Dietary Change Scenarios and Implications for Environmental, Nutrition, Human Health and Economic Dimensions of Food Sustainability
Abstract
:1. Introduction
2. Materials and Methods
2.1. Dietary Scenarios
2.2. Human Health Impact Assessment
2.3. Nutrition Quality Analysis
2.4. Environmental Impact Analysis
2.5. Economic Assessment
3. Results
3.1. Health Impact
3.2. Nutrition Quality
3.3. Environmental Impact
3.4. Economic Impact
3.5. Correlation Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- United Nations. Transforming our World: The 2030 Agenda for Sustainable Development; Report No. A/RES/70/1; United Nations: New York, NY, USA, 2015. [Google Scholar]
- Willett, W.; Rockström, J.; Loken, B.; Springmann, M.; Lang, T.; Vermeulen, S.; Garnett, T.; Tilman, D.; DeClerck, F.; Wood, A.; et al. Food in the Anthropocene: The EAT–Lancet Commission on healthy diets from sustainable food systems. Lancet 2019, 393, 447–492. [Google Scholar] [CrossRef]
- Foley, J.A.; Ramankutty, N.; Brauman, K.A.; Cassidy, E.S.; Gerber, J.S.; Johnston, M.; Mueller, N.D.; O’Connell, C.; Ray, D.K.; West, P.C.; et al. Solutions for a cultivated planet. Nature 2011, 478, 337–342. [Google Scholar] [CrossRef] [Green Version]
- Intergovernmental Panel on Climate Change (IPCC). Climate Change 2014: Synthesis Report. In Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Intergovernmental Panel on Climate Change (IPCC): Geneva, Switzerland, 2014. [Google Scholar]
- Tukker, A.; Huppes, G.; Guinée, J.; Heijungs, R.; de Koning, A.; van Oers, L.; Suh, S.; Geerken, T.; van Holderbeke, M.; Jansen, B.; et al. Environmental Impact of Products (EIPRO) Analysis of the Life Cycle Environmental Impacts Related to the Final Consumption of the EU25; Technical Report EUR 22284 EN; European Communities: Brussels, Belgium, 2006. [Google Scholar]
- Global Burden of Disease Collaborative Network. Global Burden of Disease Study 2016 (GBD 2016) Results. Available online: http://ghdx.healthdata.org/gbd-results-tool (accessed on 10 May 2018).
- Steffen, W.; Richardson, K.; Rockström, J.; Cornell, S.E.; Fetzer, I.; Bennett, E.M.; Biggs, R.; Carpenter, S.R.; de Vries, W.; de Wit, C.A.; et al. Planetary boundaries: Guiding human development on a changing planet. Science 2015, 347, 1259855. [Google Scholar] [CrossRef]
- Tilman, D.; Clark, M. Global diets link environmental sustainability and human health. Nature 2014, 515, 518–522. [Google Scholar] [CrossRef]
- Springmann, M.; Godfray, H.C.J.; Rayner, M.; Scarborough, P. Analysis and valuation of the health and climate change cobenefits of dietary change. Proc. Natl. Acad. Sci. USA 2016, 113, 4146–4151. [Google Scholar] [CrossRef] [Green Version]
- Perignon, M.; Vieux, F.; Soler, L.G.; Masset, G.; Darmon, N. Improving diet sustainability through evolution of food choices: Review of epidemiological studies on the environmental impact of diets. Nutr. Rev. 2017, 75, 2–17. [Google Scholar] [CrossRef]
- Blas, A.; Garrido, A.; Unver, O.; Willaarts, B. A comparison of the Mediterranean diet and current food consumption patterns in Spain from a nutritional and water perspective. Sci. Total Environ. 2019, 664, 1020–1029. [Google Scholar] [CrossRef] [PubMed]
