Iron Status and Cancer Risk in UK Biobank: A Two-Sample Mendelian Randomization Study
Abstract
:1. Introduction
2. Methods
2.1. Study Design Overview
2.2. Instrumental Variable Selection
2.3. Outcome Data Sources
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Fracanzani, A.L.; Conte, D.; Fraquelli, M.; Taioli, E.; Mattioli, M.; Losco, A.; Fargion, S. Increased cancer risk in a cohort of 230 patients with hereditary hemochromatosis in comparison to matched control patients with non-iron-related chronic liver disease. Hepatology 2001, 33, 647–651. [Google Scholar] [CrossRef] [PubMed]
- Elmberg, M.; Hultcrantz, R.; Ekbom, A.; Brandt, L.; Olsson, S.; Olsson, R.; Lindgren, S.; Lööf, L.; Stål, P.; Wallerstedt, S.; et al. Cancer risk in patients with hereditary hemochromatosis and in their first-degree relatives. Gastroenterology 2003, 125, 1733–1741. [Google Scholar] [CrossRef] [PubMed]
- Torti, S.V.; Torti, F.M. Iron and cancer: More ore to be mined. Nat. Rev. Cancer 2013, 13, 342–355. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zacharski, L.R.; Chow, B.K.; Howes, P.S.; Shamayeva, G.; Baron, J.A.; Dalman, R.L.; Malenka, D.J.; Ozaki, C.K.; Lavori, P.W. Decreased cancer risk after iron reduction in patients with peripheral arterial disease: Results from a randomized trial. J. Natl. Cancer Inst. 2008, 100, 996–1002. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Osborne, N.J.; Gurrin, L.C.; Allen, K.J.; Constantine, C.C.; Delatycki, M.B.; McLaren, C.E.; Gertig, D.M.; Anderson, G.J.; Southey, M.C.; Olynyk, J.K.; et al. HFE C282Y homozygotes are at increased risk of breast and colorectal cancer. Hepatology 2010, 51, 1311–1318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fargion, S.; Valenti, L.; Fracanzani, A.L. Hemochromatosis gene (HFE) mutations and cancer risk: Expanding the clinical manifestations of hereditary iron overload. Hepatology 2010, 51, 1119–1121. [Google Scholar] [CrossRef]
- Corley, D.A.; Kubo, A.; Levin, T.R.; Habel, L.; Zhao, W.; Leighton, P.; Rumore, G.; Quesenberry, C.; Buffler, P.; Block, G. Iron intake and body iron stores as risk factors for Barrett’s esophagus: A community-based study. Am. J. Gastroenterol. 2008, 103, 2997–3004. [Google Scholar] [CrossRef] [Green Version]
- Fonseca-Nunes, A.; Jakszyn, P.; Agudo, A. Iron and cancer risk—A systematic review and meta-analysis of the epidemiological evidence. Cancer Epidemiol. Biomark. Prev. 2014, 23, 12–31. [Google Scholar] [CrossRef] [Green Version]
- Tran, K.T.; Coleman, H.G.; McCain, R.S.; Cardwell, C.R. Serum Biomarkers of Iron Status and Risk of Primary Liver Cancer: A Systematic Review and Meta-Analysis. Nutr. Cancer 2019, 71, 1365–1373. [Google Scholar] [CrossRef]
- Chang, V.C.; Cotterchio, M.; Khoo, E. Iron intake; body iron status; and risk of breast cancer: A systematic review and meta-analysis. BMC Cancer 2019, 19, 543. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.F.; Wu, L.X.; Li, X.F.; Zhu, Y.C.; Wang, W.X.; Xu, C.W.; Xie, D.F.; Huang, J.H.; Du, K.Q. A meta-analysis of association between serum iron levels and lung cancer risk. Cell Mol. Biol. 2018, 64, 33–37. [Google Scholar] [CrossRef]
