Flexible and Stable GaN Piezoelectric Sensor for Motion Monitoring and Fall Warning
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of GaN Nanoplates Using the CVD Method
2.3. Fabrication of GaN Sensor
2.4. Characterization
2.5. Measurement
2.6. Machine Learning Training
2.7. Smart Fall Monitoring System
3. Result and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Fu, Y.; Kang, S.; Xiang, G.; Su, C.; Gao, C.; Tan, L.; Gu, H.; Wang, S.; Zheng, Z.; Dai, S.; et al. Ultraflexible Temperature-Strain Dual-Sensor Based on Chalcogenide Glass-Polymer Film for Human-Machine Interaction. Adv. Mater. 2024, 36, 2313101. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Shi, S.; Zhou, H.; Zhi, C.; Meng, S.; Io, W.; Ming, Y.; Wang, Y.; Lei, L.; Fei, B.; et al. Stem Cell Self-Triggered Regulation and Differentiation on Polyvinylidene Fluoride Electrospun Nanofibers. Adv. Funct. Mater. 2024, 34, 2309270. [Google Scholar] [CrossRef]
- Wen, D.; Zuo, S.; Huang, C.; Tan, Z.; Lu, F.; Liang, Y.; Mo, X.; Lin, T.; Cao, S.; Qiu, J.; et al. Tunable Excitation Polarized Upconversion Luminescence and Reconfigurable Double Anti-Counterfeiting from Er3+ Doped Single Nanorods. Adv. Opt. Mater. 2023, 11, 2301126. [Google Scholar] [CrossRef]
- Wen, D.P.; Chen, P.; Liang, Y.; Mo, X.M.; Pan, C.F. Regulated Polarization Degree of Upconversion Luminescence and Multiple Anti-Counterfeit Applications. Rare Met. 2024, 43, 2172–2183. [Google Scholar] [CrossRef]
- Yeh, H.Y.; Feng, G.H. Piezoelectric-Film-Based Wearable Respiratory Monitoring Device With Breathing Air Temperature Sensing and Heating Functions. IEEE Sens. Lett. 2023, 7, 5001404. [Google Scholar] [CrossRef]
- Buraioli, I.; Vitale, S.; Valerio, A.; Sanginario, A.; Leone, D.; Conoci, S.; Ciesielski, A.; Milan, A.; Demarchi, D.; Samorì, P. Graphene-Based Pressure Sensor Application in Non-Invasive Pulse Wave Velocity Continuous Estimation. Adv. Mater. Technol. 2024; early view. [Google Scholar] [CrossRef]
- Divya, S.; Ramasundaram, S.; Aruchamy, K.; Oh, T.H.; Levingstone, T.; Dunne, N. Piezoelectric Nanogenerators from Sustainable Biowaste Source: Power Harvesting and Respiratory Monitoring with Electrospun Crab Shell Powder-Poly(Vinylidene Fluoride) Composite Nanofibers. J. Colloid Interface Sci. 2025, 679, 324–334. [Google Scholar] [CrossRef]
- Yang, R.; Qin, Y.; Li, C.; Zhu, G.; Wang, Z.L. Converting Biomechanical Energy into Electricity by a Muscle-Movement-Driven Nanogenerator. Nano Lett. 2009, 9, 1201–1205. [Google Scholar] [CrossRef]
- Xue, X.; Qu, Z.; Fu, Y.; Yu, B.; Xing, L.; Zhang, Y. Self-Powered Electronic-Skin for Detecting Glucose Level in Body Fluid Basing on Piezo-Enzymatic-Reaction Coupling Process. Nano Energy 2016, 26, 148–156. [Google Scholar] [CrossRef]