- Capone, R.; El Bilali, H.; Debs, P.; Cardone, G.; Driouech, N. Mediterranean Food Consumption Patterns Sustainability: Setting Up a Common Ground for Future Research and Action. Am. J. Nutr. Food Sci. 2014, 1, 37–52. [Google Scholar] [CrossRef]
- Sáez-Almendros, S.; Obrador, B.; Bach-Faig, A.; Serra-Majem, L. Environmental footprints of Mediterranean versus Western dietary patterns: Beyond the health benefits of the Mediterranean diet. Environ. Heal. A Glob. Access Sci. Source 2013, 12, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Chaudhary, A.; Gustafson, D.; Mathys, A. Multi-indicator sustainability assessment of global food systems. Nat. Commun. 2018, 9, 848. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schüpbach, R.; Wegmüller, R.; Berguerand, C.; Bui, M.; Herter-Aeberli, I. Micronutrient status and intake in omnivores, vegetarians and vegans in Switzerland. Eur. J. Nutr. 2017, 56, 283–293. [Google Scholar] [CrossRef] [PubMed]
- Blas, A.; Garrido, A.; Willaarts, B. Food consumption and waste in Spanish households: Water implications within and beyond national borders. Ecol. Indic. 2018, 89, 290–300. [Google Scholar] [CrossRef]
- Pimentel, D.; Pimentel, M. Sustainability of meat-based and plant-based diets and the environment. Am. J. Clin. Nutr. 2003, 78, 660S–663S. [Google Scholar] [CrossRef] [PubMed]
- Vanham, D.; Comero, S.; Gawlik, B.M.; Bidoglio, G. The water footprint of different diets within European sub-national geographical entities. Nat. Sustain. 2018, 1, 518–525. [Google Scholar] [CrossRef]
- Jalava, M.; Kummu, M.; Porkka, M.; Siebert, S.; Varis, O. Diet change—A solution to reduce water use? Environ. Res. Lett. 2014, 9, 074016. [Google Scholar] [CrossRef]
- Springmann, M.; Clark, M.; Mason-D’Croz, D.; Wiebe, K.; Bodirsky, B.L.; Lassaletta, L.; de Vries, W.; Vermeulen, S.J.; Herrero, M.; Carlson, K.M.; et al. Options for keeping the food system within environmental limits. Nature 2018, 562, 519–525. [Google Scholar] [PubMed]
- Stylianou, K.S.; Heller, M.C.; Fulgoni, V.L.; Ernstoff, A.S.; Keoleian, G.A.; Jolliet, O. A life cycle assessment framework combining nutritional and environmental health impacts of diet: A case study on milk. Int. J. Life Cycle Assess. 2016, 21, 734–746. [Google Scholar] [CrossRef]
- Biesbroek, S.; Bas Bueno-De-Mesquita, H.; Peeters, P.H.M.; Monique Verschuren, W.M.; Van Der Schouw, Y.T.; Kramer, G.F.H.; Tyszler, M.; Temme, E.H.M. Reducing our environmental footprint and improving our health: Greenhouse gas emission and land use of usual diet and mortality in EPIC-NL: A prospective cohort study. Environ. Heal. A Glob. Access Sci. Source 2014, 13, 1–9. [Google Scholar] [CrossRef]
- Blackstone, N.T.; El-Abbadi, N.H.; McCabe, M.S.; Griffin, T.S.; Nelson, M.E. Linking sustainability to the healthy eating patterns of the Dietary Guidelines for Americans: A modelling study. Lancet Planet. Heal. 2018, 2, e344–e352. [Google Scholar] [CrossRef]
- Milner, J.; Green, R.; Dangour, A.D.; Haines, A.; Chalabi, Z.; Spadaro, J.; Markandya, A.; Wilkinson, P. Health effects of adopting low greenhouse gas emission diets in the UK. BMJ Open 2015, 5, e007364. [Google Scholar] [CrossRef]
- Milner, J.; Joy, E.J.M.; Green, R.; Harris, F.; Aleksandrowicz, L.; Agrawal, S.; Smith, P.; Haines, A.; Dangour, A.D. Projected health effects of realistic dietary changes to address freshwater constraints in India: A modelling study. Lancet Planet. Heal. 2017, 1, e26–e32. [Google Scholar] [CrossRef]