- Smith, G.D.; Ebrahim, S. ‘Mendelian randomization’: Can genetic epidemiology contribute to understanding environmental determinants of disease? Int. J. Epidemiol. 2003, 32, 1–22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benyamin, B.; Esko, T.; Ried, J.S.; Radhakrishnan, A.; Vermeulen, S.H.; Traglia, M.; Anderson, D.; Broer, L.; Podmore, C.; Luan, J.; et al. Novel loci affecting iron homeostasis and their effects in individuals at risk for hemochromatosis. Nat. Commun. 2014, 5, 4926. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gill, D.; Del Greco, M.F.; Walker, A.P.; Srai, S.K.S.; Laffan, M.A.; Minelli, C. The Effect of Iron Status on Risk of Coronary Artery Disease: A Mendelian Randomization Study-Brief Report. Arterioscler. Thromb. Vasc. Biol. 2017, 37, 1788–1792. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gill, D.; Monori, G.; Tzoulaki, I.; Dehghan, A. Iron Status and Risk of Stroke. Stroke 2018, 49, 2815–2821. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gill, D.; Brewer, C.F.; Monori, G.; Tregouet, D.A.; Franceschini, N.; Giambartolomei, C.; INVENT, C.; Tzoulaki, I.; Dehghan, A. Effects of Genetically Determined Iron Status on Risk of Venous Thromboembolism and Carotid Atherosclerotic Disease: A Mendelian Randomization Study. J. Am. Heart Assoc. 2019, 8, e012994. [Google Scholar] [CrossRef] [Green Version]
- Michailidou, K.; Lindstrom, S.; Dennis, J.; Beesley, J.; Hui, S.; Kar, S.; Lemaçon, A.; Soucy, P.; Glubb, D.; Rostamianfar, A.; et al. Association analysis identifies 65 new breast cancer risk loci. Nature 2017, 551, 92–94. [Google Scholar] [CrossRef] [Green Version]
- Sudlow, C.; Gallacher, J.; Allen, N.; Beral, V.; Burton, P.; Danesh, J.; Downey, P.; Elliott, P.; Green, J.; Landray, M.; et al. UK biobank: An open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med. 2015, 12, e1001779. [Google Scholar] [CrossRef] [Green Version]
- Bowden, J.; Davey Smith, G.; Haycock, P.C.; Burgess, S. Consistent Estimation in Mendelian Randomization with Some Invalid Instruments Using a Weighted Median Estimator. Genet. Epidemiol. 2016, 40, 304–314. [Google Scholar] [CrossRef] [Green Version]
- Burgess, S.; Thompson, S.G. Interpreting findings from Mendelian randomization using the MR-Egger method. Eur. J. Epidemiol. 2017, 32, 377–389. [Google Scholar] [CrossRef] [Green Version]
- Burgess, S. Sample size and power calculations in Mendelian randomization with a single instrumental variable and a binary outcome. Int. J. Epidemiol. 2014, 43, 922–929. [Google Scholar] [CrossRef] [PubMed]
- Kamat, M.A.; Blackshaw, J.A.; Young, R.; Surendran, P.; Burgess, S.; Danesh, J.; Butterworth, A.S.; Staley, J.R. PhenoScanner V2: An expanded tool for searching human genotype-phenotype associations. Bioinformatics 2019, 35, 4851–4853. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sterne, J.A.; Davey Smith, G. Sifting the evidence-what’s wrong with significance tests? Phys. Ther. 2001, 322, 226–231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ellervik, C.; Tybjaerg-Hansen, A.; Nordestgaard, B.G. Risk of cancer by transferrin saturation levels and haemochromatosis genotype: Population-based study and meta-analysis. J. Intern. Med. 2012, 271, 51–63. [Google Scholar] [CrossRef]
- Nahon, P.; Sutton, A.; Rufat, P.; Ziol, M.; Thabut, G.; Schischmanoff, P.O.; Vidaud, D.; Charnaux, N.; Couvert, P.; Ganne-Carrie, N.; et al. Liver iron; HFE gene mutations; and hepatocellular carcinoma occurrence in patients with cirrhosis. Gastroenterology 2008, 134, 102–110. [Google Scholar] [CrossRef] [Green Version]
- Kowdley, K.V. Iron; hemochromatosis; and hepatocellular carcinoma. Gastroenterology 2004, 127, S79–S86. [Google Scholar] [CrossRef]
- Ye, Q.; Qian, B.X.; Yin, W.L.; Wang, F.M.; Han, T. Association between the HFE C282Y; H63D Polymorphisms and the Risks of Non-Alcoholic Fatty Liver Disease; Liver Cirrhosis and Hepatocellular Carcinoma: An Updated Systematic Review and Meta-Analysis of 5 758 Cases and 14 741 Controls. PLoS ONE 2016, 11, e0163423. [Google Scholar] [CrossRef] [Green Version]
- Hemochromatosis—SNPedia. Available online: https://www.snpedia.com/index.php/Hemochromatosis (accessed on 1 November 2019).
