo, Z.; Cao, X.; Gao, J.; Yang, H.; Jidi, L. A novel composite transmission Metasurface with dual functions and its application in microstrip antenna. J. Appl. Phys. 2020, 127, 115103. [Google Scholar] [CrossRef]
- Fahad, A.K.; Ruan, C.; Ali, S.A.; Nazir, R.; Haq, T.U.; Ullah, S.; He, W. Triple-wide-band Ultra-thin Metasheet for transmission polarization conversion. Sci. Rep. 2020, 10, 8810. [Google Scholar] [CrossRef] [PubMed]
- Florencio, R.; Boix, R.R.; Encinar, J.A. Fast and accurate MoM analysis of periodic arrays of multilayered stacked rectangular patches with application to the design of reflectarray antennas. IEEE Trans. Antennas Propag. 2015, 63, 2558–2571. [Google Scholar] [CrossRef]
- Zou, W.M.; Qu, S.W.; Yang, S. A low profile dual-band dual-polarized shared-aperture antenna. In Proceedings of the 2017 International Applied Computational Electromagnetics Society Symposium (ACES), Firenze, Italy, 26–30 March 2017; IEEE: New York, NY, USA, 2017; pp. 1–2. [Google Scholar]
- Zhang, J.F.; Cheng, Y.J.; Ding, Y.R.; Bai, C.X. A dual-band shared-aperture antenna with large frequency ratio, high aperture reuse efficiency, and high channel isolation. IEEE Trans. Antennas Propag. 2018, 67, 853–860. [Google Scholar] [CrossRef]
- Wang, S.Y.; Liu, W.; Geyi, W. Dual-band transmission polarization converter based on planar-dipole pair frequency selective surface. Sci. Rep. 2018, 8, 3791. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.I.; Khalid, Z.; Tahir, F.A. Linear and circular-polarization conversion in X-band using anisotropic Metasurface. Sci. Rep. 2019, 9, 4552. [Google Scholar] [CrossRef] [Green Version]
- Zeng, Q.; Ren, W.; Zhao, H.; Xue, Z.; Li, W. Dual-band transmission-type circular polariser based on frequency selective surfaces. IET Microw. Antennas Propag. 2018, 13, 216–222. [Google Scholar] [CrossRef]
- Naseri, P.; Matos, S.A.; Costa, J.R.; Fernandes, C.A.; Fonseca, N.J. Dual-band dual-linear-to-circular polarization converter in transmission mode application to $ K/Ka $-band satellite communications. IEEE Trans. Antennas Propag. 2018, 66, 7128–7137. [Google Scholar] [CrossRef] [Green Version]
- Fahad, A.K.; Ruan, C.; Nazir, R.; Haq, T.U.; He, W. Dual-Band Ultrathin Meta-Array for Polarization Conversion in Ku/Ka-Band With Broadband Transmission. IEEE Antennas Wirel. Propag. Lett. 2020, 19, 856–860. [Google Scholar] [CrossRef]
- Fahad, A.K.; Ruan, C.; Nazir, R.; Saleem, M.; Haq, T.U.; Ullah, S.; He, W. Ultra-thin metasheet for dual-wide-band linear to circular polarization conversion with wide-angle performance. IEEE Access 2020, 8, 163244–163254. [Google Scholar] [CrossRef]
- Sofi, M.A.; Saurav, K.; Koul, S.K. Frequency-Selective Surface-Based Compact Single Substrate Layer Dual-Band Transmission-Type Linear-to-Circular Polarization Converter. IEEE Trans. Microw. Theory Tech. 2020, 68, 4138–4149. [Google Scholar] [CrossRef]
- Liu, K.; Wang, G.; Cai, T.; Li, T. Dual-band transmissive circular polarization generator with high angular stability. Opt. Express 2020, 28, 14995–15005. [Google Scholar] [CrossRef] [PubMed]
- Naseri, P.; Costa, J.R.; Matos, S.A.; Fernandes, C.A.; Hum, S.V. Equivalent circuit modeling to design a dual-band dual linear-to-circular polarizer surface. IEEE Trans. Antennas Propag. 2020, 68, 5730–5735. [Google Scholar] [CrossRef]