- Song, G.; Li, M.; Fullana-i-Palmer, P.; Williamson, D.; Wang, Y. Dietary changes to mitigate climate change and benefit public health in China. Sci. Total Environ. 2017, 577, 289–298. [Google Scholar] [CrossRef]
- Fulgoni, V.L.; Keast, D.R.; Drewnowski, A. Development and validation of the nutrient-rich foods index: A tool to measure nutritional quality of foods. J. Nutr. 2009, 139, 1549–1554. [Google Scholar] [CrossRef] [PubMed]
- Fern, E.B.; Watzke, H.; Barclay, D.V.; Roulin, A.; Drewnowski, A. The nutrient balance concept: A new quality metric for composite meals and diets. PLoS ONE 2015, 10, 1–18. [Google Scholar] [CrossRef]
- Springmann, M.; Wiebe, K.; Mason-D’Croz, D.; Sulser, T.B.; Rayner, M.; Scarborough, P. Health and nutritional aspects of sustainable diet strategies and their association with environmental impacts: A global modelling analysis with country-level detail. Lancet Planet. Heal. 2018, 2, e451–e461. [Google Scholar] [CrossRef]
- Poore, J.; Nemecek, T. Reducing food’s environmental impacts through producers and consumers. Science 2018, 360, 987–992. [Google Scholar] [CrossRef]
- Johnston, J.L.; Fanzo, J.C.; Cogill, B. Understanding sustainable diets: A descriptive analysis of the determinants and processes that influence diets and their impact on health, food security and environmental sustainability. Adv. Nutr. 2014, 5, 418–429. [Google Scholar] [CrossRef] [PubMed]
- Derbyshire, E.J. Flexitarian diets and health: A review of the evidence-based literature. Front. Nutr. 2017, 3, 55. [Google Scholar] [CrossRef] [PubMed]
- Food and Agriculture Organization of the United Nations. Statistical Databases. Available online: http://www.fao.org/faostat/en/#home (accessed on 21 March 2018).
- World Health Organization Diet. Nutrition and the Prevention of Chronic Diseases: Report of a Joint WHO/FAO Expert Consultation; World Health Organization: Geneva, Switzerland, 2003; Volume 916. [Google Scholar]
- Springmann, M.; Sacks, G.; Ananthapavan, J.; Scarborough, P. Carbon pricing of food in Australia: An analysis of the health, environmental and public finance impacts. Aust. N. Z. J. Public Health 2018, 42, 523–529. [Google Scholar] [CrossRef] [PubMed]
- Tiffin, R.; Balcombe, K.; Salois, M.; Kehlbacher, A. Estimating Food and Drink Elasticities. Available online: https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/137726/defra-stats-foodfarm-food-price-elasticities-120208.pdf (accessed on 30 January 2019).
- Nghiem, N.; Wilson, N.; Genç, M.; Blakely, T. Understanding price elasticities to inform public health research and intervention studies: Key issues. Am. J. Public Health 2013, 103, 1954–1961. [Google Scholar] [CrossRef]
- Eggenberger, S.; Jungbluth, N.; Keller, R. Environmental impacts of scenarios for food provision in Switzerland. In Proceedings of the The 10th International Conference on Life Cycle Assessment of Food (LCA Food), Dublin, Ireland, 19–21 October 2016. [Google Scholar]
- Walter, P.; Baerlocher, K. Vegetarismus in der Schweiz. Fünfter Schweizerischer Ernährungsbericht. Available online: https://www.blv.admin.ch/dam/blv/de/dokumente/.../5.../5.SEB%20(2005).pdf (accessed on 30 January 2019).
