Review of SERS Substrates for Chemical Sensing
Abstract
:1. Introduction
- A good substrate is essential. It must have a roughened surface to give good enhancement as well as be reproducible and robust with a good lifetime.
- The analyte must absorb on the surface effectively. It should have a higher SERS cross-section than any likely interferents.
- Excitation intensity must be controlled to ensure no surface photochemistry.
- For quantitative measurements it is best that many events are averaged by controlling the number of active sites in the interrogation volume and the interrogation time.
- Quantitative SERS measurements are best with a standard to monitor any changes due to substrate changes.
2. Results and Discussion
2.1. Types of SERS Substrates Used for Chemical Detection
2.1.1. Metal Nanoparticles in Suspension
2.1.2. Metal Nanoparticles Immobilized on Solid Substrates
2.1.3. Nanostructures Fabricated Directly on Solid Substrates
2.1.4. Commercially Available SERS Substrates
2.2. Analytical Properties of SERS Substrates
2.2.1. Selectivity/Sensitivity of the Analytes for a Given Analyte
2.2.2. Reversibility
2.3. Summary of SERS Substrates and the Chemical Species Detected
3. Conclusions
Conflicts of Interest
References
- McNay, G.; Eustace, D.; Smith, W.E.; Faulds, K.; Graham, D. Surface-Enhanced Raman Scattering (SERS) and Surface-Enhanced Resonance Raman Scattering (SERRS): A Review of Applications. Appl. Spectrosc. 2011, 65, 825–837. [Google Scholar] [CrossRef] [PubMed]
- Carron, K.; Peitersen, L.; Lewis, M. Octadecylthiol-Modified Surface-Enhanced Raman Spectroscopy Substrates: A New Method for the Detection of Aromatic Compounds. Environ. Sci. Technol. 1992, 26, 1950–1954. [Google Scholar] [CrossRef]
- Mosier-Boss, P.A.; Lieberman, S.H. Detection of Volatile Organic Compounds using Surface Enhanced Raman Spectroscopy Substrates Mounted on a Thermoelectric Cooler. Anal. Chim. Acta 2003, 488, 15–23. [Google Scholar] [CrossRef]
- Kreno, L.E.; Greeneltch, N.G.; Farha, O.K.; Hupp, J.T.; Van Duyne, R.P. SERS of Molecules that do not Absorb on Ag Surfaces: A Metal-Organic Framework-Based Functionalization Strategy. Analyst 2014, 139, 4073–4080. [Google Scholar] [CrossRef] [PubMed]
- Qian, C.; Guo, Q.; Xu, M.; Yuan, Y.; Yao, J. Improving the SERS Detection Sensitivity of Aromatic Molecules by a PDMS-Coated Au Nanoparticle Monolayer Film. RSC Adv. 2015, 5, 53306–53312. [Google Scholar] [CrossRef]
- Péron, O.; Rinnert, E.; Lehaitre, M.; Crassous, P.; Compère, C. Detection of Polycyclic Aromatic Hydrocarbon (PAH) Compounds in Artificial Sea-Water using Surface-Enhanced Raman Scattering (SERS). Talanta 2009, 79, 199–204. [Google Scholar] [CrossRef] [PubMed]
- Péron, O.; Rinnert, E.; Toury, T.; de la Chapelle, M.L.; Compère, C. Quantitative SERS Sensor for Environmental Analysis of Naphthalene. Analyst 2011, 136, 1018–1022. [Google Scholar] [CrossRef] [PubMed]
- Olson, L.G.; Uibel, R.H.; Harris, J.M. C18-Modified Metal-Colloid Substrates for Surface-Enhanced Detection of Trace-Level Polycyclic Aromatic Hydrocarbons in Aqueous Solution. Appl. Spectrosc. 2004, 58, 1394–1400. [Google Scholar] [CrossRef] [PubMed]
- Mosier-Boss, P.A.; Lieberman, S.H. Surface-Enhanced Raman Spectroscopy Substrates Composed of Chemically Modified Gold Colloid Particles Immobilized on Magnetic Microparticles. Anal. Chem. 2005, 77, 1031–1037. [Google Scholar] [CrossRef] [PubMed]
- Mullen, K.; Carron, K. Adsorption of Chlorinated Ethylenes at 1-Octadecanethiol-Modified Silver Surfaces. Anal. Chem. 1994, 66, 478–483. [Google Scholar] [CrossRef]
- Heyns, J.B.; Sears, L.M.; Corcoran, R.C.; Carron, K.T. SERS Study of the Interaction of Alkali Metal Ions with a Thiol-Derivatized Dibenzo-18-Crown-6. Anal. Chem. 1994, 66, 1572–1574. [Google Scholar] [CrossRef]
- Crane, L.G.; Wang, D.X.; Sears, L.M.; Heynes, B.; Carron, K. SERS Surfaces Modified with a 4-(2-Pyridylazo)resorcinol Disulfide Derivative: Detection of Copper, Lead, and Cadmium. Anal. Chem. 1995, 67, 360–364. [Google Scholar] [CrossRef]
- Eshkeiti, A.; Narakathu, B.B.; Reddy, A.S.G.; Moorthi, A.; Rebrosova, E.; Rebros, M.; Joyce, M. Detection of Heavy Metal Compounds using a Novel Inkjet Printed Surface Enhanced Raman Spectroscopy (SERS) Substrate. Sens. Actuators 2012, 171, 705–711. [Google Scholar] [CrossRef]
- Cheng, F.; Xu, H.; Wang, C.; Gong, Z.; Tang, C.; Fan, M. Surface Enhanced Raman Scattering Fiber Optic Sensor as an Ion Selective Optrode: The Example of Cd2+ Detection. RSC Adv. 2014, 4, 64683–64687. [Google Scholar] [CrossRef]
- Carron, K.; Mullen, K.; Lanouette, M.; Angersbach, H. Selective-Ultratrace Detection of Metal Ions with SERS. Appl. Spectrosc. 1991, 45, 420–423. [Google Scholar] [CrossRef]
- Mosier-Boss, P.A.; Lieberman, S.H. Detection of Anions by Normal Raman Spectroscopy and Surface-Enhanced Raman Spectroscopy of Cationic-Coated Substrates. Appl. Spectrosc. 2003, 57, 1129–1137. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Gu, B. New Surface-Enhanced Raman Spectroscopy Substrates via Self-Assembly of Silver Nanoparticles on Surface Functionalized Glass for Perchlorate Detection. Appl. Spectrosc. 2005, 59, 1509–1515. [Google Scholar] [CrossRef] [PubMed]
- Gu, B.; Ruan, C.; Wang, W. Perchlorate Detection at Nanomolar Concentrations by Surface-Enhanced Raman Scattering. Appl. Spectrosc. 2009, 63, 98–102. [Google Scholar] [CrossRef] [PubMed]
- Ruan, C.; Wang, W.; Gu, B. Surface-Enhanced Raman Scattering for Perchlorate Detection using Cystamine-Modified Gold Nanoparticles. Anal. Chim. Acta 2006, 567, 114–120. [Google Scholar] [CrossRef] [PubMed]