- Deng, W.; Huang, L.; Zhang, H.; Tian, G.; Wang, S.; Yang, T.; Xiong, D.; Jin, L.; Yang, W. Discrete ZnO p-n Homojunction Piezoelectric Arrays for Self-Powered Human Motion Monitoring. Nano Energy 2024, 124, 109462. [Google Scholar] [CrossRef]
- Wang, Q.; Ruan, T.; Xu, Q.; Yang, B.; Liu, J. Wearable Multifunctional Piezoelectric MEMS Device for Motion Monitoring, Health Warning, and Earphone. Nano Energy 2021, 89, 106324. [Google Scholar] [CrossRef]
- Sasikumar, R.; Kim, B.; Mok, Y.S.; Bhattarai, R.M. “One-Stone-Two-Birds”: Engineering a 2D Layered Heterojunction of Terbium Tungstate Incorporated on Molybdenum Disulfide Nanosheets for a Battery-Free Self-Charging Power System via the Integration of a Wearable Piezoelectric Nanogenerator and an Asymmetric Supercapacitor. Adv. Compos. Hybrid Mater. 2024, 7, 199. [Google Scholar] [CrossRef]
- Chen, P.; Pan, J.; Gao, W.; Wan, B.; Kong, X.; Cheng, Y.; Liu, K.; Du, S.; Ji, W.; Pan, C.; et al. Anisotropic Carrier Mobility from 2H WSe2. Adv. Mater. 2022, 34, 2108615. [Google Scholar] [CrossRef] [PubMed]
- Li, A.; Li, Z.; Liang, Y.; He, Y.; Jiang, X. Optimized Piezoelectric Bone Regeneration through Inhibiting Sympathetic Nerve-Bone Interaction. Surf. Interfaces 2024, 48, 104380. [Google Scholar] [CrossRef]
- Yu, S.; Rice, Q.; Tabibi, B.; Li, Q.; Seo, F.J. Piezoelectricity in WSe2/MoS2 Heterostructure Atomic Layers. Nanoscale 2018, 10, 12472–12479. [Google Scholar] [CrossRef]
- Guo, H.; Lan, C.; Zhou, Z.; Sun, P.; Wei, D.; Li, C. Transparent, Flexible, and Stretchable WS2 Based Humidity Sensors for Electronic Skin. Nanoscale 2017, 9, 6246–6253. [Google Scholar] [CrossRef]
- Roy, S.; Deo, K.A.; Lee, H.P.; Soukar, J.; Namkoong, M.; Tian, L.; Jaiswal, A.; Gaharwar, A.K. 3D Printed Electronic Skin for Strain, Pressure and Temperature Sensing. Adv. Funct. Mater. 2024, 34, 2313575. [Google Scholar] [CrossRef]
- Mukherjee, S.; Badhulika, S. WSe2/Chitosan-Based Wearable Multi-Functional Platform for Monitoring Electrophysiological Signals, Pulse Rate, Respiratory Rate, and Body Movements. Microchim Acta 2024, 191, 514. [Google Scholar] [CrossRef]
- Zhou, Y.X.; Lin, Y.T.; Huang, S.M.; Chen, G.T.; Chen, S.W.; Wu, H.S.; Ni, I.C.; Pan, W.P.; Tsai, M.L.; Wu, C.I.; et al. Tungsten Disulfide Nanosheets for Piezoelectric Nanogenerator and Human-Machine Interface Applications. Nano Energy 2022, 97, 107172. [Google Scholar] [CrossRef]
- Kalita, P.; Mondal, B. Humidity Tolerant Enhanced Hydrogen Gas Sensing Using MoSe2 -WSe2 Heterostructures: An Experimental and Computational Insights. Sens. Actuators B Chem 2024, 424, 136787. [Google Scholar] [CrossRef]