- Federal Statistical Office (FSO). Food and Agriculture Pocket Statistics; Federal Statistical Office (FSO): Neuchâtel, Switzerland, 2017. [Google Scholar]
- Aune, D.; Keum, N.N.; Giovannucci, E.; Fadnes, L.T.; Boffetta, P.; Greenwood, D.C.; Tonstad, S.; Vatten, L.J.; Riboli, E.; Norat, T. Nut consumption and risk of cardiovascular disease, total cancer, all-cause and cause-specific mortality: A systematic review and dose-response meta-analysis of prospective studies. BMC Med. 2016, 14, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Murray, C.J.L.; Ezzati, M.; Flaxman, A.D.; Lim, S.; Lozano, R.; Michaud, C.; Naghavi, M.; Salomon, J.A.; Shibuya, K.; Vos, T.; et al. GBD 2010: Design, definitions and metrics. Lancet 2012, 380, 2063–2066. [Google Scholar] [CrossRef]
- Springmann, M.; Mason-D’Croz, D.; Robinson, S.; Wiebe, K.; Godfray, H.C.J.; Rayner, M.; Scarborough, P. Mitigation potential and global health impacts from food emission pricing. Nat. Clim. Chang. 2017, 7, 69–74. [Google Scholar] [CrossRef]
- Springmann, M.; Mason-D’Croz, D.; Robinson, S.; Garnett, T.; Godfray, H.C.J.; Gollin, D.; Rayner, M.; Ballon, P.; Scarborough, P. Global and regional health effects of future food production under climate change: A modelling study. Lancet 2016, 387, 1937–1946. [Google Scholar] [CrossRef]
- Gustafson, D.; Gutman, A.; Leet, W.; Drewnowski, A.; Fanzo, J.; Ingram, J.; Gustafson, D.; Gutman, A.; Leet, W.; Drewnowski, A.; et al. Seven Food System Metrics of Sustainable Nutrition Security. Sustainability 2016, 8, 196. [Google Scholar] [CrossRef]
- Chaudhary, A.; Marinangeli, C.P.F.; Tremorin, D.; Mathys, A. Nutritional combined greenhouse gas life cycle analysis for incorporating canadian yellow pea into cereal-based food products. Nutrients 2018, 10, 490. [Google Scholar] [CrossRef] [PubMed]
- Food and Drug Administration (FDA). Guidance for Industry: A Food Labeling Guide. Appendix F: Calculate the Percent Daily Value for the Appropriate Nutrients. Available online: https://www.fda.gov/Food/GuidanceRegulation/GuidanceDocumentsRegulatoryInformation/LabelingNutrition/ucm2006828.htm (accessed on 1 December 2017).
- United States Department of Agriculture (USDA). National Nutrient Database for Standard References. Release 28. Available online: http://ndb.nal.usda.gov/ndb/search/list (accessed on 20 March 2018).
- Carriquiry, A.L. Assessing the prevalence of nutrient inadequacy. Public Health Nutr. 1999, 2, 23–33. [Google Scholar] [CrossRef] [PubMed]
- Arsenault, J.E.; Hijmans, R.J.; Brown, K.H. Improving nutrition security through agriculture: An analytical framework based on national food balance sheets to estimate nutritional adequacy of food supplies. Food Secur. 2015, 7, 693–707. [Google Scholar] [CrossRef]
- Kumssa, D.B.; Joy, E.J.M.; Ander, E.L.; Watts, M.J.; Young, S.D.; Walker, S.; Broadley, M.R. Dietary calcium and zinc deficiency risks are decreasing but remain prevalent. Sci. Rep. 2015, 5, 10974. [Google Scholar] [CrossRef] [Green Version]
- Vitamin and Mineral Requirements in Human Nutrition: Report of a Joint FAO/WHO Expert Consultation; World Health Organization and Food and Agriculture Organization: Bangkok, Thailand, 2004.
- United Nations Department of Economic and Social Affairs. World Population Prospects: The 2017 Revision. Available online: https://population.un.org/wpp (accessed on 15 January 2018).
- Tubiello, F.N.; Salvatore, M.; Rossi, S.; Ferrara, A.; Fitton, N.; Smith, P. The FAOSTAT database of greenhouse gas emissions from agriculture. Environ. Res. Lett. 2013, 8, 015009. [Google Scholar] [CrossRef] [Green Version]
- Carlson, K.M.; Gerber, J.S.; Mueller, N.D.; Herrero, M.; MacDonald, G.K.; Brauman, K.A.; Havlik, P.; O’Connell, C.S.; Johnson, J.A.; Saatchi, S.; et al. Greenhouse gas emissions intensity of global croplands. Nat. Clim. Chang. 2017, 7, 63–68. [Google Scholar] [CrossRef]
- Troell, M.; Naylor, R.L.; Metian, M.; Beveridge, M.; Tyedmers, P.H.; Folke, C.; Arrow, K.J.; Barrett, S.; Crépin, A.-S.; Ehrlich, P.R.; et al. Does aquaculture add resilience to the global food system? Proc. Natl. Acad. Sci. USA 2014, 111, 13257–13263. [Google Scholar] [CrossRef] [Green Version]
- Chan, C.Y.; Tran, N.; Chi Dao, D.; Sulser, T.B.; John Phillips, M.; Batka, M.; Wiebe, K.; Preston, N. Fish to 2015 in the ASEAN Region. Available online: http://pubs.iclarm.net/resource_centre/2017-01.pdf (accessed on 30 January 2019).