- Gu, B.; Ruan, C. Determination of Technetium and its Speciation by Surface-Enhanced Raman Spectroscopy. Anal. Chem. 2007, 79, 2341–2345. [Google Scholar] [CrossRef] [PubMed]
- Ruan, C.; Luo, W.; Wang, W.; Gu, B. Surface-Enhanced Raman Spectroscopy for Uranium Detection and Analysis in Environmental Samples. Anal. Chim. Acta 2007, 605, 80–86. [Google Scholar] [CrossRef] [PubMed]
- Jubb, A.M.; Hatzinger, P.B.; Gu, B. Trace-Level Perchlorate Analysis of Impacted Groundwater by Elevated Gold Ellipse Dimer Nanoantenna Surface-Enhanced Raman Scattering. J. Raman Spectrosc. 2017, 48, 518–524. [Google Scholar] [CrossRef]
- Mosier-Boss, P.A.; Putnam, M.D. Detection of Hexavalent Chromium using Gold/4-(2-Mercaptoethyl)pyridinium Surface Enhanced Raman Scattering-Active Capture Matrices. Anal. Chim. Acta 2013, 801, 70–77. [Google Scholar] [CrossRef] [PubMed]
- Mosier-Boss, P.A.; Putnam, M.D. Detection of Perchlorate using Ag/DMAH+ SERS-Active Capture Matrices. Spectrochim. Acta 2014, 133, 156–164. [Google Scholar] [CrossRef] [PubMed]
- Gajaraj, S.; Fan, C.; Lin, M.; Hu, Z. Quantitative Detection of Nitrate in Water and Wastewater by Surface-Enhanced Raman Spectroscopy. Environ. Monit. Assess. 2013, 185, 5673–5681. [Google Scholar] [CrossRef] [PubMed]
- Mosier-Boss, P.A.; Lieberman, S.H. Detection of Nitrate and Sulfate Anions by Normal Raman Spectroscopy and SERS of Cationic-Coated, Silver Substrates. Appl. Spectrosc. 2000, 54, 1126–1135. [Google Scholar] [CrossRef]
- Mosier-Boss, P.A.; Lieberman, S.H. Detection of Anionic Nutrients by SERS of Cationic-Coated Silver Substrates. Effect of Chloride Ion. Appl. Spectrosc. 2001, 55, 1327–1336. [Google Scholar] [CrossRef]
- Wijaya, W.; Pang, S.; Labuza, T.P.; He, L. Rapid Detection of Acetamiprid in Foods using Surface-Enhanced Raman Spectroscopy (SERS). J. Food Sci. 2014, 79, T743–T747. [Google Scholar] [CrossRef] [PubMed]
- Kim, A.; Barcelo, S.J.; Li, Z. SERS-Based Pesticide Detection by using Nanofinger Sensors. Nanotechnology 2015, 26, 015502. [Google Scholar] [CrossRef] [PubMed]
- Kubackova, J.; Fabriciova, G.; Miskovsky, P.; Jancura, D.; Sanchez-Cortes, S. Sensitive Surface-Enhanced Raman Spectroscopy (SERS) Detection of Organochlorine Pesticides by Alkyl Dithiol-Functionalized Metal Nanoparticles-Induced Plasmonic Hot Spots. Anal. Chem. 2015, 87, 663–669. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wang, Z.; Wu, L.; Pei, Y.; Chen, P.; Cui, Y. Rapid Simultaneous Detection if Multi-Pesticide Residues on Apple using SERS Technique. Analyst 2014, 139, 5148–5154. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Kang, Y.; Liu, P.; Tao, X.; Pei, J.; Li, H.; Du, Y. Determination of Pesticides by Surface-Enhanced Raman Spectroscopy on Gold-Nanoparticle-Modified Polymethacrylate. Anal. Lett. 2016, 49, 2268–2278. [Google Scholar] [CrossRef]
- Sulk, R.A.; Corcoran, R.C.; Carron, K.T. Surface-Enhanced Raman Scattering Detection of Amphetamine and Methamphetamine by Modification with 2-Mercaptonicotinic Acid. Appl. Spectrosc. 1999, 53, 954–959. [Google Scholar] [CrossRef]
- Cîntă Pînzaru, S.C.; Pavel, I.; Leopold, N.; Kiefer, W. Identification and Characterization of Pharmaceuticals using Raman and Surface-Enhanced Raman Scattering. J. Raman Spectrosc. 2004, 35, 338–346. [Google Scholar] [CrossRef]
- Alharbi, O.; Xu, Y.; Goodacre, R. Simultaneous Multiplexed Quantification of Nicotine and its Metabolites using Surface Enhanced Raman Scattering. Analyst 2014, 139, 4820–4827. [Google Scholar] [CrossRef] [PubMed]
- Mabbott, S.; Alharbi, O.; Groves, K.; Goodacre, R. Application of Surface Enhanced Raman Scattering to the Solution Based Detection of a Popular Legal High, 5,6-Methylenedioxy-2-aminoindane (MDAI). Analyst 2015, 140, 4399–4406. [Google Scholar] [CrossRef] [PubMed]
- Alharbi, O.; Xu, Y.; Goodacre, R. Detection and Quantification of the Opioid Tramadol in Urine using Surface Enhanced Raman Scattering. Analyst 2015, 140, 5965–5970. [Google Scholar] [CrossRef] [PubMed]
- Dana, K.; Shende, C.; Huang, H.; Farquharson, S. Rapid Analysis of Cocaine in Saliva by Surface-Enhanced Raman Spectrosocpy. J. Anal. Bioanal. Tech. 2015, 6, 1000289. [Google Scholar] [CrossRef]
- Hatab, N.A.; Eres, G.; Hatzinger, P.B.; Gu, B. Detection and Analysis of Cyclotrimethylene-trinitramine (RDX) in Environmental Samples by Surface Enhanced Raman Spectroscopy. J. Raman Spectrosc. 2010, 41, 1131–1136. [Google Scholar] [CrossRef]
- Chou, A.; Jaatinen, E.; Buividas, R.; Seniutinas, G.; Juodkazis, S.; Izake, E.L.; Fredericks, P.M. SERS Substrate for Detection of Explosives. Nanoscale 2012, 4, 7419–7424. [Google Scholar] [CrossRef] [PubMed]
- Wackerbarth, H.; Salb, C.; Gundrum, L.; Niederkrüger, M.; Christou, K.; Beushausen, V.; Viöl, W. Detection of Explosives Based on Surface-Enhanced Raman Spectroscopy. Appl. Opt. 2010, 49, 4362–4366. [Google Scholar] [CrossRef] [PubMed]
- Fierro-Mercado, P.M.; Hernández-Rivera, S.P. Highly Sensitive Filter Paper Substrate for SERS Trace Explosives Detection. Int. J. Spectrosc. 2012, 2012, 716527. [Google Scholar] [CrossRef]
- Botti, S.; Almaviva, S.; Cantarini, L.; Palucci, A.; Puiu, A.; Rufoloni, A. Trace Level Detection and Identification of Nitro-Based Explosives by Surface-Enhanced Raman Spectroscopy. J. Raman Spectrosc. 2013, 44, 463–468. [Google Scholar] [CrossRef]
- Carron, K.T.; Kennedy, B.J. Molecular-Specific Chromatographic Detector Using Modified SERS Substrates. Anal. Chem. 1995, 67, 3353–3356. [Google Scholar] [CrossRef]
- Heaps, D.A.; Griffiths, P.R. Off-Line Direct Deposition Gas Chromatography/Surface-Enhanced Raman Scattering and the Ramifications for On-Line Measurements. Appl. Spectrosc. 2005, 59, 1305–1309. [Google Scholar] [CrossRef] [PubMed]