- Sukanya, R.; Chavan, P.R.; Karthik, R.; Hasan, M.; Shim, J.J.; Breslin, C.B. Synergistic Effect of 3D/2D Vanadium Diselenide/Tungsten Diselenide Hybrid Materials: Electrochemical Detection of 5-Nitroquinoline a Hazard to the Aquatic Environment. ACS Appl. Mater. Interfaces 2024, 16, 33325–33335. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Liu, H.; Wang, W.; Nabulsi, N.; Zhao, W.; Kim, J.Y.; Kwon, M.; Ryou, J. High Durable, Biocompatible, and Flexible Piezoelectric Pulse Sensor Using Single-Crystalline III-N Thin Film. Adv. Funct. Mater. 2019, 29, 1903162. [Google Scholar] [CrossRef]
- Kim, N.I.; Chen, J.; Wang, W.; Moradnia, M.; Pouladi, S.; Kwon, M.K.; Kim, J.Y.; Li, X.; Ryou, J.H. Highly-Sensitive Skin-Attachable Eye-Movement Sensor Using Flexible Nonhazardous Piezoelectric Thin Film. Adv. Funct. Mater. 2021, 31, 2008242. [Google Scholar] [CrossRef]
- Liu, Z.; Su, J.; Zhou, K.; Yu, B.; Lin, Y.; Li, K.H. Fully Integrated Patch Based on Lamellar Porous Film Assisted GaN Optopairs for Wireless Intelligent Respiratory Monitoring. Nano Lett. 2023, 23, 10674–10681. [Google Scholar] [CrossRef]
- Monish, M.; Major, S.S. Mg Incorporation Induced Microstructural Evolution of Reactively Sputtered GaN Epitaxial Films to Mg-Doped GaN Nanorods. Nanotechnology 2024, 35, 225603. [Google Scholar] [CrossRef]
- Abdulrahman, M.; Khalil, A.; Nahhas, A.M. Review of Recent Advances of GaN Nanostructured Based Devices. J. Nanomater. 2023, 11, 41–50. [Google Scholar] [CrossRef]
- Meier, J.; Häuser, P.; Blumberg, C.; Smola, T.; Prost, W.; Weimann, N.; Bacher, G. Local Optical Analysis of InGaN/GaN Nanorod LED Structures Grown on Si(111). J. Appl. Phys. 2023, 134, 044303. [Google Scholar] [CrossRef]
- Singh, D.K.; Pant, R.K.; Nanda, K.K.; Krupanidhi, S.B. Pulsed Laser Deposition for Conformal Growth of MoS2 on GaN Nanorods for Highly Efficient Self-Powered Photodetection. Mater. Adv. 2022, 3, 6343–6351. [Google Scholar] [CrossRef]
- Li, L.; Fang, S.; Chen, W.; Li, Y.; Vafadar, M.F.; Wang, D.; Kang, Y.; Liu, X.; Luo, Y.; Liang, K.; et al. Facile Semiconductor p–n Homojunction Nanowires with Strategic p-Type Doping Engineering Combined with Surface Reconstruction for Biosensing Applications. Nano-Micro Lett. 2024, 16, 192. [Google Scholar] [CrossRef]
- Xin, Y.; Chen, W.; Sun, R.; Deng, X.; Li, Z.; Zhang, B. Barrier Lowering-Induced Capacitance Increase of Short-Channel Power p-GaN HEMTs at High Temperature. IEEE T. Electron Dev. 2022, 69, 1176–1180. [Google Scholar] [CrossRef]
- Veerappan, M.; Leng, X.; Luo, D.; Wang, F. Dandelion Flower Like GaN Humidity Sensor: Fabrication and Its Excellent Linearity Towards Entire Relative Humidity Range. IEEE Sens. J. 2021, 21, 2581–2588. [Google Scholar] [CrossRef]
- Liang, H.; Wei, Z.; Fang, J.; Li, Y.; Li, C.; Xie, Z.; Ng, Y.H.; Zeng, G. Electrolyte Effect on Photoetching of Gallium Nitride. N & M 2024, 7, 5. [Google Scholar] [CrossRef]