- Valenti, L.; Fracanzani, A.L.; Bugianesi, E.; Dongiovanni, P.; Galmozzi, E.; Vanni, E.; Canavesi, E.; Lattuada, E.; Roviaro, G.; Marchesini, G.; et al. HFE genotype; parenchymal iron accumulation; and liver fibrosis in patients with nonalcoholic fatty liver disease. Gastroenterology 2010, 138, 905–912. [Google Scholar] [CrossRef] [Green Version]
- Grochowski, C.; Blicharska, E.; Baj, J.; Mierzwińska, A.; Brzozowska, K.; Forma, A.; Maciejewski, R. Serum iron, Magnesium, Copper, and Manganese Levels in Alcoholism: A Systematic Review. Molecules 2019, 24, 1361. [Google Scholar] [CrossRef] [Green Version]
- Turati, F.; Galeone, C.; Rota, M.; Pelucchi, C.; Negri, E.; Bagnardi, V.; Corrao, G.; Boffetta, P.; La Vecchia, C. Alcohol and liver cancer: A systematic review and meta-analysis of prospective studies. Ann. Oncol. 2014, 25, 1526–1535. [Google Scholar] [CrossRef]
- Kato, J.; Kobune, M.; Kohgo, Y.; Sugawara, N.; Hisai, H.; Nakamura, T.; Sakamaki, S.; Sawada, N.; Niitsu, Y. Hepatic iron deprivation prevents spontaneous development of fulminant hepatitis and liver cancer in Long-Evans Cinnamon rats. J. Clin. Investig. 1996, 98, 923–929. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Turlin, B.; Juguet, F.; Moirand, R.; Le Quilleuc, D.; Loreal, O.; Campion, J.P.; Launois, B.; Ramée, M.P.; Brissot, P.; Deugnier, Y. Increased liver iron stores in patients with hepatocellular carcinoma developed on a noncirrhotic liver. Hepatology 1995, 22, 446–450. [Google Scholar] [PubMed]
- Sorrentino, P.; D’Angelo, S.; Ferbo, U.; Micheli, P.; Bracigliano, A.; Vecchione, R. Liver iron excess in patients with hepatocellular carcinoma developed on non-alcoholic steato-hepatitis. J. Hepatol. 2009, 50, 351–357. [Google Scholar] [CrossRef] [PubMed]
- Deugnier, Y.; Turlin, B. Iron and hepatocellular carcinoma. J. Gastroenterol. Hepatol. 2011, 16, 491–494. [Google Scholar] [CrossRef]
- Kew, M.C. Hepatic iron overload and hepatocellular carcinoma. Cancer Lett. 2009, 286, 38–43. [Google Scholar] [CrossRef] [Green Version]
- Dayani, P.N.; Bishop, M.C.; Black, K.; Zeltzer, P.M. Desferoxamine (DFO)—Mediated iron chelation: Rationale for a novel approach to therapy for brain cancer. J. Neurooncol. 2004, 67, 367–377. [Google Scholar] [CrossRef]
- Hanninen, M.M.; Haapasalo, J.; Haapasalo, H.; Fleming, R.E.; Britton, R.S.; Bacon, B.R.; Parkkila, S. Expression of iron-related genes in human brain and brain tumors. BMC Neurosci. 2009, 10, 36. [Google Scholar] [CrossRef] [Green Version]
- Sandstead, H.H. Causes of iron and zinc deficiencies and their effects on brain. J. Nutr. 2000, 130, 347S–349S. [Google Scholar] [CrossRef]
- Georgieff, M.K. Long-term brain and behavioral consequences of early iron deficiency. Nutr. Rev. 2011, 69, S43–S48. [Google Scholar] [CrossRef] [Green Version]
- Reference, G.H. TMPRSS6 Gene. Available online: https://www.ncbi.nlm.nih.gov/pubmed/ (accessed on 5 November 2019).