- Sequaris, J.M.L.; Koglin, E. Direct Analysis of High-Performance Thin-Layer Chromatography Spots of Nucleic Purine Derivatives by Surface-Enhanced Raman Scattering Spectrometry. Anal. Chem. 1987, 59, 525–527. [Google Scholar] [CrossRef] [PubMed]
- Freeman, R.D.; Hammaker, R.M.; Meloan, C.E.; Fateley, W.G. A Detector for Liquid Chromatography and Flow Injection Analysis using Surface-Enhanced Raman Spectroscopy. Appl. Spectrosc. 1988, 42, 456–460. [Google Scholar] [CrossRef]
- Kennedy, B.J.; Milofsky, R.; Carron, K.T. Development of a Cascade Flow Cell for Dynamic Aqueous Phase Detection using Modified SERS Substrates. Anal. Chem. 1997, 69, 4708–4715. [Google Scholar] [CrossRef]
- Weiβenbacher, N.; Frank, J.; Wanzenböck, H.D. Surface-Enhanced Raman Spectroscopy as a Molecular Specific Detection System in Aqueous Flow-Through Systems. Analyst 1998, 123, 1057–1060. [Google Scholar] [CrossRef]
- Mosier-Boss, P.A.; Lieberman, S.H. Feasibility Studies for the Detection of Volatile Organic Compounds in the Gas Phase using Microelectrode Sensors. J. Electroanal. Chem. 1999, 460, 105–118. [Google Scholar] [CrossRef]
- Bailey, M.R.; Pentecost, A.M.; Selimovic, A.; Martin, R.S.; Schultz, Z.D. Sheath-Flow Microfluidic Approach for Combined Surface Enhanced Raman Scattering and Electrochemical Detection. Anal. Chem. 2015, 87, 4347–4355. [Google Scholar] [CrossRef] [PubMed]
- Nedderson, J.; Chumanov, G.; Cotton, T.M. Laser Ablation of Metals: A New Method for Preparing SERS Active Colloids. Appl. Spectrosc. 1993, 47, 1959–1964. [Google Scholar] [CrossRef]
- Vinod, M.; Gopchandran, K.G. Au, Ag, and Au:Ag Colloidal Nanoparticles Synthesized by Pulsed Laser Ablation as SERS Substrates. Prog. Nat. Sci. Mater. Int. 2014, 24, 569–578. [Google Scholar] [CrossRef]
- Herrera, G.M.; Padilla, A.C.; Hernandez-Rivera, S.P. Surface Enhanced Raman Scattering (SERS) Studies of Gold and Silver Nanoparticles Prepared by Laser Ablation. Nanomaterials 2013, 3, 158–172. [Google Scholar] [CrossRef] [PubMed]
- Israelsen, N.D.; Hanson, C.; Vargis, E. Nanoparticle Properties and Synthesis Effects on Surface-Enhanced Raman Scattering Enhancement Factor: An Introduction. Sci. World J. 2015, 2015, 124582. [Google Scholar] [CrossRef] [PubMed]
- Muniz-Miranda, M.; Gellini, C.; Giorgetti, E.; Margheri, G.; Marsili, P.; Lascialfari, L.; Becucci, L.; Trigari, S.; Giammanco, F. Nanostructured Films of Metal Particles Obtained by Laser Ablation. Thin Solid Films 2013, 543, 118–121. [Google Scholar] [CrossRef]
- Stiufiuc, R.; Iacovita, C.; Lucaciu, C.M.; Stiufiuc, G.; Dutu, A.G.; Braescu, C.; Leopold, N. SERS-Active Silver Colloids Prepared by Reduction of Silver Nitrate with Short-Chain Polyethylene Glycol. Nanoscale Res. Lett. 2013, 8, 47. [Google Scholar] [CrossRef] [PubMed]
- Wiley, B.; Sun, Y.; Mayers, B.; Xia, Y. Shape-Controlled Synthesis of Metal Nanostructures: The Case of Silver. Chem. Eur. J. 2005, 11, 454–463. [Google Scholar] [CrossRef] [PubMed]
- Tian, F.; Bonnier, F.; Casey, A.; Shanahan, A.E.; Byrne, H.J. Surface Enhanced Raman Scattering with Gold Nanoparticles: Effect of Particle Shape. Anal. Methods 2014, 6, 9116–9123. [Google Scholar] [CrossRef]
- Pulit, J.; Banach, M.; Kowalski, Z. Does Appearance Matter? Impact of Particle Shape on Nanosilver Characteristics. CHEMIK 2011, 65, 445–456. [Google Scholar]
- Benz, F.; Chikkaraddy, R.; Salmon, A.; Ohadi, H.; de Nijs, B.; Mertens, J.; Carnegie, C.; Bowman, R.W.; Baumberg, J.J. SERS of Individual Nanoparticles on a Mirror: Size Does Matter, but so Does Shape. J. Phys. Chem. Lett. 2016, 7, 2264–2269. [Google Scholar] [CrossRef] [PubMed]
- Jimenez de Aberasturi, D.; Serrano-Montes, A.B.; Langer, J.; Henriksen-Lacey, M.; Parak, W.J.; Liz-Marzán, L.M. Surface Enhanced Raman Scattering Encoded Gold Nanostars for Multiplexed Cell Discrimination. Chem. Mater. 2016, 28, 6779–6790. [Google Scholar] [CrossRef]
- La Porta, A.; Sánchez-Iglesias, A.; Altantzis, T.; Bals, S.; Grzelczak, M.; Liz-Marzán, L.M. Multifunctional Self-Assembled Composite Colloids and their Application to SERS Detection. Nanoscale 2015, 7, 10377–10381. [Google Scholar] [CrossRef] [PubMed]
- Wang, A.X.; Kong, X. Review of Recent Progress of Plasmonic Materials and Nano-Structures for Surface-Enhanced Raman Scattering. Materials 2015, 8, 3024–3052. [Google Scholar] [CrossRef] [PubMed]
- Andreou, C.; Hoonejani, M.R.; Barmi, M.R.; Moskovits, M.; Meinhart, C.D. Rapid Detection of Drugs of Abuse in Saliva using Surface Enhanced Raman Spectroscopy and Microfluidics. ACS Nano 2013, 7, 7157–7164. [Google Scholar] [CrossRef] [PubMed]
- Kline, N.D.; Tripathi, A.; Mirsafavi, R.; Pardoe, I.; Moskovits, M.; Meinhart, C.; Guicheteau, J.A.; Christesen, S.D.; Fountain, A.W., III. Optimization of Surface-Enhanced Raman Spectroscopy Conditions for Implementation into a Microfluidic Device for Drug Detection. Anal. Chem. 2016, 88, 10513–10522. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Dai, X.; Stogin, B.B.; Wong, T.-S. Ultrasensitive Surface-Enhanced Raman Scattering Detection in Common Fluids. Proc. Natl. Acad. Sci. USA 2016, 113, 268–273. [Google Scholar] [CrossRef] [PubMed]
- Poston, P.E.; Harris, J.M. Stable, Dispersible Surface-Enhanced Raman Scattering Substrate Capable of Detecting Molecules Bound to Silica-Immobilized Ligands. Appl. Spectrosc. 2010, 64, 1238–1243. [Google Scholar] [CrossRef] [PubMed]
- Hajduková, N.; Procházka, M.; Štěpánek, J.; Špírhová, M. Chemically Reduced and Laser-Ablated Gold Nanoparticles Immobilized to Silanized Glass Plates: Preparation, Characterization and SERS Spectral Testing. Colloids Surf. 2007, 301, 264–270. [Google Scholar] [CrossRef]
