Fabrication of Magnetic Nanofibers by Needleless Electrospinning from a Self-Assembling Polymer Ferrofluid Cone Array
Abstract
:1. Introduction
2. Results and Discussion
2.1. Static Self-Assembling of PFF Droplet under Coincident Electric and Magnetic Fields
2.2. Needleless Electrospinning Process
2.3. Morphology of Nanofibers
2.4. TGA Analysis
2.5. Fourier Transform Infrared Spectroscopy (FT-IR) Analysis
2.6. Magnetic Properties Analysis
3. Materials and Methods
3.1. Preparation of PVP/Fe3O4 Ferrofluid
3.2. Design of Needleless Electrospinning Apparatus
3.3. Fabrication of Magnetic Nanofibers
3.4. Characterization Methods
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Niu, S.; Zhang, L.; Wang, N.; Zhu, J.; Zhang, W.; Cheng, Z.; Zhu, X. Fabrication of magnetic nanofibers via surface-initiated raft polymerization and coaxial electrospinning. React. Funct. Polym. 2013, 73, 1447–1454. [Google Scholar] [CrossRef]
- Aguilar, L.E.; GhavamiNejad, A.; Park, C.H.; Kim, C.S. On-demand drug release and hyperthermia therapy applications of thermoresponsive poly-(NIPAAm-co-HMAAm)/polyurethane core-shell nanofiber mat on non-vascular nitinol stents. Nanomed. Nanotechnol. Biol. Med. 2017, 13, 527–538. [Google Scholar] [CrossRef] [PubMed]
- Cojocaru, C.; Dorneanu, P.P.; Airinei, A.; Olaru, N.; Samoila, P.; Rotaru, A. Design and evaluation of electrospun polysulfone fibers and polysulfone/NiFe2O4 nanostructured composite as sorbents for oil spill cleanup. J. Taiwan Inst. Chem. E 2017, 70, 267–281. [Google Scholar] [CrossRef]
- Song, H.-h.; Gong, X.; Williams, G.R.; Quan, J.; Nie, H.-l.; Zhu, L.-m.; Nan, E.-l.; Shao, M. Self-assembled magnetic liposomes from electrospun fibers. Mater. Res. Bull. 2014, 53, 280–289. [Google Scholar] [CrossRef]
- Zhang, H.; Xia, J.Y.; Pang, X.L.; Zhao, M.; Wang, B.Q.; Yang, L.L.; Wan, H.S.; Wu, J.B.; Fu, S.Z. Magnetic nanoparticle-loaded electrospun polymeric nanofibers for tissue engineering. Mater. Sci. Eng. C-Mater. Biol. Appl. 2017, 73, 537–543. [Google Scholar] [CrossRef] [PubMed]
- Zhao, F.; Wang, J.J.; Xu, B.C.; Liu, J.W.; Gao, H.T. Electrospinning fabrication and microwave absorption properties of lithium zinc ferrite micro/nanofibers. Chem. J. Chin. Univ.-Chin. 2017, 38, 922–928. [Google Scholar]
- Guo, D.; Sun, Z.; Xu, L.; Gao, Y.; Dai, M.; Wang, S.; Chang, Q.; Wang, C.; Ma, D. Water-soluble luminescent-electrical-magnetic trifunctional composite nanofibers prepared via electrospinning technique. Mater. Lett. 2015, 159, 159–162. [Google Scholar] [CrossRef]
- Bayat, M.; Yang, H.; Ko, F.K.; Michelson, D.; Mei, A. Electromagnetic interference shielding effectiveness of hybrid multifunctional Fe3O4/carbon nanofiber composite. Polymer 2014, 55, 936–943. [Google Scholar] [CrossRef]
- Kinsella, J.M.; Ivanisevic, A. DNA-templated magnetic nanowires with different compositions: Fabrication and analysis. Langmuir ACS J. Surf. Colloids 2007, 23, 3886–3890. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Chen, Q.W.; Sun, L.X.; Qi, H.P.; Yang, X.; Zhou, S.; Xiong, J. Magnetic-field-induced formation of one-dimensional magnetite nanochains. Langmuir 2009, 25, 7135–7139. [Google Scholar] [CrossRef] [PubMed]
- He, K.; Xu, C.Y.; Zhen, L.; Shao, W.Z. Hydrothermal synthesis and characterization of single-crystalline Fe3O4 nanowires with high aspect ratio and uniformity. Mater. Lett. 2007, 61, 3159–3162. [Google Scholar] [CrossRef]
