Porous CuO Microspheres as Long-Lifespan Cathode Materials for Aqueous Zinc-Ion Batteries
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation Method of CuO Microspheres
2.2. Material Characterizations
2.3. Electrochemical Experiments
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Xu, C.J.; Li, B.H.; Du, H.D.; Kang, F.Y. Energetic Zinc Ion Chemistry: The Rechargeable Zinc Ion Battery. Angew. Chem. Int. Ed. 2012, 51, 933–935. [Google Scholar] [CrossRef]
- Wang, J.B.; Okabe, J.; Komine, Y.; Notohara, H.; Urita, K.; Moriguchi, I.; Wei, M.D. The optimized interface engineering of VS2 as cathodes for high performance all-solid-state lithium-ion battery. Sci. China Technol. Sci. 2022, 65, 1859–1866. [Google Scholar] [CrossRef]
- Wang, J.B.; Ghosh, T.; Ju, Z.Y.; Ng, M.F.; Wu, G.; Yang, G.L.; Zhang, X.F.; Zhang, L.; Handoko, D.A.; Kumar, S.; et al. Heterojunction structure of cobalt sulfide cathodes for high-performance magnesium-ion batteries. Matter 2024, 7, 1833–1847. [Google Scholar] [CrossRef]
- Gao, X.W.; Dai, Y.; Zhang, C.; Zhang, Y.; Zong, W.; Zhang, W.; Chen, R.; Zhu, J.; Hu, X.; Wang, M.; et al. When It’s Heavier: Interfacial and Solvation Chemistry of Isotopes in Aqueous Electrolytes for Zn-ion Batteries. Angew. Chem. Int. Ed. 2023, 62, e202300608. [Google Scholar] [CrossRef]
- Canepa, P.; Sai, G.G.; Hannah, D.C.; Malik, R.; Liu, M.; Gallagher, K.G.; Persson, K.A.; Ceder, G. Odyssey of Multivalent Cathode Materials: Open Questions and Future Challenges. Chem. Soc. Rev. 2017, 117, 4287–4341. [Google Scholar] [CrossRef]
- Yamamoto, T.; Shoji, T. Rechargeable Zn|ZnSO4|MnO2-type cells. Inorg. Chim. Acta 1986, 117, L27–L28. [Google Scholar] [CrossRef]
- Wu, B.K.; Zhang, G.B.; Yan, M.Y.; Xiong, T.F.; He, P.; He, L.; Xu, X. Graphene Scroll-Coated α-MnO2 Nanowires as High-Performance Cathode Materials for Aqueous Zn-Ion Battery. Small 2018, 14, 1703850. [Google Scholar] [CrossRef]
- Jiang, B.Z.; Xu, C.J.; Wu, C.L.; Dong, L.B.; Li, J.; Kang, F.Y. Manganese Sesquioxide as Cathode Material for Multivalent Zinc Ion Batteries with High Capacity and Long Cycle Life. Electrochim. Acta 2017, 229, 422–428. [Google Scholar] [CrossRef]
- Kundu, D.; Adams, B.D.; Duffort, V.; Vajargah, S.H.; Nazar, L.F. A High-Capacity and Long-Life Aqueous Rechargeable Zinc Battery Using a Metal Oxide Intercalation Cathode. Nat. Energy 2016, 1, 16119. [Google Scholar] [CrossRef]
- Pang, Q.; Sun, C.L.; Yu, Y.H.; Zhao, K.N.; Zhang, Z.Y.; Voyles, P.M.; Chen, G.; Wei, Y.J.; Wang, X.D. H2V3O8 Nanowire/Graphene Electrodes for Aqueous Rechargeable Zinc Ion Batteries with High Rate Capability and Large Capacity. Adv. Energy Mater. 2018, 8, 1800144. [Google Scholar] [CrossRef]
- Jia, Z.J.; Wang, B.G.; Wang, Y. Copper Hexacyanoferrate with a Well-defined Open Framework as a Positive Electrode for Aqueous Zinc Ion Batteries. Mater. Chem. Phys. 2015, 149, 601–606. [Google Scholar] [CrossRef]
- Hu, P.; Zhu, T.; Wang, X.P.; Zhou, X.F.; Wei, X.J.; Yao, X.H.; Luo, W.; Shi, C.W.; Owusu, K.A.; Zhou, L.; et al. Aqueous Zn//Zn(CF3SO3)2//Na3V2(PO4)3 Batteries with Simultaneous Zn2+/Na+ Intercalation/de-intercalation. Nano Energy 2019, 58, 492–498. [Google Scholar] [CrossRef]