- Ahmad, H.; Kronfeldt, H.-D. High Sensitive Seawater Resistant SERS Substrates Based on Gold Island Film Produced by Electroless Plating. Mar. Sci. 2013, 3, 1–8. [Google Scholar] [CrossRef]
- Bibikova, O.; Haas, J.; López-Lorente, A.I.; Popov, A.; Kinnunen, M.; Meglinski, I.; Mizaikoff, B. Towards Enhanced Optical Sensor Performance: SEIRA and SERS with Plasmonic Nanostars. Analyst 2017, 142, 951–958. [Google Scholar] [CrossRef] [PubMed]
- He, S.; Chua, J.; Tan, E.K.M.; Kah, J.C.Y. Optimizing the SERS Enhancement of a Facile Gold Nanostar Immobilized Paper-Based SERS Substrate. RSC Adv. 2017, 7, 16264–16272. [Google Scholar] [CrossRef]
- Walsh, R.J.; Chumanov, G. Silver Coated Alumina as a New Substrate for Surface-Enhanced Raman Scattering. Appl. Spectrosc. 2001, 55, 1695–1700. [Google Scholar] [CrossRef]
- Mosier-Boss, P.A.; Sorensen, K.C.; George, R.D.; Obraztsova, A. SERS Substrates Fabricated using Ceramic Filters for the Detection of Bacteria. Spectrochim. Acta 2016, 153, 591–598. [Google Scholar] [CrossRef] [PubMed]
- Simo, A.; Joseph, V.; Fenger, R.; Kneipp, J.; Rademann, K. Long-Term Stable Silver Subsurface Ion-Exchanged Glasses for SERS Applications. ChemPhysChem 2011, 12, 1683–1688. [Google Scholar] [CrossRef] [PubMed]
- Karvonen, L.; Chen, Y.; Säynätjoki, A.; Taiviola, K.; Tervonen, A.; Honkanen, S. SERS-Active Silver Nanoparticle Aggregates Produced in High-Iron Float Glass by Ion Exchange Process. Opt. Mater. 2011, 34, 1–5. [Google Scholar] [CrossRef]
- Zhao, J.; Lin, J.; Zhang, W.; Wei, H.; Chen, Y. SERS-Active Ag Nanoparticles Embedded in Glass Prepared by a Two-Step Electric Field-Assisted Diffusion. Opt. Mater. 2015, 39, 97–102. [Google Scholar] [CrossRef]
- Farquharson, S.; Gift, A.D.; Maksymiuk, P.; Inscore, F.E. Rapid Dipicolinic Acid Extraction from Bacillus Spores Detected by Surface-Enhanced Raman Spectroscopy. Appl. Spectrosc. 2004, 58, 351–354. [Google Scholar] [CrossRef] [PubMed]
- Bao, L.; Mahurin, S.M.; Haire, R.G.; Dai, S. Silver-Doped Sol-Gel Film as a Surface-Enhanced Raman Scattering Substrate for Detection of Uranyl and Neptunyl Ions. Anal. Chem. 2003, 75, 6614–6620. [Google Scholar] [CrossRef] [PubMed]
- Ramanauskaite, L.; Snitka, V. The Synthesis of Controlled Shape Nanoplasmonic Silver-Silica Structures by Combining Sol-Gel Technique and Direct Silver Reduction. Nanoscale Res. Lett. 2015, 10, 133. [Google Scholar] [CrossRef] [PubMed]
- Fan, M.; Brolo, A.G. Silver Nanoparticles Self-assembly as SERS Substrates with Near Single Molecule Detection Limit. Phys. Chem. Chem. Phys. 2009, 11, 7381–7389. [Google Scholar] [CrossRef] [PubMed]
- Bodelón, G.; Montes-Garcia, V.; López-Puente, V.; Hill, E.H.; Hamon, C.; Sanz-Ortiz, M.N.; Rodal-Cedeira, S.; Costas, C.; Celiksoy, S.; Pérez-Juste, I.; et al. Detection and Imaging of Quorum Sensing in Pseudomonas aeruginosa Biofilm Communities by Surface-Enhanced Resonance Raman Scattering. Nat. Mater. 2016, 15, 1203–1211. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Fernández, D.; Langer, J.; Henriksen-Lacey, M.; Liz-Marzán, L.M. Hybrid Au-SiO2 Core- Satellite Colloids as Switchable SERS Tags. Chem. Mater. 2015, 27, 2540–2545. [Google Scholar] [CrossRef]
- Syed, H.; Podagatlapalli, G.K.; Mohiddon, M.A.; Soma, V.R. SERS Studies of Explosive Molecules with Diverse Copper Nanostructures Fabricated using Ultrafast Laser Ablation. Adv. Mater. Lett. 2015, 6, 1073–1080. [Google Scholar] [CrossRef]
- Han, Y.; Lan, X.; Wei, T.; Tsai, H.-L.; Xiao, H. Surface Enhanced Raman Scattering Silica Substrate Fast Fabrication by Femtosecond Laser Pulses. Appl. Phys. 2009, 97, 721–724. [Google Scholar] [CrossRef]
- Lin, C.-H.; Jiang, L.; Chai, Y.-H.; Xiao, H.; Chen, S.-J.; Tsai, H.-L. One-Step Fabrication of Nanostructures by Femtosecond Laser for Surface-Enhanced Raman Scattering. Opt. Express 2009, 17, 21581–21589. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.Q.; Yan, Z.D.; Zhan, P.; Wang, Z.L. Large-Area Surface-Enhanced Raman Scattering-Active Substrates Fabricated by Femtosecond Laser Ablation. Sci. China Phys. Mech. Astron. 2013, 56, 1806–1809. [Google Scholar] [CrossRef]
- Yang, J.; Li, J.; Du, Z.; Gong, Q.; Teng, J.; Hong, M. Laser Hybrid Micro/Nano-Structuring of Si Surfaces in Air and its Applications for SERS Detection. Sci. Rep. 2014, 4, 6657. [Google Scholar] [CrossRef] [PubMed]
- Hulteen, J.C.; Treichel, D.A.; Smith, M.T.; Duval, M.L.; Jensen, T.R.; Van Duyne, R.P. Nanosphere Lithography: Size-Tunable Silver Nanoparticles and Surface Cluster Arrays. J. Phys. Chem. 1999, 103, 3854–3863. [Google Scholar] [CrossRef]
- Haynes, C.L.; Van Duyne, R.P. Nanosphere Lithography: A Versatile Nanofabrication Tool for Studies of Size-Dependent Nanoparticle Optics. J. Phys. Chem. B 2001, 105, 5599–5611. [Google Scholar] [CrossRef]
- Mahajan, S.; Abdelsalam, M.; Suguwara, Y.; Cintra, S.; Russell, A.; Baumberg, J.; Bartlett, P. Tuning Plasmons on Nano-Structured Substrates for NIR-SERS. Phys. Chem. Chem. Phys. 2007, 9, 104–109. [Google Scholar] [CrossRef] [PubMed]
- Stiles, P.L.; Dieringer, J.A.; Shah, N.C.; Van Duyne, R.P. Surface-Enhanced Raman Spectroscopy. Annu. Rev. Anal. Chem. 2008, 1, 601–626. [Google Scholar] [CrossRef] [PubMed]
- Bryche, J.-F.; Tsigara, A.; Bélier, B.; de la Chapelle, M.L.M.; Canva, M.T.G.; Bartenlian, B.; Barbillon, G. Surface Enhanced Raman Scattering Improvement of Gold Triangular Nanoprisms by a Gold Reflective Underlayer for Chemical Sensing. Sens. Actuators 2016, 228, 31–35. [Google Scholar] [CrossRef]