- Cai, Y.; Leveille, S.G.; Shi, L.; Chen, P.; You, T. Chronic Pain and Circumstances of Falls in Community-Living Older Adults: An Exploratory Study. Age Ageing 2022, 51, afab261. [Google Scholar] [CrossRef] [PubMed]
- Berkson, M.A.; Pogue, E.A.; Bartlett, M.E.; Shuler, S.A.; Kesavan, M.M.; Montalbano, T.J.; Bennett-Jackson, A.L.; Abraham, J.B.; Martins, I.Z.; Terlier, T.; et al. Evaluation and Mitigation of Impurities in Additively Manufactured Epitaxial Gallium Nitride. Cryst. 2024, 24, 3149–3159. [Google Scholar] [CrossRef]
- Waseem, A.; Bagal, I.V.; Abdullah, A.; Kulkarni, M.A.; Thaalbi, H.; Ha, J.S.; Lee, J.K.; Ryu, S.W. High Performance, Stable, and Flexible Piezoelectric Nanogenerator Based on GaN: Mg Nanowires Directly Grown on Tungsten Foil. Small 2022, 18, 2200952. [Google Scholar] [CrossRef]
- Ramesh, C.; Tyagi, P.; Mauraya, A.K.; Kumar, M.S.; Kushvaha, S.S. Structural and Optical Properties of Low Temperature Grown Single Crystalline GaN Nanorods on Flexible Tungsten Foil Using Laser Molecular Beam Epitaxy. Mater. Res. Express 2019, 6, 085919. [Google Scholar] [CrossRef]
- Liu, Z.; Wei, J.; Zhang, P.; Jia, Y.; Chen, Y.; Jia, H.; Wang, Z.; Yang, R. Polymethyl Methacrylate (PMMA) Pyrolysis Assisted Transfer of 2D Materials for Large-Scale Molybdenum Disulfide Nems Resonator Arrays. In Proceedings of the 2024 IEEE 37th International Conference on Micro Electro Mechanical Systems (MEMS), Austin, TX, USA, 21–25 January 2024; pp. 677–680. [Google Scholar]
- Zhang, D.; Du, J.; Hong, Y.L.; Zhang, W.; Wang, X.; Jin, H.; Burn, P.L.; Yu, J.; Chen, M.; Sun, D.M.; et al. A Double Support Layer for Facile Clean Transfer of Two-Dimensional Materials for High-Performance Electronic and Optoelectronic Devices. ACS Nano 2019, 13, 5513–5522. [Google Scholar] [CrossRef]
- Colón-Emeric, C.S.; McDermott, C.L.; Lee, D.S.; Berry, S.D. Risk Assessment and Prevention of Falls in Older Community-Dwelling Adults: A Review. JAMA 2024, 331, 1397–1406. [Google Scholar] [CrossRef]
- Davenport, K.; Alazemi, M.; Sri-On, J.; Liu, S. Missed Opportunities to Diagnose and Intervene in Modifiable Risk Factors for Older Emergency Department Patients Presenting After a Fall. Ann. Emerg. Med. 2020, 76, 730–738. [Google Scholar] [CrossRef]
- Sheng, S.; Wang, T.; Liu, S.; Liu, F.; Sheng, B.; Yuan, Y.; Li, D.; Chen, Z.; Tao, R.; Chen, L.; et al. Atomic-Scale Investigation of the Lattice-Asymmetry-Driven Anisotropic Sublimation in GaN. Adv. Sci. 2022, 9, 2106028. [Google Scholar] [CrossRef]
- Chen, C.C.; Yeh, C.C.; Chen, C.H.; Yu, M.Y.; Liu, H.L.; Wu, J.J.; Chen, K.H.; Chen, L.C.; Peng, J.Y.; Chen, Y.F. Catalytic Growth and Characterization of Gallium Nitride Nanowires. J. Am. Chem. Soc. 2001, 123, 2791–2798. [Google Scholar] [CrossRef] [PubMed]