- Rosegrant, C.; Sulser, T.B.; Mason-D’croz, D.; Cenacchi, N.; Nin-Pratt, A.; Dunston, S.; Zhu, T.; Ringler, C.; Wiebe, K.; Robinson, S.; et al. Quantitative Foresight Modeling to inform the CGIAR Research Portfolio.; International Food Policy Research Institute: Washington, DC, USA, 2017. [Google Scholar]
- Robinson, S.; Mason-D’Croz, D.; Sulser, T.; Islam, S.; Robertson, R.; Zhu, T.; Gueneau, A.; Pitois, G.; Rosegrant, M.W. The International Model for Policy Analysis of Agricultural Commodities and Trade (IMPACT): Model Description for Version 3; International Food Policy Research Institute (IFPRI): Washington, DC, USA, 2015. [Google Scholar]
- Heffer, P. Assessment of Fertilizer Use by Crop at the Global Level 2010-2010/11. Available online: https://www.fertilizer.org/images/Library_Downloads/AgCom.13.39%20-%20FUBC%20assessment%202010.pdf (accessed on 30 January 2019).
- The Ecoinvent and the SALCA Database. Available online: https://www.ecoinvent.org/search.html?q=salca (accessed on 3 April 2019).
- Watanabe, F.; Yabuta, Y.; Bito, T.; Teng, F.; Watanabe, F.; Yabuta, Y.; Bito, T.; Teng, F. Vitamin B12-Containing Plant Food Sources for Vegetarians. Nutrients 2014, 6, 1861–1873. [Google Scholar] [CrossRef] [Green Version]
- Hunt, J.R. Bioavailability of iron, zinc and other trace minerals from vegetarian diets. Am. J. Clin. Nutr. 2003, 78, 633S–639S. [Google Scholar] [CrossRef]
- Chaudhary, A.; Brooks, T.M. Land use intensity-specific global characterization factors to assess product biodiversity footprints. Environ. Sci. Technol. 2018, 52, 5094–5104. [Google Scholar] [CrossRef]
- Chaudhary, A.; Kastner, T. Land use biodiversity impacts embodied in international food trade. Glob. Environ. Chang. 2016, 38, 195–204. [Google Scholar] [CrossRef]
- Chaudhary, A.; Carrasco, L.R.; Kastner, T. Linking national wood consumption with global biodiversity and ecosystem service losses. Sci. Total Environ. 2017, 586, 985–994. [Google Scholar] [CrossRef]
- Chaudhary, A.; Brooks, T.M. National consumption and global trade impacts on biodiversity. World Dev. 2017. [Google Scholar] [CrossRef]
- Chaudhary, A.; Pourfaraj, V.; Mooers, A.O. Projecting global land use-driven evolutionary history loss. Divers. Distrib. 2018, 24, 158–167. [Google Scholar] [CrossRef]
- Chaudhary, A.; Mooers, A.O. Terrestrial Vertebrate Biodiversity Loss under Future Global Land Use Change Scenarios. Sustainability 2018, 10, 2764. [Google Scholar] [CrossRef]
- Aune, D.; Norat, T. Dairy products and the risk of type 2 diabetes: A systematic review. Am. J. Clin. Nutr. 2013, 98, 1066–1083. [Google Scholar] [CrossRef]