- Jahn, M.; Patze, S.; Hidi, I.J.; Knipper, R.; Radu, A.I.; Mühlig, A.; Yüksel, S.; Peksa, V.; Weber, K.; Mayerhöfer, T.; et al. Plasmonic Nanostructures for Surface Enhanced Spectroscopic Methods. Analyst 2016, 141, 756–793. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.-Y.; Li, J.-F.; Ren, B.; Tian, Z.-Q. Electrochemical Surface-Enhanced Raman Spectroscopy of Nanostructures. Chem. Soc. Rev. 2008, 37, 1025–1041. [Google Scholar] [CrossRef] [PubMed]
- Gu, X.; Tian, S.; Zhou, Q.; Adkins, J.; Gu, Z.; Li, X.; Zheng, J. SERS Detection of Polycyclic Aromatic Hydrocarbons on a Bowl-Shaped Silver Cavity Substrate. RSC Adv. 2013, 3, 25989–25996. [Google Scholar] [CrossRef]
- Wang, J.F.; Wu, X.Z.; Xiao, R.; Dong, P.T.; Wang, C.G. Performance-Enhancing Methods for Au Film over Nanosphere Surface-Enhanced Raman Scattering Substrate and Melamine Detection Application. PLoS ONE 2014, 9, e97967. [Google Scholar] [CrossRef] [PubMed]
- Kahraman, M.; Daggumati, P.; Kurtulus, O.; Seker, E.; Wachsmann-Hogiu, S. Fabrication and Characterization of Flexible and Tunable Plasmonic Nanostructures. Sci. Rep. 2013, 3, 3396. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Yi, P.; Peng, L.; Lai, X.; Chen, J.; Huang, M.; Ni, J. Continuous Fabrication of Nanostructure Arrays for Flexible Surface Enhanced Raman Scattering Substrate. Sci. Rep. 2017, 7, 39814. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Liu, L.; Dai, Z.; Liu, J.; Yang, S.; Zhou, L.; Xiao, X.; Jiang, C.; Roy, V.A.L. Low-Cost, Disposable, Flexible and Highly Reproducible Screen Printed SERS Substrates for the Detection of Various Chemicals. Sci. Rep. 2015, 5, 10208. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Huang, Y.; Kannan, P.; Zhang, L.; Lin, Z.; Zhang, J.; Chen, T.; Guo, L. Flexible and Adhesive Surface Enhance Raman Scattering Active Tape for Rapid Detection of Pesticide Residues in Fruits and Vegetables. Anal. Chem. 2016, 88, 2149–2155. [Google Scholar] [CrossRef] [PubMed]
- Cottat, M.; Lidgi-Guigui, N.; Tijunelyte, I.; Barbillon, G.; Hamouda, F.; Gogol, P.; Aassime, A.; Lourtioz, J.-M.; Bartenlian, B.; de la Chapelle, M.L. Soft UV Nanoimprint Lithography-Designed Highly Sensitive Substrates for SERS Detection. Nanoscale Res. Lett. 2014, 9, 623. [Google Scholar] [CrossRef] [PubMed]
- Abu Hatab, N.A.; Oran, J.M.; Sepaniak, M.J. Surface-Enhanced Raman Spectroscopy Substrates Created via Electron Beam Lithography and Nanotransfer Printing. ACS Nano 2008, 2, 377–385. [Google Scholar] [CrossRef] [PubMed]
- Petti, L.; Capasso, R.; Rippa, M.; Pannico, M.; La Manna, P.; Peluso, G.; Calarco, A.; Bobeico, E.; Musto, P. A Plasmonic Nanostructure Fabricated by Electron Beam Lithography as a Sensitive and Highly Homogenous SERS Substrate for Bio-Sensing Applications. Vib. Spectrosc. 2016, 82, 22–30. [Google Scholar] [CrossRef]
- Cinel, N.A.; Cakmakyapan, S.; Butun, S.; Ertas, G.; Ozbay, E. E-Beam Lithography Designed Substrates for Surface Enhanced Raman Spectroscopy. Photonics Nanostruct. Fundam. Appl. 2015, 15, 109–115. [Google Scholar] [CrossRef]
- Yue, W.; Wang, Z.; Yang, Y.; Chen, L.; Syed, A.; Wong, K.; Wang, X. Electron-Beam Lithography of Gold Nanostructures for Surface-Enhanced Raman Scattering. J. Micromech. Microeng. 2012, 22, 125007. [Google Scholar] [CrossRef]
- Hatab, N.A.; Hsueh, C.-H.; Gaddis, A.L.; Retterer, S.T.; Li, J.-H.; Eres, G.; Zhang, Z.; Gu, B. Free-Standing Optical Bowtie Nanoantenna with Variable Gap Size for Enhanced Raman Spectroscopy. Nano Lett. 2010, 10, 4952–4955. [Google Scholar] [CrossRef] [PubMed]
- Jubb, A.M.; Jiao, Y.; Eres, G.; Retterer, S.T.; Gu, B. Elevated Gold Ellipse Nanoantenna Dimers as Sensitive and Tunable Surface Enhanced Raman Spectroscopy Substrates. Nanoscale 2016, 8, 5641–5648. [Google Scholar] [CrossRef] [PubMed]
- Gillibert, R.; Sarkar, M.; Bryche, J.-F.; Yasukuni, R.; Moreau, J.; Besbes, M.; Barbillon, G.; Bartenlian, B.; Canva, M.; de la Chapelle, M.L. Directional Surface Enhanced Raman Scattering on Gold Nano-Gratings. Nanotechnology 2016, 27, 115202. [Google Scholar] [CrossRef] [PubMed]
- Bryche, J.-F.; Gillibert, R.; Barbillon, G.; Gogol, P.; Moreau, M.; de la Chapelle, M.L.; Bartenlian, B.; Canva, M. Plasmonic Enhancement by a Continuous Gold Underlayer: Applications to SERS Sensing. Plasmonics 2016, 11, 601–608. [Google Scholar] [CrossRef]
- Real-Time Analyzers. Available online: http://rta.biz/products/sers-products/ (accessed on 2 June 2017).
- Sigma-Aldrich. Gold Nanoparticles, 10 nm Diameter, Silica Coated, Dispersion in Water. Available online: http://www.sigmaaldrich.com/catalog/product/aldrich/747564?lang=en®ion=US (accessed on 2 June 2017).
- Sigma-Aldrich. Gold Nanorods, 10 nm Diameter, Silica Coated, Dispersion in Water. Available online: http://www.sigmaaldrich.com/catalog/product/aldrich/747998?lang=en®ion=US (accessed on 2 June 2017).
- Horiba Scientific. Available online: http://www.horiba.com/us/en/scientific/products/raman-spectroscopy/accessories/sers-substrates/ (accessed on 2 June 2017).
- Ocean Optics. Available online: https://oceanoptics.com/product/sers/ (accessed on 2 June 2017).
- AtoID. Available online: http://www.atoid.com/shop/ (accessed on 2 June 2017).
- Rinnert, E. SERS Applications-Sensors-Pollutants and Chemical Detection. In Handbook of Enhanced Spectroscopy; Gucciardi, P.G., de la Chapelle, M.L., Lidgi-Guigui, N., Eds.; CRC Press: Boca Raton, FL, USA, 2015; pp. 342–345. [Google Scholar]
- Silmeco. Available online: http://www.silmeco.com/products/sers-substrate-serstrate/ (accessed on 2 June 2017).
- Owens, P.; Phillipson, N.; Perumal, J.; O’Connoer, G.M.; Olivo, M. Sensing of p53 and EGFR Biomarkers using High Efficiency SERS Substrates. Biosensors 2015, 5, 664–677. [Google Scholar] [CrossRef] [PubMed]
- Mesophotonics. Available online: http://www.mesophotonics.com/sers_central/index.html (accessed on 2 June 2017).