- Nouman, M.T.; Hwang, J.H.; Jang, J.H. Ultrathin terahertz quarter-wave plate based on split ring resonator and wire grating hybrid Metasurface. Sci. Rep. 2016, 6, 39062. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Turpin, J.P.; Bossard, J.A.; Morgan, K.L.; Werner, D.H.; Werner, P.L. Reconfigurable and tunable metamaterials: A review of the theory and applications. Int. J. Antennas Propag. 2014, 2014, 429837. [Google Scholar] [CrossRef]
- Sievenpiper, D.F.; Schaffner, J.H.; Song, H.J.; Loo, R.Y.; Tangonan, G. Two-dimensional beam steering using an electrically tunable impedance surface. IEEE Trans. Antennas Propag. 2003, 51, 2713–2722. [Google Scholar] [CrossRef] [Green Version]
- Sievenpiper, D.F. Forward and backward leaky wave radiation with large effective aperture from an electronically tunable textured surface. IEEE Trans. Antennas Propag. 2005, 53, 236–247. [Google Scholar] [CrossRef]
- Yong-Jun, Y.; Yong-Jun, H.; Guang-Jun, W.; Jing-Ping, Z.; Hai-Bin, S.; Gordon, O. Tunable broadband metamaterial absorber consisting of ferrite slabs and a copper wire. Chin. Phys. B 2012, 21, 038501. [Google Scholar] [CrossRef]
- Chen, H.T.; Padilla, W.J.; Zide, J.M.; Gossard, A.C.; Taylor, A.J.; Averitt, R.D. Active terahertz metamaterial devices. Nature 2006, 444, 597–600. [Google Scholar] [CrossRef] [Green Version]
- Kats, M.; Sharma, D.; Lin, J.; Genevet, P.; Blanchard, R.; Yang, Z.; Qazilbash, M.M.; Basov, D.N.; Ramanathan, S.; Capasso, F. Ultra-thin perfect absorber employing a tunable phase change material. Appl. Phys. Lett. 2012, 101, 221101. [Google Scholar] [CrossRef]
- Zhu, W.M.; Song, Q.H.; Liu, A.Q.; Tsai, D.P.; Cai, H.; Shen, Z.X.; Huang, R.F.; Ting, S.K.; Liang, Q.X.; Liu, H.Z.; et al. A random access reconfigurable metamaterial and a tunable flat lens. arXiv 2014, arXiv:1406.2757. [Google Scholar]
- Zeng, L.; Zhang, H.F.; Liu, G.B.; Huang, T. A three-dimensional Linear-to-Circular polarization converter tailored by the gravity field. Plasmonics 2019, 14, 1347–1355. [Google Scholar] [CrossRef]
- Debogović, T.; Bartolić, J.; Perruisseau-Carrier, J. Dual-polarized partially reflective surface antenna with MEMS-based beamwidth reconfiguration. IEEE Trans. Antennas Propag. 2013, 62, 228–236. [Google Scholar] [CrossRef]
- Li, W.; Gao, S.; Cai, Y.; Luo, Q.; Sobhy, M.; Wei, G.; Xu, J.; Li, J.; Wu, C.; Cheng, Z. Polarization-reconfigurable circularly polarized planar antenna using switchable polarizer. IEEE Trans. Antennas 2017, 65, 4470–4477. [Google Scholar] [CrossRef]
- Ma, X.; Pan, W.; Huang, C.; Pu, M.; Wang, Y.; Zhao, B.; Cui, J.; Wang, C.; Luo, X. An active metamaterial for polarization manipulating. Adv. Opt. Mater. 2014, 2, 945–949. [Google Scholar] [CrossRef]
- Tao, Z.; Wan, X.; Pan, B.C.; Cui, T.J. Reconfigurable conversions of reflection, transmission, and polarization states using active Metasurface. Appl. Phys. Lett. 2017, 110, 121901. [Google Scholar] [CrossRef]
- Yan, H.; Li, X.; Chandra, B.; Tulevski, G.; Wu, Y.; Freitag, M.; Zhu, W.; Avouris, P.; Xia, F. Tunable infrared plasmonic devices using graphene/insulator stacks. Nat. Nanotechnol. 2012, 7, 330–334. [Google Scholar] [CrossRef] [Green Version]