- Aune, D.; Norat, T.; Romundstad, P.; Vatten, L.J. Whole grain and refined grain consumption and the risk of type 2 diabetes: A systematic review and dose-response meta-analysis of cohort studies. Eur. J. Epidemiol. 2013, 28, 845–858. [Google Scholar] [CrossRef] [PubMed]
- Forouzanfar, M.H.; Afshin, A.; Alexander, L.T.; Anderson, H.R.; Bhutta, Z.A.; Biryukov, S.; Brauer, M.; Burnett, R.; Cercy, K.; Charlson, F.J.; et al. Global, regional and national comparative risk assessment of 79 behavioural, environmental and occupational and metabolic risks or clusters of risks, 1990–2015: A systematic analysis for the Global Burden of Disease Study 2015. Lancet 2016, 388, 1659–1724. [Google Scholar] [CrossRef]
- Wu, S.; Ding, Y.; Wu, F.; Li, R.; Hou, J.; Mao, P. Omega-3 fatty acids intake and risks of dementia and Alzheimer’s disease: A meta-analysis. Neurosci. Biobehav. Rev. 2015, 48, 1–9. [Google Scholar] [CrossRef]
- Aune, D.; Keum, N.; Giovannucci, E.; Fadnes, L.T.; Boffetta, P.; Greenwood, D.C.; Tonstad, S.; Vatten, L.J.; Riboli, E.; Norat, T. Whole grain consumption and risk of cardiovascular disease, cancer and all cause and cause specific mortality: Systematic review and dose-response meta-analysis of prospective studies. BMJ 2016, 353, i2716. [Google Scholar] [CrossRef] [PubMed]
- Reynolds, A.; Mann, J.; Cummings, J.; Winter, N.; Mete, E.; Te Morenga, L. Carbohydrate quality and human health: A series of systematic reviews and meta-analyses. Lancet 2019, 393, 434–445. [Google Scholar] [CrossRef]
- Ioannidis, J.P.A. The Challenge of Reforming Nutritional Epidemiologic Research. JAMA 2018, 320, 969–970. [Google Scholar] [CrossRef] [PubMed]
Food Items/Scenarios | REF | HGD | RSN | VGN | VGT | PST | FXT | PTO | MTO | TAX |
---|---|---|---|---|---|---|---|---|---|---|
Fruits | 265 | 211 | 325 | 330 | 330 | 330 | 295 | 130 | 130 | 269 |
Vegetables | 239 | 190 | 291 | 445 | 296 | 296 | 268 | 119 | 119 | 243 |
Legumes | 5 | 5 | 26 | 84 | 23 | 23 | 16 | 5 | 0 | 5 |
Nuts and seeds | 24 | 18 | 50 | 73 | 73 | 62 | 46 | 24 | 13 | 24 |
Cereals | 192 | 200 | 124 | 192 | 192 | 192 | 192 | 192 | 192 | 189 |
Meat products | 129 | 63 | 33 | 0 | 0 | 0 | 41 | 201 | 268 | 127 |
Fish & seafood | 15 | 11 | 6 | 0 | 0 | 27 | 8 | 15 | 15 | 15 |
Eggs | 25 | 19 | 18 | 0 | 31 | 31 | 23 | 65 | 39 | 25 |
Dairy products | 307 | 225 | 330 | 0 | 307 | 307 | 307 | 433 | 307 | 295 |
Vegetable oils | 71 | 52 | 26 | 71 | 71 | 71 | 71 | 71 | 71 | 71 |
Roots & tubers | 230 | 150 | 149 | 230 | 230 | 230 | 230 | 230 | 230 | 233 |
Others | 298 | 223 | 109 | 295 | 299 | 299 | 298 | 304 | 300 | 298 |