- Faulds, K.; Hernandez-Santana, A.; Smith, W.E. The Inorganic Chemistry of Surface Enhanced Raman Scattering (SERS). In Spectroscopic Properties of Inorganic and Organometallic Compounds: Techniques, Materials and Applications; Yarwood, J., Douthwaite, R., Duckett, S., Eds.; Royal Society of Chemistry: London, UK, 2010; pp. 1–21. [Google Scholar] [CrossRef]
- Smith, E.; McNay, G.; McInroy, A.; Fitchett, K. New Developments in SERS for the Pharmaceutical Industry. Available online: http://www.iptonline.com/pdfviewarticle.asp?cat=3&article=689 (accessed on 2 June 2017).
- Xie, F.; Drozdowicz-Tomsia, K.; Goldys, E.M. A Method to Assess Modifications of Fluorophore Radiative Rate by Plasmonic Structures. Chem. Phys. Lett. 2008, 466, 186–188. [Google Scholar] [CrossRef]
- Jin, M.; Van Wolferen, H.; Wormeester, H.; Van Den Berg, A.; Carlen, E.T. Large-Area Nanogap Resonator Arrays for Plasmonics Applications. Nanoscale 2012, 4, 4712–4718. [Google Scholar] [CrossRef] [PubMed]
- Setti, G.O.; Mamiám-López, M.B.; Pessoa, P.R.; Poppi, R.J.; Joanni, E.; Jesus, D.P. Sputtered Gold-Coated ITO Nanowires by Alternating Depositions from Indium and ITO Targets for Application in Surface-Enhanced Raman Scattering. Appl. Surf. Sci. 2015, 347, 17–22. [Google Scholar] [CrossRef]
- Diagnostic anSERS Inc. Available online: https://www.diagnosticansers.com/ (accessed on 2 June 2017).
- Yu, W.W.; White, I.M. Inkjet Printed Surface Enhanced Raman Spectroscopy Array on Cellulose Paper. Anal. Chem. 2010, 82, 9626–9630. [Google Scholar] [CrossRef] [PubMed]
- Yu, W.W.; White, I.M. A Simple Filter-Based Approach to Surface-Enhanced Raman Spectroscopy for Trace Chemical Detection. Analyst 2012, 137, 1168–1173. [Google Scholar] [CrossRef] [PubMed]
- Hoppmann, E.P.; Yu, W.W.; White, I.M. Highly Sensitive and Flexible Inkjet Printed SERS Sensors on Paper. Methods 2013, 63, 219–224. [Google Scholar] [CrossRef] [PubMed]
- Yu, W.W.; White, I.M. Inkjet-Printed Paper-Based SERS Dipsticks and Swabs for Trace Chemical Detection. Analyst 2013, 138, 1020–1025. [Google Scholar] [CrossRef] [PubMed]
- Ondavia. Available online: https://www.ondavia.com/about (accessed on 2 June 2017).
- Cowcher, D.P.; Jarvis, R.; Goodacre, R. Quantitative Online Liquid Chromatography-Surface-Enhanced Raman Scattering of Purine Bases. Anal. Chem. 2014, 86, 9977–9984. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Xu, M.; Guo, Q.; Yuan, Y.; Gu, R.; Yao, J. Rapid Separation and On-Line Detection by Coupling High Performance Liquid Chromatography with Surface-Enhanced Raman Spectroscopy. RSC Adv. 2015, 5, 47640–47646. [Google Scholar] [CrossRef]
- Farquharson, S.; Maksymiuk, P. Simultaneous Chemical Separation and Surface-Enhanced Raman Spectral Detection using Silver-Doped Sol-Gels. Appl. Spectrosc. 2003, 57, 479–482. [Google Scholar] [CrossRef] [PubMed]
- Trachta, G.; Schwarze, B.; Sägmüller, B.; Brehm, G.; Schneider, S. Combination of High-Performance Liquid Chromatography and SERS Detection Applied to the Analysis of Drugs in Human Blood and Urine. J. Mol. Struct. 2004, 693, 175–185. [Google Scholar] [CrossRef]
- Brosseau, C.L.; Gambardella, A.; Casadio, F.; Grzywacz, C.M.; Wouters, J.; Van Duyne, R.P. Ad-hoc Surface-Enhanced Raman Spectroscopy Methodologies for the Detection of Artist Dyestuffs: Thin Layer Chromatography-Surface Enhanced Raman Spectroscopy and in Situ On the Fiber Analysis. Anal. Chem. 2009, 81, 3056–3062. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.-M.; Liu, J.-F.; Liu, R.; Sun, J.F.; Wei, G.-H. Thin Layer Chromatography Coupled with Surface-Enhanced Raman Scattering as a Facile Method for On-Site Quantitative Monitoring of Chemical Reactions. Anal. Chem. 2014, 86, 7286–7292. [Google Scholar] [CrossRef] [PubMed]
- Yu, W.W.; White, I.M. Chromatographic Separation and Detection of Target Analytes from Complex Samples using Inkjet Printed SERS Substrates. Analyst 2013, 138, 3679–3686. [Google Scholar] [CrossRef] [PubMed]
- Lu, G.; Forbes, T.Z.; Haes, A.J. SERS Detection of Uranyl using Functionalized Gold Nanostars Promoted by Nanoparticle Shape and Size. Analyst 2016, 141, 5137–5143. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Meng, G.; Huang, Q.; Chen, B.; Zhu, C.; Zhang, Z. Large-Area Ag Nanorod Array Substrates for SERS: AAO Template-Assisted Fabrication, Functionalization, and Application in Detection of PCBs. J. Raman Spectrosc. 2013, 44, 240–246. [Google Scholar] [CrossRef]
- Galinetto, P.; Taglietti, A.; Pasotti, L.; Pallavicini, P.; Dacarro, G.; Giulotto, E.; Grandi, M.S. SERS Activity of Silver Nanoparticles Functionalized with a Desferrioxamine B Derived Ligand for Fe(III) Binding and Sensing. J. Appl. Spectrosc. 2016, 82, 1052–1059. [Google Scholar] [CrossRef]
- Kamra, T.; Chaudhary, S.; Xu, C.; Montelius, L.; Schnadt, J.; Ye, L. Covalent Immobilization of Molecularly Imprinted Polymer Nanoparticles on a Gold Surface using Carbodiimide Coupling for Chemical Sensing. J. Colloid Interface Sci. 2016, 461, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Kang, L.; Chen, S.; Li, X. High Performance Surface-Enhanced Raman Scattering from Molecular Imprinting Polymer Capsulated Silver Spheres. Phys. Chem. Chem. Phys. 2015, 17, 21343–21347. [Google Scholar] [CrossRef] [PubMed]
- Holthoff, E.L.; Stratis-Cullum, D.N.; Hankus, M.E. A Nanosensor for TNT Detection Based on Molecularly Imprinted Polymers and Surface Enhanced Raman Scattering. Sensors 2011, 11, 2700–2714. [Google Scholar] [CrossRef] [PubMed]
- Kostrewa, S.; Emgenbroich, M.; Klockow, D.; Wulff, G. Surface-Enhanced Raman Scattering on Molecularly Imprinted Polymers in Water. Macromol. Chem. Phys. 2003, 204, 481–487. [Google Scholar] [CrossRef]
- Hu, Y.; Lu, X. Rapid Detection of Melamine in Tap Water and Milk using Conjugated “One-Step” Molecularly Imprinted Polymers-Surface Enhanced Raman Spectroscopic Sensor. J. Food Sci. 2016, 81, N1272–N1280. [Google Scholar] [CrossRef] [PubMed]