- Moos, T. Brain iron homeostasis. Dan. Med. Bull. 2002, 49, 279–301. [Google Scholar]
- Wang, Q.; Luo, W.; Zheng, W.; Liu, Y.; Xu, H.; Zheng, G.; Dai, Z.; Zhang, W.; Chen, Y.; Chen, J. Iron supplement prevents lead-induced disruption of the blood-brain barrier during rat development. Toxicol. Appl. Pharmacol. 2007, 219, 33–41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cusick, S.E.; Georgieff, M.K.; Rao, R. Approaches for Reducing the Risk of Early-Life Iron Deficiency-Induced Brain Dysfunction in Children. Nutrients 2018, 10, 227. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Persidsky, Y.; Ramirez, S.H.; Haorah, J.; Kanmogne, G.D. Blood-brain barrier: Structural components and function under physiologic and pathologic conditions. J. Neuroimmune Pharmacol. 2006, 1, 223–236. [Google Scholar] [CrossRef]
- Deshpande, U.R.; Nadkarni, G.D.; Samuel, A.M. Serum ferritin in thyroid cancer. Thyroid 1993, 3, 301–303. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.; Chen, J.; Feng, J.; Wang, J. E4BP4 promotes thyroid cancer proliferation by modulating iron homeostasis through repression of hepcidin. Cell Death Dis. 2018, 9, 987. [Google Scholar] [CrossRef]
- Wilson, M.J.; Dekker, J.W.T.; Harlaar, J.J.; Jeekel, J.; Schipperus, M.; Zwaginga, J.J. The role of preoperative iron deficiency in colorectal cancer patients: Prevalence and treatment. Int. J. Colorectal Dis. 2017, 32, 1617–1624. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Ma, J.; Wu, K.; Chan, A.T.; Fuchs, C.S.; Giovannucci, E.L. Blood donation and colorectal cancer incidence and mortality in men. PLoS ONE 2012, 7, e39319. [Google Scholar] [CrossRef]
- Cross, A.J.; Pollock, J.R.; Bingham, S.A. Haem, not protein or inorganic iron, is responsible for endogenous intestinal N-nitrosation arising from red meat. Cancer Res. 2003, 63, 2358–2360. [Google Scholar]
SNP | Nearby Gene | EA | EAF | Serum Iron, μmol/L | Transferrin Saturation, % | Log10 Ferritin, μg/L | Ferritin, g/L | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Beta | SE | p | Beta | SE | p | Beta | SE | p | Beta | SE | p | ||||
rs1800562 * | HFE | A | 0.07 | 0.328 | 0.016 | 2.9 × 10−97 | 0.577 | 0.016 | 2.2 × 10−270 | 0.204 | 0.016 | 1.5 × 10−38 | -0.479 | 0.016 | 8.9 × 10−196 |