- Guo, T.; Argyropoulos, C. Broadband polarizers based on graphene Metasurfaces. Opt. Lett. 2016, 41, 5592–5595. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.F.; Zeng, L.; Liu, G.B.; Huang, T. Tunable linear-to-circular polarization converter using the graphene transmissive Metasurface. IEEE Access 2019, 7, 158634–158642. [Google Scholar] [CrossRef]
- Chen, W.; Tymchenko, M.; Gopalan, P.; Ye, X.; Wu, Y.; Zhang, M.; Murray, C.B.; Alu, A.; Kagan, C.R. Large-area nanoimprinted colloidal Au nanocrystal-based nanoantennas for ultrathin polarizing plasmonic Metasurfaces. Nano Lett. 2015, 15, 5254–5260. [Google Scholar] [CrossRef]
- Wang, D.; Zhang, L.; Gu, Y.; Mehmood, M.Q.; Gong, Y.; Srivastava, A.; Jian, L.; Venkatesan, T.; Qiu, C.-W.; Hong, M. Switchable ultrathin quarter-wave plate in terahertz using active phase-change MS. Sci. Rep. 2015, 5, 15020. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Naqvi, A.H.; Lim, S. Microfluidically polarization-switchable Metasurfaced antenna. IEEE Antennas Wirel. Propag. Lett. 2018, 17, 2255–2259. [Google Scholar] [CrossRef]
- Mak, K.M.; Lai, H.W.; Luk, K.M.; Ho, K.L. Polarization reconfigurable circular patch antenna with a C-shaped. IEEE Trans. Antennas Propag. 2016, 65, 1388–1392. [Google Scholar] [CrossRef]
- Yu, H.; Cao, X.; Gao, J.; Yang, H.; Jidi, L.; Han, J.; Li, T. Design of a wideband and reconfigurable polarization converter using a manipulable Metasurface. Opt. Mater. Express 2018, 8, 3373–3381. [Google Scholar] [CrossRef]
Ref | Operating Frequency | Operating Bandwidth | No. of Metallic Layers | Angular Stability |
---|---|---|---|---|
[67] | 2.45 GHz | 9% | 1 | 10 |
[68] | 31 | 34% | 4 | 25 |
[69] | 14.05 | 60% | 2 | - |
[70] | 9 | 70% (numerical), 40% (experimental) | 2 | 25 |
[79] | 3 | 5% | 1 | - |
[73] | 15.3 | 40% | 3 | - |
[74] | 9.38 | 37.3% | 2 | 75° |
[80] | 8.9 | 11% | 2 | ±30° |
[75] | 29.5 | 7.4% | 3 | - |
[76] | 1205 | 43.9% | 2 | - |
[71] | 870 | - | 2 | - |
[72] | λ = 4.55 μm | - | 2 | - |
Ref | Operating Frequencies | Operating Bandwidth | No. of Metallic Layers | Angular Stability | Orthogonality |
---|---|---|---|---|---|
[65] | 7.6, 13 | 31.6, 13.8 | 4 | 25 | same |
[87] | 18.95, 28.5 | 13.1, 10.5 | 2 | 20 | orth |
[88,93] | 19.95, 29.75 | 2.5, 1.7 | 3 | 30 | orth |
[89] | 17.8, 36.5 | 25, 16.4 | 2 | - | orth |
[91] | 20.6, 29.71 | 5.56, 3.97 | 2 | orth | |
[92] | 9.5, 12.5 | 4.2,6 | 3 | 55 | orth |
[94] | 0.73, 1.33 | 24%, 30% | 1 | - | |
[81] | 8.45, 28.4, 38.8 | 27.22, 21.2, 17.5 | 2 | 25 | orth |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fahad, A.K.; Ruan, C.; Nazir, R.; Hassan, B. Transmissive Polarizer Metasurfaces: From Microwave to Optical Regimes. Nanomaterials 2022, 12, 1705. https://doi.org/10.3390/nano12101705
Fahad AK, Ruan C, Nazir R, Hassan B. Transmissive Polarizer Metasurfaces: From Microwave to Optical Regimes. Nanomaterials. 2022; 12(10):1705. https://doi.org/10.3390/nano12101705
Chicago/Turabian StyleFahad, Ayesha Kosar, Cunjun Ruan, Rabia Nazir, and Bilal Hassan. 2022. "Transmissive Polarizer Metasurfaces: From Microwave to Optical Regimes" Nanomaterials 12, no. 10: 1705. https://doi.org/10.3390/nano12101705
APA StyleFahad, A. K., Ruan, C., Nazir, R., & Hassan, B. (2022). Transmissive Polarizer Metasurfaces: From Microwave to Optical Regimes. Nanomaterials, 12(10), 1705. https://doi.org/10.3390/nano12101705