- Martin, J.I.; Nogues, J.; Liu, K.; Vicent, J.L.; Schuller, I.K. Ordered magnetic nanostructures. Fabrication and properties. J. Magn. Magn. Mater. 2003, 256, 449–501. [Google Scholar] [CrossRef]
- Gu, Q.; Cheng, C.; Gonela, R.; Suryanarayanan, S.; Anabathula, S.; Dai, K.; Haynie, D.T. DNA nanowire fabrication. Nanotechnology 2006, 17, 14. [Google Scholar] [CrossRef]
- Nakhowong, R.; Chueachot, R. Synthesis and magnetic properties of copper cobaltite (CuCo2O4) fibers by electrospinning. J. Alloys Compd. 2017, 715, 390–396. [Google Scholar] [CrossRef]
- Wang, S.; Sun, Z.; Yan, E.; Yuan, J.; Gao, Y.; Bai, Y.; Chen, Y.; Wang, C.; Zheng, Y.; Jing, T. Magnetic composite nanofibers fabricated by electrospinning of Fe3O4/gelatin aqueous solutions. Mater. Sci. Eng. B-Adv. Funct. Solid-State Mater. 2014, 190, 126–132. [Google Scholar] [CrossRef]
- Huang, W.L.; Jiang, L.L.; Luo, J.; Chen, Z.P.; Ren, L.; Li, C.Y. Effect of magnetic field on stability of jet motion in electrospinning. Mater. Manuf. Process. 2016, 31, 1603–1607. [Google Scholar] [CrossRef]
- Tian, L.; Zhao, C.; Li, J.; Pan, Z. Multi-needle, electrospun, nanofiber filaments: Effects of the needle arrangement on the nanofiber alignment degree and electrostatic field distribution. Text. Res. J. 2015, 85, 621–631. [Google Scholar] [CrossRef]
- Liu, Z.; Ang, K.K.J.; He, J.H. Needle-disk electrospinning inspired by natural point discharge. J. Mater. Sci. 2017, 52, 1823–1830. [Google Scholar] [CrossRef]
- Li, D.; Chen, W.; Sun, B.; Li, H.; Tong, W.; Ke, Q.; Chen, H.; Ei-Hamshary, H.; Al-Deyab, S.S.; Mo, X. A comparison of nanoscale and multiscale PCL/gelatin scaffolds prepared by disc-electrospinning. Colloids Surf. B Biointerfaces 2016, 146, 632–641. [Google Scholar] [CrossRef] [PubMed]
- Fuh, Y.K.; Lien, L.C.; Chen, S.Y. High-throughput production of nanofibrous mats via a porous materials electrospinning process. J. Macromol. Sci. Part. B-Phys. 2012, 51, 1742–1749. [Google Scholar] [CrossRef]
- Bhattacharyya, I.; Molaro, M.C.; Braatz, R.D.; Rutledge, G.C. Free surface electrospinning of aqueous polymer solutions from a wire electrode. Chem. Eng. J. 2016, 289, 203–211. [Google Scholar] [CrossRef]
- Hsieh, C.T.; Lou, C.W.; Pan, Y.J.; Huang, C.L.; Lin, J.H.; Lin, Z.I.; Chen, Y.S.; Chiang, K.C. Fabrication of poly(vinyl alcohol) nanofibers by wire electrode-incorporated electrospinning. Fibers Polym. 2016, 17, 1217–1226. [Google Scholar] [CrossRef]
- Zhao, C.C.; Lu, Y.; Pan, Z.J. Adhesion and protective properties of electrospun PVA/ES composites obtained by using spiral disk spinnerets. Text. Res. J. 2017, 87, 1685–1695. [Google Scholar] [CrossRef]
- Ali, U.; Niu, H.T.; Aslam, S.; Jabbar, A.; Rajput, A.W.; Lin, T. Needleless electrospinning using sprocket wheel disk spinneret. J. Mater. Sci. 2017, 52, 7567–7577. [Google Scholar] [CrossRef]
- Yan, G.L.; Niu, H.T.; Shao, H.; Zhao, X.T.; Zhou, H.; Lin, T. Curved convex slot: An effective needleless electrospinning spinneret. J. Mater. Sci. 2017, 52, 11749–11758. [Google Scholar] [CrossRef]
- Niu, H.T.; Lin, T.; Wang, X.G. Needleless electrospinning. I. A comparison of cylinder and disk nozzles. J. Appl. Polym. Sci. 2009, 114, 3524–3530. [Google Scholar] [CrossRef]
- Vadodaria, K.; Stylios, G. A study of bubble electrospinning of ethylcellulose ultrafine fibres. Polym. Polym. Compos. 2016, 24, 265–272. [Google Scholar]