- Xu, H.; Yang, W.; Li, M.; Liu, H.; Gong, S.; Zhao, F.; Li, C.; Qi, J.; Wang, H.; Peng, W.; et al. Advances in Aqueous Zinc Ion Batteries based on Conversion Mechanism: Challenges, Strategies, and Prospects. Small 2024, 202310972. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhang, B.; Yang, J.L.; Wu, J.; Jiang, H.; Du, F.; Fan, H.J. High-Sulfur Loading and Single Ion-Selective Membranes for High-Energy and Durable Decoupled Aqueous Batteries. Adv. Mater. 2024, 36, 2307298. [Google Scholar] [CrossRef] [PubMed]
- Dai, C.; Hu, L.; Chen, H.; Jin, X.; Han, Y.; Wang, Y.; Li, X.; Zhang, X.; Song, L.; Xu, M.; et al. Enabling Fast-Charging Selenium-based Aqueous Batteries Via Conversion Reaction with Copper Ions. Nat. Commun. 2022, 13, 1863. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Yang, Q.; Mo, F.; Li, N.; Liang, G.; Li, X.; Huang, Z.; Wang, D.; Huang, W.; Fan, J.; et al. Aqueous Zinc-Tellurium Batteries with Ultraflat Discharge Plateau and High Volumetric Capacity. Adv. Mater. 2020, 32, 2001469. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Liang, S.; Lu, B.; Zhou, J. Eutectic electrolyte based on N-methylacetamide for highly reversible zinc-iodine battery. Energy Environ. Sci. 2022, 15, 1192–1200. [Google Scholar] [CrossRef]
- Mahmood, A.; Zheng, Z.; Chen, Y. Zinc-Bromine Batteries: Challenges, Prospective Solutions, and Future. Adv Sci. 2024, 11, 2305561. [Google Scholar] [CrossRef]
- Chao, D.; Zhou, W.; Ye, C.; Zhang, Q.; Chen, Y.; Gu, L.; Davey, K.; Qiao, S.Z. An Electrolytic Zn-MnO2 Battery for High-Voltage and Scalable Energy Storage. Angew. Chem. Int. Ed. 2019, 58, 7823–7828. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhang, K.; Xu, D.; Yang, G.; Huang, H.; Nie, F.; Liu, C.; Yang, S. CuO Nanostructures: Synthesis, Characterization, Growth Mechanisms, Fundamental Properties, and Applications. Prog Mater Sci. 2014, 60, 208–337. [Google Scholar] [CrossRef]
- Wu, J.; Meng, J.L.; Yang, J.H.; Chen, H.J.; Rong, Y.; Deng, L.; Fu, Z.M. Energy storage mechanism and electrochemical performance of Cu2O/rGO as advanced cathode for aqueous zinc ion batteries. J. Alloy. Compd. 2022, 895, 162653. [Google Scholar] [CrossRef]
- Hao, J.N.; Yuan, L.B.; Johannessen, B.; Zhu, Y.L.; Jiao, Y.; Ye, C.; Xie, F.X.; Qiao, S.Z. Studying the conversion mechanism to broaden cathode options in aqueous zinc-ion batteries. Angew. Chem. Int. Ed. 2021, 133, 25318–25325. [Google Scholar] [CrossRef]
- Zhang, Q.; Liu, P.G.; Wang, T.; Liu, Q.; Wu, D.L. Core–shell structures of Cu2O constructed by carbon quantum dots as high-performance zinc-ion battery cathodes. J. Mater. Chem. A 2023, 11, 24823–24835. [Google Scholar] [CrossRef]
- Dai, C.; Jin, X.; Ma, H.; Hu, L.; Sun, G.; Chen, H.; Yang, Q.; Xu, M.; Liu, Q.; Xiao, Y.; et al. Maximizing Energy Storage of Flexible Aqueous Batteries through Decoupling Charge Carriers. Adv. Energy Mater. 2021, 11, 2003982. [Google Scholar] [CrossRef]
- Ruan, P.; Liang, S.; Lu, B.; Fan, H.J.; Zhou, J. Design Strategies for High-Energy-Density Aqueous Zinc Batteries. Angew. Chem. Int. Ed. 2022, 61, 202200598. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Wang, K.; Jiang, K. A Low Cost Aqueous Zn–S Battery Realizing Ultrahigh Energy Density. Adv. Sci. 2020, 7, 2000761. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Liang, S.; Zhou, J. Progress and Prospect of the Zinc-iodine Battery. Curr. Opin. Electroche. 2021, 30, 100761. [Google Scholar] [CrossRef]