Scenario | Human Health | Nutritional | Environmental | Economic | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Reduced DALYs * | NBS | DNS | PAN | GHG | WFP | LFP | NFP | PFP | Cost | |
REF | - | 93.82 | 0.00 | 96 | 2.27 | 0.59 | 4.38 | 29.0 | 5.23 | 10.58 |
HGD | 953 | 95.93 | 1.35 | 87 | 1.20 | 0.40 | 3.24 | 21.0 | 3.75 | 7.23 |
RSN | 15,756 | 98.77 | 0.00 | 91 | 1.04 | 0.44 | 2.96 | 19.3 | 3.45 | 6.89 |
VGN | 20,986 | 88.08 | 15.41 | 87 | 0.38 | 0.60 | 4.08 | 23.6 | 4.33 | 9.04 |
VGT | 8049 | 91.37 | 0.00 | 94 | 0.78 | 0.61 | 4.27 | 25.7 | 4.61 | 8.38 |
PST | 10,679 | 92.68 | 0.00 | 95 | 0.78 | 0.61 | 4.21 | 25.7 | 4.62 | 9.21 |
FXT | 5259 | 93.09 | 0.00 | 94 | 1.24 | 0.59 | 4.16 | 26.0 | 4.69 | 8.85 |
PTO | −23,699 | 88.76 | 0.00 | 95 | 3.33 | 0.60 | 5.04 | 32.5 | 5.93 | 11.76 |
MTO | −24,788 | 88.56 | 0.00 | 92 | 3.92 | 0.58 | 4.94 | 33.0 | 5.98 | 12.67 |
TAX | 706 | 93.82 | 0.00 | 96 | 2.20 | 0.59 | 4.37 | 29.0 | 5.22 | 10.56 |
Nutrients/Scenarios | REF | HGD | RSN | VGN | VGT | PST | FXT | PTO | MTO | TAX |
---|---|---|---|---|---|---|---|---|---|---|
Qualifying nutrients | ||||||||||
Folate | 1.3 | 1.5 | 1.6 | 1.6 | 1.5 | 1.5 | 1.4 | 1.0 | 1.0 | 1.3 |
Niacin | 1.6 | 1.6 | 1.6 | 1.6 | 1.4 | 1.5 | 1.6 | 1.6 | 1.6 | 1.6 |
Pantothenic acid | 1.6 | 1.6 | 1.6 | 1.4 | 1.4 | 1.4 | 1.5 | 1.6 | 1.6 | 1.5 |
Vitamin B2 | 1.6 | 1.6 | 1.6 | 1.1 | 1.3 | 1.4 | 1.4 | 1.6 | 1.6 | 1.5 |
Thiamin | 1.6 | 1.6 | 1.6 | 1.6 | 1.6 | 1.6 | 1.6 | 1.6 | 1.6 | 1.6 |
Vitamin A | 1.6 | 1.6 | 1.6 | 1.6 | 1.6 | 1.6 | 1.6 | 1.6 | 1.6 | 1.6 |
Vitamin B12 | 1.6 | 1.6 | 1.6 | 0.1 | 0.8 | 1.1 | 1.3 | 1.6 | 1.6 | 1.6 |
Vitamin B6 | 1.6 | 1.6 | 1.6 | 1.6 | 1.6 | 1.6 | 1.6 | 1.6 | 1.6 | 1.6 |
Vitamin C | 1.2 | 1.4 | 1.6 | 1.6 | 1.5 | 1.5 | 1.4 | 0.7 | 0.7 | 1.3 |
Vitamin E | 1.6 | 1.6 | 1.6 | 1.6 | 1.6 | 1.6 | 1.6 | 1.6 | 1.6 | 1.6 |
Vitamin K | 1.6 | 1.6 | 1.6 | 1.6 | 1.6 | 1.6 | 1.6 | 1.0 | 1.0 | 1.6 |
Calcium | 1.0 | 1.0 | 1.4 | 0.7 | 1.0 | 1.0 | 1.0 | 1.0 | 0.9 | 1.0 |
Copper | 1.6 | 1.6 | 1.6 | 1.6 | 1.6 | 1.6 | 1.6 | 1.6 | 1.6 | 1.6 |
Iron | 1.5 | 1.6 | 1.6 | 1.6 | 1.6 | 1.6 | 1.6 | 1.4 | 1.5 | 1.6 |
Magnesium | 1.6 | 1.6 | 1.6 | 1.6 | 1.6 | 1.6 | 1.6 | 1.4 | 1.4 | 1.6 |
Phosphorus | 1.6 | 1.6 | 1.6 | 1.6 | 1.6 | 1.6 | 1.6 | 1.6 | 1.6 | 1.6 |
Potassium | 1.1 | 1.2 | 1.5 | 1.4 | 1.2 | 1.2 | 1.2 | 0.9 | 1.0 | 1.1 |
Selenium | 1.6 | 1.6 | 1.6 | 1.6 | 1.6 | 1.6 | 1.6 | 1.6 | 1.6 | 1.6 |
Zinc | 1.6 | 1.6 | 1.6 | 1.6 | 1.6 | 1.6 | 1.6 | 1.6 | 1.6 | 1.6 |
Polyunsaturated fats | 1.6 | 1.6 | 1.6 | 1.6 | 1.6 | 1.6 | 1.6 | 1.6 | 1.6 | 1.6 |