- Krieg, L.; Meierhofer, F.; Gorny, S.; Leis, S.; Splith, D.; Zhang, Z.; von Wenckstern, H.; Grundmann, M.; Wang, X.; Hartmann, J.; et al. Toward Three-Dimensional Hybrid Inorganic/Organic Optoelectronics Based on GaN/oCVD-PEDOT Structures. Nat Commun 2020, 11, 5092. [Google Scholar] [CrossRef] [PubMed]
- Konenkova, E.V.; Zhilyaev, Y.V.; Fedirko, V.A.; Zahn, D.R.T. Raman Spectroscopy of GaN Nucleation and Free-Standing Layers Grown by Hydride Vapor Phase Epitaxy on Oxidized Silicon. Appl. Phys. Lett. 2003, 83, 629–631. [Google Scholar] [CrossRef]
- Huang, J.Y.; Ye, Z.Z.; Wang, L.; Yuan, J.; Zhou, B.H.; Lu, H.M. Comparison of GaN Epitaxial Films on Silicon Nitride Buffer and Si(111). Solid-State Electron. 2002, 46, 1231–1234. [Google Scholar] [CrossRef]
- Hou, F.; Zhang, M.R.; Jiang, Q.M.; Wang, Z.G.; Yan, J.H.; Pan, G.B. Fabrication and Photoluminescence Performance of Porous Gallium Nitride Luminescent Materials Using Different 1-Ethyl-3-Methylimidazolium-Based Ionic Liquids. Mater. Lett. 2018, 223, 194–197. [Google Scholar] [CrossRef]
- Yang, R.; Qin, Y.; Dai, L.; Wang, Z.L. Power Generation with Laterally Packaged Piezoelectric Fine Wires. Nat. Nanotechnol. 2009, 4, 34–39. [Google Scholar] [CrossRef]
- Shan, Y.; Wang, E.; Cui, X.; Xi, Y.; Ji, J.; Yuan, J.; Xu, L.; Liu, Z.; Li, Z. A Biodegradable Piezoelectric Sensor for Real-Time Evaluation of the Motor Function Recovery After Nerve Injury. Adv. Funct. Mater. 2024, 34, 2400295. [Google Scholar] [CrossRef]
- Cheng, W.; Dong, J.; Sun, R. Self-Powered Sensors Made with Fabric-Based Electrodes and a Conductive Coating. ACS Appl. Mater. Interfaces 2024, 16, 35516–35524. [Google Scholar] [CrossRef]
- Wu, P.; Li, L.; Shao, S.; Liu, J.; Wang, J. Bioinspired PEDOT:PSS-PVDF(HFP) Flexible Sensor for Machine-Learning-Assisted Multimodal Recognition. Chem. Eng. J. 2024, 495, 153558. [Google Scholar] [CrossRef]
- Zhu, C.; Chen, G.; Li, S.; Yang, H.; Zheng, J.; Wang, D.; Yang, H.; Wong, L.W.Y.; Fu, J. Breathable Ultrathin Film Sensors Based on Nanomesh Reinforced Anti-Dehydrating Organohydrogels for Motion Monitoring. Adv. Funct. Mater. 2024; early view. [Google Scholar] [CrossRef]
- Sipper, M.; Moore, J.H. Conservation Machine Learning: A Case Study of Random Forests. Sci. Rep. 2021, 11, 3629. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.E.; Choi, J.; Lee, S.H.; Jeong, M.; Shin, J.H.; Joe, D.J.; Kim, D.; Kim, C.W.; Park, J.H.; Lee, J.H.; et al. Monolithic Flexible Vertical GaN Light-Emitting Diodes for a Transparent Wireless Brain Optical Stimulator. Adv. Mater. 2018, 30, 1800649. [Google Scholar] [CrossRef] [PubMed]
- Han, D.; Chen, Y.; Li, D.; Shi, J.; Wang, H.; He, X.; Zhao, L.; Wang, W.; Sang, S.; Ji, J. Au Nanoparticles Decorated GaN Nanoflowers with Enhanced NH3 Sensing Performance at Room Temperature. Sens. Actuators B Chem. 2023, 394, 134320. [Google Scholar] [CrossRef]