- Kovacs, G.J.; Loutfy, R.O.; Vincett, P.S.; Jennings, C.; Aroca, R. Distance Dependence of SERS Enhancement Factor from Langmuir-Blodgett Monolayers on Metal Island Films: Evidence for the Electromagnetic Mechanism. Langmuir 1986, 2, 689–694. [Google Scholar] [CrossRef]
- Compagnini, G.; Galati, C.; Pignataro, S. Distance Dependence of Surface Enhanced Raman Scattering Probed by Alkanethiol Self-Assembled Monolayers. Phys. Chem. Chem. Phys. 1999, 1, 2351–2353. [Google Scholar] [CrossRef]
- Masango, S.S.; Hackler, R.A.; Large, N.; Henry, A.-I.; McAnally, M.O.; Schatz, G.C.; Stair, P.C.; Van Duyne, R.P. High-Resolution Distance Dependence Study of Surface-Enhanced Raman Scattering Enabled by Atomic Layer Deposition. Nano Lett. 2016, 16, 4251–4259. [Google Scholar] [CrossRef] [PubMed]
- Love, J.C.; Estroff, L.A.; Kriebel, J.K.; Nuzzo, R.G.; Whitesides, G.M. Self-Assembled Monolayers of Thiolates on Metals as a Form of Nanotechnology. Chem. Rev. 2005, 105, 1103–1170. [Google Scholar] [CrossRef] [PubMed]
- Klutse, C.K.; Mayer, A.; Wittkamper, J.; Cullum, B.M. Applications of Self-Assembled Monolayers in Surface-Enhanced Raman Scattering. J. Nanotechnol. 2012, 2012, 319038. [Google Scholar] [CrossRef]
- Schreiber, F. Structure and Growth of Self-Assembling Monolayers. Prog. Surf. Sci. 2000, 65, 151–256. [Google Scholar] [CrossRef]
- Wang, X.; Schneider, H.-J. Vibrational Spectroscopic Studies on the Inclusional Complexation by β-Cyclodextrin. In Molecular Recognition and Inclusion; Coleman, A.W., Ed.; Springer: New York, NY, USA, 1998; pp. 543–546. [Google Scholar]
- Fang, C.; Bandaru, N.M.; Ellis, A.V.; Voelcker, N.H. Beta-Cyclodextrin Decorated Nanostructured SERS Substrates Facilitate Selective Detection of Endocrine Disruptorchemicals. Biosens. Bioelectron. 2013, 42, 632–639. [Google Scholar] [CrossRef] [PubMed]
- Mosier-Boss, P.A.; Lieberman, S.H. Surface-Enhanced Raman Spectroscopy (SERS) and Molecular Modeling of the Chromate Interaction with 4-(2-Mercaptoethyl)Pyridinium. Langmuir 2003, 19, 6826–6836. [Google Scholar] [CrossRef]
- Mosier-Boss, P.A.; Boss, R.D.; Lieberman, S.H. Determination of the Ion-Pair Constant between Chloride Ion and Cationic-Coated Silver SERS Substrates using Competitive Complexation. Langmuir 2000, 16, 5441–5448. [Google Scholar] [CrossRef]
- Guerrini, L.; Rodriguez-Loureiro, I.; Correa-Duarte, M.A.; Lee, Y.H.; Ling, X.Y.; Javier Garciá de Abajo, F.; Alvarez-Puebla, R.A. Chemical Speciation of Heavy Metals by Surface-Enhanced Raman Scattering Spectroscopy: Identification and Quantification of Inorganic- and Methyl-Mercury in Water. Nanoscale 2014, 6, 8368–8375. [Google Scholar] [CrossRef] [PubMed]
- Schmit, V.L.; Martoglio, R.; Scott, B.; Strickland, A.D.; Carron, K.T. Lab-on-a-Bubble: Synthesis, Characterization, and Evaluation of Buoyant Gold Nanoparticle-Coated Silica Spheres. J. Am. Chem. Soc. 2012, 134, 59–62. [Google Scholar] [CrossRef] [PubMed]
- Schmit, V.L.; Mortoglio, R.; Carron, K.T. Lab-on-a-Bubble Surface Enhanced Raman Indirect Immunoassay for Cholera. Anal. Chem. 2012, 84, 4233–4236. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.; Ou-Yang, L.; Zhu, L.; Zou, J.; Tang, H. Novel One-Pot Fabrication of Lab-on-a-Bubble@Ag Substrate without Coupling-Agent for Surface Enhanced Raman Scattering. Sci. Rep. 2014, 4, 3942. [Google Scholar] [CrossRef] [PubMed]
- Mosier-Boss, P.A. Optical Properties of Surface-Enhanced Raman-Active Capture Matrices. Appl. Spectrosc. 2006, 60, 1148–1156. [Google Scholar] [CrossRef] [PubMed]
- Sharma, B.; Frontiera, R.R.; Henry, A.-I.; Ringe, E.; Van Duyne, R.P. SERS: Materials, Applications, and the Future. Mater. Today 2012, 15, 16–25. [Google Scholar] [CrossRef]
Groundwater ID | Perchlorate 1 | Chloride 2 | Sulfate 2 | Nitrate 2 | TDS 3 | pH |
---|---|---|---|---|---|---|
(mg L−1) | (mg L−1) | (mg L−1) | (mg L−1) | (mg L−1) | ||
CPMW-5 | 0.261 ± 0.005 | 6.96 | 71.9 | 0.2 | 214 | 4.6 |
CPMW-2D | 2.19 ± 0.18 | 30.3 | 64.3 | 1.07 | 189 | 5.3 |
Analyte Type | SERS Substrate and Reference |
---|---|
BTEX (benzene, toluene, ethylbenzene, xylenes) and other aromatics | Octadecyl modified Ag foil for benzene and naphthalene [2] |
Pentafluorothiophenol (PFTP) modified Ag foil on a thermoelectric cooler (TEC) for toluene [3] | |
Metal-organic framework (MOF) on Ag films over nanospheres (AgFON) for benzene, toluene, and nitrobenzene [4] | |
Film of polydimethylsiloxane (PDMS)-coated Au NPs for benzene, toluene, and nitrobenzene [5] | |
Au NPs immobilized on quartz for pyrene and naphthalene [6] | |
Au coated polystyrene (PS) beads immobilized on quartz for naphthalene [7] | |
Octadecyl modified immobilized Au colloid for pyrene, naphthalene, and phenanthrene [8] | |
BTEX and other aromatics (continued) | Pentachlorothiophenol (PCTP) modified Au capture matrices for naphthalene [9] |
1-Propanethiol modified Ag foil coupled to a gas chromatograph (GC) for BTEX [44] | |
Ag film on ZnSe window coupled to a GC for aromatics [45] | |
Thiol derivatized Ag foils coupled to liquid chromatography (LC) and flow injection analysis (FIA) for BTEX [48] | |
Au nanoparticles (NPs) on SLIPSERS platform for bis(2-ethyl-hexyl phthalate (DEHP) [67] | |
Au island films on silanized glass for pyrene [70] | |
Anthracene and pyrene using a bowl-shaped Ag cavity substrate [96] | |
p-Aminobenzoic acid and phenyl acetylene using Ag sol gel coupled with LC [134] | |
Thiolated β-cyclodextrin functionalized Ag-nanorods for polychlorinated biphenyls (PCBs) [140] | |
β-cyclodextrin functionalized Ag/Au films for 3-amino-2-naphthoic acid (NAPH), potassium hydrogen phthalate (PHTH) and the β-estradiol (ESTR) [154] | |
heterocyclic aromatic compounds | Metal-organic framework (MOF) on AgFON for 2,6-tert-butylpyridine [4] |
Ag colloid sprayed on thin layer chromatography (TLC) plates for nucleic purine derivatives [46] | |
Ag and Au NPs prepared by laser ablation placed on ceramic filters for adenine [56] | |
Au nanoparticles on silanized glass plates for 5,10,15,20-tetrakis(1-methyl-4-pyridyl)porphyrin (TMPyP) [69] | |
Silver ion-exchanged metal-oxide glasses for adenine [75] | |