- Chen, Y.J.; Dai, H.C.; Wang, W.; Qiang, W. Needleless electrospinning method based on tip effect of conductor. Chem. J. Chin. Univ.-Chin. 2017, 38, 975–981. [Google Scholar]
- King, L.B.; Meyer, E.; Hopkins, M.A.; Hawkett, B.S.; Jain, N. Self-assembling array of magnetoelectrostatic jets from the surface of a superparamagnetic ionic liquid. Langmuir 2014, 30, 14143–14150. [Google Scholar] [CrossRef] [PubMed]
- Yarin, A.L.; Zussman, E. Upward needleless electrospinning of multiple nanofibers. Polymer 2004, 45, 2977–2980. [Google Scholar] [CrossRef]
- Irajizad, P.; Farokhnia, N.; Ghasemi, H. Dispensing nano-pico droplets of ferrofluids. Appl. Phys. Lett. 2015, 107, 191601. [Google Scholar] [CrossRef]
- Timonen, J.V.I.; Latikka, M.; Leibler, L.; Ras, R.H.A.; Ikkala, O. Switchable static and dynamic self-assembly of magnetic droplets on superhydrophobic surfaces. Science 2013, 341, 253–257. [Google Scholar] [CrossRef] [PubMed]
- Kujawska, A.; Knozowska, K.; Kujawa, J.; Kujawski, W. Influence of downstream pressure on pervaporation properties of PDMS and POMS based membranes. Sep. Purif. Technol. 2016, 159, 68–80. [Google Scholar] [CrossRef]
- Rosensweig, R.E. Magnetic fluids. Ann. Rev. Fluid Mech. 1987, 19, 437–463. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, X.; Lv, M.; Chai, P.; Liu, Y.; Zhou, X.; Meng, J. Preparation of one-dimensional CoFe2O4 nanostructures and their magnetic properties. J. Phys. Chem. C 2008, 112, 15171–15175. [Google Scholar] [CrossRef]
- Ponhan, W.; Maensiri, S. Fabrication and magnetic properties of electrospun copper ferrite (CuFe2O4) nanofibers. Solid State Sci. 2009, 11, 479–484. [Google Scholar] [CrossRef]
- Lubambo, A.F.; Ono, L.; Drago, V.; Mattoso, N.; Varalda, J.; Sierakowski, M.R.; Sakakibara, C.N.; Freitas, R.A.; Saul, C.K. Tuning Fe3O4 nanoparticle dispersion through PH in PVA/guar gum/electrospun membranes. Carbohyr. Polymer. 2015, 134, 775–783. [Google Scholar] [CrossRef] [PubMed]
- Bayat, M.; Yang, H.; Ko, F. Electromagnetic properties of electrospun Fe3O4/carbon composite nanofibers. Polymer 2011, 52, 1645–1653. [Google Scholar] [CrossRef]
- Ho, C.H.; Tsai, C.P.; Chung, C.C.; Tsai, C.Y.; Chen, F.R.; Lin, H.J.; Lai, C.H. Shape-controlled growth and shape-dependent cation site occupancy of monodisperse Fe3O4 nanoparticles. Chem. Mater. 2011, 23, 1753–1760. [Google Scholar] [CrossRef]
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, W.; Liu, B.; Chen, Z.; Wang, H.; Ren, L.; Jiao, J.; Zhuang, L.; Luo, J.; Jiang, L. Fabrication of Magnetic Nanofibers by Needleless Electrospinning from a Self-Assembling Polymer Ferrofluid Cone Array. Nanomaterials 2017, 7, 277. https://doi.org/10.3390/nano7090277
Huang W, Liu B, Chen Z, Wang H, Ren L, Jiao J, Zhuang L, Luo J, Jiang L. Fabrication of Magnetic Nanofibers by Needleless Electrospinning from a Self-Assembling Polymer Ferrofluid Cone Array. Nanomaterials. 2017; 7(9):277. https://doi.org/10.3390/nano7090277
Chicago/Turabian StyleHuang, Weilong, Bin Liu, Zhipeng Chen, Hongjian Wang, Lei Ren, Jiaming Jiao, Lin Zhuang, Jie Luo, and Lelun Jiang. 2017. "Fabrication of Magnetic Nanofibers by Needleless Electrospinning from a Self-Assembling Polymer Ferrofluid Cone Array" Nanomaterials 7, no. 9: 277. https://doi.org/10.3390/nano7090277