- Zou, Y.; Liu, T.; Du, Q.; Li, Y.; Yi, H.; Zhou, X.; Li, Z.; Gao, L.; Zhang, L.; Liang, X. A four-Electron Zn-I2 Aqueous Battery Enabled by Reversible I−/I2/I+ Conversion. Nat. Commun. 2021, 12, 170. [Google Scholar] [CrossRef]
- Lee, B.; Seo, H.R.; Lee, H.R.; Yoon, C.S.; Kim, J.H.; Chung, K.Y.; Cho, B.W.; Oh, S.H. Critical Role of pH Evolution of Electrolyte in the Reaction Mechanism for Rechargeable Zinc Batteries. ChemSusChem 2016, 9, 2948–2956. [Google Scholar] [CrossRef]
- Yang, H.; Zhou, W.; Chen, D.; Liu, J.; Yuan, Z.; Lu, M.; Shen, L.; Shulga, V.; Han, W.; Chao, D. The Origin of Capacity Fluctuation and Rescue of Dead Mn-based Zn-ion Batteries: A Mn-based Competitive Capacity Evolution Protocol. Energy Environ. Sci. 2022, 15, 1106–1118. [Google Scholar] [CrossRef]
- Wang, H.; Pan, Q.; Zhao, J.; Yin, G.; Zuo, P. Fabrication of CuO Film with Network-like Architectures through Solution-Immersion and their Application in Lithium Ion Batteries. J. Power Sources 2007, 167, 206–211. [Google Scholar] [CrossRef]
- Meng, J.; Yang, Z.; Chen, L.; Qin, H.; Cui, F.; Jiang, Y.; Zeng, X. Energy Storage Performance of CuO as a Cathode Material for Aqueous Zinc Ion Battery. Mater. Today Energy 2020, 15, 100370. [Google Scholar] [CrossRef]
- He, Z.; Guo, J.; Xiong, F.; Tan, S.; Yang, Y.; Cao, R.; Thompson, G.; An, Q.; De Volder, M.; Mai, L. Re-imagining the Daniell Cell: Ampere-hour-level Rechargeable Zn-Cu Batteries. Energy Environ. Sci. 2023, 16, 5832–5841. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.; Lei, C.; Li, J.; He, X.; Jiang, P.; Wang, H.; Liu, T.; Liang, X. Unravelling Rechargeable Zinc-Copper Batteries by a Chloride Shuttle in a Biphasic Electrolyte. Nat. Commun. 2023, 14, 2349. [Google Scholar] [CrossRef] [PubMed]
- Chung, S.C.; Cheng, J.R.; Chiou, S.D.; Shih, H.C. EIS behavior of anodized Zinc in chloride environments. Corros. Sci. 2000, 42, 1249–1268. [Google Scholar] [CrossRef]
- Wang, J.; Wang, B.; Liu, X.; Bai, J.; Wang, H.; Wang, G. Prussian Blue Analogs (PBA) Derived Porous Bimetal (Mn, Fe) Selenide with Carbon Nanotubes as Anode Materials for Sodium and Potassium Ion Batteries. Chem. Eng. J. 2020, 382, 123050. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ai, Y.; Pang, Q.; Liu, X.; Xin, F.; Wang, H.; Xing, M.; Fu, Y.; Tian, Y. Porous CuO Microspheres as Long-Lifespan Cathode Materials for Aqueous Zinc-Ion Batteries. Nanomaterials 2024, 14, 1145. https://doi.org/10.3390/nano14131145
Ai Y, Pang Q, Liu X, Xin F, Wang H, Xing M, Fu Y, Tian Y. Porous CuO Microspheres as Long-Lifespan Cathode Materials for Aqueous Zinc-Ion Batteries. Nanomaterials. 2024; 14(13):1145. https://doi.org/10.3390/nano14131145
Chicago/Turabian StyleAi, Yuqing, Qiang Pang, Xinyu Liu, Fangyun Xin, Hong Wang, Mingming Xing, Yao Fu, and Ying Tian. 2024. "Porous CuO Microspheres as Long-Lifespan Cathode Materials for Aqueous Zinc-Ion Batteries" Nanomaterials 14, no. 13: 1145. https://doi.org/10.3390/nano14131145