Choline | 1.2 | 1.2 | 1.3 | 0.6 | 1.0 | 1.1 | 1.1 | 1.6 | 1.5 | 1.2 |
Dietary fibre | 1.3 | 1.6 | 1.6 | 1.6 | 1.6 | 1.5 | 1.5 | 0.9 | 1.0 | 1.3 |
Protein | 1.6 | 1.6 | 1.6 | 1.4 | 1.3 | 1.4 | 1.5 | 1.6 | 1.6 | 1.6 |
Disqualifying nutrients | ||||||||||
Total fats | 1.4 | 1.4 | 1.4 | 1.4 | 1.5 | 1.4 | 1.4 | 1.5 | 1.4 | 1.4 |
Saturated fats | 2.2 | 2.2 | 2.2 | 1.6 | 2.1 | 2.1 | 2.2 | 2.4 | 2.3 | 2.2 |
Cholesterol | 1.3 | 1.1 | 1.1 | 0.2 | 0.9 | 1.0 | 1.0 | 2.0 | 1.8 | 1.2 |
Total sugars | 2.0 | 1.5 | 2.3 | 2.2 | 2.0 | 2.0 | 2.0 | 1.6 | 1.6 | 2.0 |
Dietary Scenario | GHG Emission (gCO2eq) | Cropland Use (m2) | Freshwater Use (litres) | Nitrogen Use (gN) | Phosphorus Use (gP) |
---|---|---|---|---|---|
REF | 2267 | 4.38 | 590 | 29.03 | 5.23 |
HGD | 1202 | 3.24 | 400 | 21.00 | 3.75 |
RSN | 1036 | 2.96 | 436 | 19.31 | 3.45 |
VGN | 377 | 4.08 | 604 | 23.56 | 4.33 |
VGT | 783 | 4.27 | 611 | 25.67 | 4.61 |
PST | 779 | 4.21 | 608 | 25.70 | 4.62 |
FXT | 1238 | 4.16 | 590 | 26.03 | 4.69 |
PTO | 3326 | 5.04 | 596 | 32.46 | 5.93 |
MTO | 3923 | 4.94 | 583 | 33.00 | 5.98 |
TAX | 2196 | 4.37 | 591 | 28.99 | 5.22 |
DALYs | Average ND | NBS | DNS | PAN | GHG | WFP | LFP | NFP | PFP | Cost | |
---|---|---|---|---|---|---|---|---|---|---|---|
DALYs | - | ||||||||||
Average ND | 0.70 | - | |||||||||
NBS | 0.10 | 0.40 | - | ||||||||
DNS | 0.37 | 0.64 | −0.18 | - | |||||||
PAN | −0.38 | −0.51 | 0.03 | −0.73 | - | ||||||
GHG | −0.93 | −0.58 | 0.03 | −0.46 | 0.35 | - | |||||
WFP | 0.27 | −0.31 | −0.54 | −0.20 | 0.49 | −0.43 | - | ||||
LFP | −0.73 | −0.83 | −0.53 | −0.50 | 0.68 | 0.61 | 0.41 | - | |||
NFP | −0.79 | −0.79 | −0.49 | −0.50 | 0.61 | 0.75 | 0.21 | 0.93 | - | ||
PFP | −0.78 | −0.78 | −0.48 | −0.50 | 0.62 | 0.74 | 0.21 | 0.92 | 0.996 | - | |
Cost | −0.63 | −0.63 | −0.63 | −0.27 | 0.52 | 0.58 | 0.28 | 0.87 | 0.90 | 0.92 | - |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, C.; Chaudhary, A.; Mathys, A. Dietary Change Scenarios and Implications for Environmental, Nutrition, Human Health and Economic Dimensions of Food Sustainability. Nutrients 2019, 11, 856. https://doi.org/10.3390/nu11040856
Chen C, Chaudhary A, Mathys A. Dietary Change Scenarios and Implications for Environmental, Nutrition, Human Health and Economic Dimensions of Food Sustainability. Nutrients. 2019; 11(4):856. https://doi.org/10.3390/nu11040856
Chicago/Turabian StyleChen, Canxi, Abhishek Chaudhary, and Alexander Mathys. 2019. "Dietary Change Scenarios and Implications for Environmental, Nutrition, Human Health and Economic Dimensions of Food Sustainability" Nutrients 11, no. 4: 856. https://doi.org/10.3390/nu11040856