- Han, S.; Noh, S.; Kim, J.W.; Lee, C.R.; Lee, S.K.; Kim, J.S. Stretchable Inorganic GaN-Nanowire Photosensor with High Photocurrent and Photoresponsivity. ACS Appl. Mater. Interfaces 2021, 13, 22728–22737. [Google Scholar] [CrossRef] [PubMed]
- Hua, Q.; Sun, J.; Liu, H.; Cui, X.; Ji, K.; Guo, W.; Pan, C.; Hu, W.; Wang, Z.L. Flexible GaN Microwire-Based Piezotronic Sensory Memory Device. Nano Energy 2020, 78, 105312. [Google Scholar] [CrossRef]
- Cheng, S.; Han, S.; Cao, Z.; Xu, C.; Fang, X.; Wang, X. Wearable and Ultrasensitive Strain Sensor Based on High-Quality GaN p-n Junction Microwire Arrays. Small 2020, 16, 1907461. [Google Scholar] [CrossRef]
- Sha, W.; Hua, Q.; Wang, J.; Cong, Z.; Cui, X.; Ji, K.; Dai, X.; Wang, B.; Guo, W.; Hu, W. Enhanced Photoluminescence of Flexible InGaN/GaN Multiple Quantum Wells on Fabric by Piezo-Phototronic Effect. ACS Appl. Mater. Interfaces 2022, 14, 3000–3007. [Google Scholar] [CrossRef]
- Wang, S.; Sun, C.; Shao, Y.; Wu, Y.; Zhang, L.; Hao, X. Self-Supporting GaN Nanowires/Graphite Paper: Novel High-Performance Flexible Supercapacitor Electrodes. Small 2017, 13, 1603330. [Google Scholar] [CrossRef]
- Waseem, A.; Johar, M.A.; Abdullah, A.; Bagal, I.V.; Ha, J.S.; Lee, J.K.; Ryu, S.W. Enhanced Performance of a Flexible and Wearable Piezoelectric Nanogenerator Using Semi-Insulating GaN:Mg/ZnO Coaxial Nanowires. Nano Energy 2021, 90, 106552. [Google Scholar] [CrossRef]
- Shi, F.; Zhang, H.; Ye, Z.; Tang, X.; Qin, F.; Yan, J.; Gao, X.; Zhu, H.; Wang, Y.; Liu, Y.; et al. Miniature Optical Fiber Curvature Sensor via Integration with GaN Optoelectronics. Commun. Eng. 2022, 1, 1–8. [Google Scholar] [CrossRef]
- Park, K.I.; Xu, S.; Liu, Y.; Hwang, G.T.; Kang, S.J.L.; Wang, Z.L.; Lee, K.J. Piezoelectric BaTiO3 Thin Film Nanogenerator on Plastic Substrates. Nano Lett. 2010, 10, 4939–4943. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Z.; Lv, K.; Zhao, R.; Lu, Y.; Chen, P. Flexible and Stable GaN Piezoelectric Sensor for Motion Monitoring and Fall Warning. Nanomaterials 2024, 14, 2044. https://doi.org/10.3390/nano14242044
Chen Z, Lv K, Zhao R, Lu Y, Chen P. Flexible and Stable GaN Piezoelectric Sensor for Motion Monitoring and Fall Warning. Nanomaterials. 2024; 14(24):2044. https://doi.org/10.3390/nano14242044
Chicago/Turabian StyleChen, Zhiling, Kun Lv, Renqiang Zhao, Yaxian Lu, and Ping Chen. 2024. "Flexible and Stable GaN Piezoelectric Sensor for Motion Monitoring and Fall Warning" Nanomaterials 14, no. 24: 2044. https://doi.org/10.3390/nano14242044
APA StyleChen, Z., Lv, K., Zhao, R., Lu, Y., & Chen, P. (2024). Flexible and Stable GaN Piezoelectric Sensor for Motion Monitoring and Fall Warning. Nanomaterials, 14(24), 2044. https://doi.org/10.3390/nano14242044