Silver sol gel for dipicolinic acid [78] | |
Silver deposited on alumina filters for benzotriazole and bipyridine [73] | |
Melamine using Ag NPs on AuFON [97] | |
Melamine using Ag NPs on polyethylene terephthalate (PET) flexible substrate [100] | |
Melamine using Klarite [122] | |
OndaVia microfluidic cartridge for triazine and dithiazine [131] | |
Melamine using Ag NPs on filter paper [128,138] | |
1,2-Di-(4-pyridyl)ethylene (BPE) using Ag NPs on filter paper [129] | |
Purine bases using Ag colloid coupled with LC [132] | |
Au NPs sprayed on TLC plates to detect 2-phenylpyridine [137] | |
Melamine using MIPs-Ag NPs [146] | |
dyes | Ag sol coupled to high performance liquid chromatography (HPLC) and FIA for pararosaniline hydrochloride [47] |
Au nanospheres, nanotriangles, and nanostrar for rhodamine 6G [59] | |
Colorants such as alizarin, purpurin, carminic acid, lac dye, crocin, and Cape jasmine using AgFON and silica gel Ag colloids for thin layer chromatography (TLC) [136] | |
other organics | Thiophenol (TP) modified Ag foil on a TEC for TCE, perchloroethylene (PCE), and chloroform [3] |
Octadecyl modified Ag foil for PCE and trans-1,2-dichloroethylene [10] | |
Chlorothiophenol (CTP) modified Ag disk microelectrode for methylene chloride [50] | |
Thiophenol (TP) modified Ag foil on a TEC for methyl tert-butyl ether (MTBE) [3] | |
OndaVia microfluidic cartridge for amines [131] | |
cations | Dibenzo-18-crown-6 modified Ag foil for alkali metals [11] |
4-(2-Pyridylazo)resorcinol disulfide modified Ag foil for Cu2+, Pb2+, and Cd2+ [12] | |
Inkjet printed Ag NPs for Cd2+, Zn2+, and Hg2+ [13] | |
4-(4-Phenylmethanethiol)-2,2′:6,2″-terpyridine (PMTTP) modified Ag NPs on a fiber optic for Cd2+ [14] | |
Eriochrome Black T modified Ag foil for Cu2+ and Pb2+ [15] | |
OndaVia microfluidic cartridge for selenium, arsenic, lead, and quaterary amines [131] | |
Desferrioxamine B functionalized Ag NPs for Fe(III) [141] | |
Hg2+ and CH3Hg+ using 4-mercaptopyridine (MPY) functionalized Au NPs on PS beads [157] | |
radioactive cations | Gold NPs for technitium [20] |
(Aminomethyl)phosphonic acid (APA)-modified gold NPs for uranyl [21] | |
Silver-doped sol gel films for uranyl and neptunyl [79] | |
Carboxylic acid terminated alkanethiol derivatized Au nanostars for uranyl [139] | |
anions | Aliphatic and aromatic cationic thiol modified Ag or Au foils for chloride, cyanide, dihydrogen phosphate, chromate, dichromate, sulfate, nitrate, and perchlorate [16,26,27,155,156] |
Silver-doped sol gel films for perchlorate [17] | |
2-Dimethylaminoethanethiol (DMAE) modified gold NPs for perchlorate [18] | |
Cystamine-modified gold NPs for perchlorate [19] | |
DMAE modified gold ellipse dimer nanoantenna for perchlorate [22] | |
4-(2-Mercaptoethyl)pyridinium (MEPH+) modified Au capture matrices for chromate [23] | |
DMAE modified Ag capture matrices for perchlorate [24] | |
Gold-coated silicon for nitrate and nitrite [25] | |
OndaVia microfluidic cartridge for perchlorate, sulfate, and nitrate [131] | |
Cyanide using Au NPs on LoBs [158] | |
pesticides | Acetamiprid using Ag dendrites [28] |
Chlorpyrifos (CPF) and thiabendazole (TBZ) using Au nanofingers [29] | |
Aldrin, dieldrin, lindane, and α-endosulfan using aliphatic and aromatic dithiol functionalized Ag and Au NPs [30] | |
Thiram and methamidophos (MTD) using gold@silver core–shell nanorods [31] | |
Imidacloprid, acetamiprid, and thiabendazole using Au NP-modified polymethacrylate [32] | |
Parathion-methyl, thiram, and chlorpyrifos using Au NPs on adhesive tape [101] | |
Thiram and organophosphate malathion using Ag NPs on filter paper [130] | |
Thiram using Ag NPs in a glass capillary coupled with HPLC [133] | |
explosives | Cyclotrimethylene-trinitramine (RDX) using Au NPs [39] |
2,4-Dinitrotoluene (DNT) using a Au-coated nanostructured sapphire surface [40] | |
2,4,6-Trinitrotoluene (TNT) and triacetone triperoxide (TATP) using a nanostructured Au substrate [41] | |
TNT, DNT, and 1,3,5-trinitrobenzene using Au NPs on filter paper [42] | |
Pentaerythritol tetranitrate (PETN), ethylene glycol dinitrate (EGDN), RDX and TNT using Klarite [43] | |
TNT on Au NPs prepared by laser ablation [54] | |
1,1-Diamino-2,2-dinitroethene (FOX-7), 5 Amino, 3-nitro,1,3,5-nitrozole (ANTA) and 2,4,6,8,10,12-Hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (CL-20) using Cu nanostructures [84] | |
TNT detection using molecularly imprinted polymers (MIPs) on Klarite [144] | |
drugs and pharmaceuticals | Amphetamine and methamphetamine using 2-mercaptonicotinic acid functionalized Ag foils [33] |
Nicotine and its metabolites using Ag NPs [35] | |
5,6-Methylenedioxy-2-aminoindane (MDAI) using Ag colloid [36] | |
Tramadol using Ag colloid [37] | |
Cocaine using Real-Time Analyzers Ag and Au sol-gel capillaries [38] | |
Nicotinic acid using a solid SERS substrate and FIA [49] | |
Riboflavin (vitamin B2) using microfluidics and a SERS active electrode [51] | |
Methamphetamine using Ag NPs and microfluidics [65,66] | |
Morphine and cocaine using Ag and Au NPs and microfluidics [66] | |
Ibuprofen using Klarite [122] | |
Heroin, and cocaine using Ag NPs on filter paper [130] | |
Dihydrocodeine, doxepine, citalopram, trimipramine, carbamazepine, methadone using Ag SERS surface coupled with HPLC [135] | |
Heroin using Ag inkjet-printed paper for TLC [138] |
© 2017 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mosier-Boss, P.A. Review of SERS Substrates for Chemical Sensing. Nanomaterials 2017, 7, 142. https://doi.org/10.3390/nano7060142
Mosier-Boss PA. Review of SERS Substrates for Chemical Sensing. Nanomaterials. 2017; 7(6):142. https://doi.org/10.3390/nano7060142
Chicago/Turabian StyleMosier-Boss, Pamela A. 2017. "Review of SERS Substrates for Chemical Sensing" Nanomaterials 7, no. 6: 142. https://doi.org/10.3390/nano7060142
APA StyleMosier-Boss, P. A. (2017). Review of SERS Substrates for Chemical Sensing. Nanomaterials, 7(6), 142. https://doi.org/10.3390/nano7060142