rs1799945 * | HFE | G | 0.15 | 0.189 | 0.010 | 1.1 × 10−81 | 0.231 | 0.010 | 5.1 × 10−109 | 0.065 | 0.010 | 1.7 × 10−10 | -0.114 | 0.010 | 9.4 × 10−30 |
rs855791 * | TMPRSS6 | G | 0.55 | 0.181 | 0.007 | 4.3 × 10−139 | 0.190 | 0.007 | 6.4 × 10−137 | 0.055 | 0.007 | 1.4 × 10−14 | -0.044 | 0.007 | 2.0 × 10−9 |
rs8177240 | TF | G | 0.35 | 0.066 | 0.007 | 6.6 × 10−20 | 0.100 | 0.008 | 7.2 × 10−38 | 0.380 | 0.007 | 8.4 × 10−610 | |||
rs7385804 | TFR2 | A | 0.62 | 0.064 | 0.007 | 1.4 × 10−18 | 0.054 | 0.008 | 6.1 × 10−12 | ||||||
rs744653 | AC013439.4 | C | 0.16 | 0.089 | 0.010 | 8.4 × 10−19 | |||||||||
rs411988 | TEX14 | G | 0.44 | 0.044 | 0.007 | 1.6 × 10−10 | |||||||||
rs651007 | ABO | C | 0.79 | 0.050 | 0.009 | 1.3 × 10−8 | |||||||||
rs4921915 | NAT2 | A | 0.76 | 0.079 | 0.009 | 7.1 × 10−19 | |||||||||
rs174577 | FADS2 | A | 0.36 | 0.062 | 0.007 | 2.3 × 10−17 | |||||||||
rs9990333 | TFRC | C | 0.53 | 0.051 | 0.007 | 2.0 × 10−13 | |||||||||
rs6486121 | ARNTL | C | 0.34 | 0.046 | 0.007 | 3.9 × 10−10 |
Cancer | Cases | Serum Iron | Transferrin Saturation | Ferritin | Transferrin | ||||
---|---|---|---|---|---|---|---|---|---|
OR (95% CI) | p | OR (95% CI) | p | OR (95% CI) | p | OR (95% CI) | p | ||
Overall cancer (UKBB) | 75,037 | 1.03 (0.96, 1.10) | 0.47 | 1.01 (0.96, 1.07) | 0.65 | 1.03 (0.88, 1.21) | 0.71 | 1.00 (0.92, 1.08) | 0.99 |
Brain and head and neck | |||||||||
Brain | 810 | 0.69 (0.48, 1.00) | 0.05 | 0.75 (0.59, 0.97) | 0.03 | 0.41 (0.20, 0.88) | 0.02 | 1.49 (1.04, 2.14) | 0.03 |
Head and neck | 1615 | 0.93 (0.71, 1.23) | 0.63 | 0.97 (0.79, 1.19) | 0.77 | 0.93 (0.50, 1.72) | 0.81 | 0.99 (0.73, 1.34) | 0.95 |
Gastrointestinal tract | |||||||||
Oesophagus | 843 | 0.95 (0.68, 1.33) | 0.76 | 0.95 (0.75, 1.20) | 0.66 | 0.82 (0.40, 1.71) | 0.60 | 1.11 (0.78, 1.57) | 0.56 |
Stomach | 736 | 1.11 (0.67, 1.83) | 0.70 | 1.00 (0.75, 1.35) | 0.97 | 1.00 (0.41, 2.46) | 0.99 | 1.06 (0.69, 1.61) | 0.80 |
Colorectum | 5486 | 0.99 (0.70, 1.41) | 0.95 | 0.98 (0.76, 1.26) | 0.89 | 0.95 (0.44, 2.04) | 0.90 | 1.06 (0.74, 1.51) | 0.76 |
Pancreas | 1264 | 1.03 (0.72, 1.48) | 0.86 | 1.04 (0.81, 1.34) | 0.76 | 1.17 (0.55, 2.52) | 0.68 | 0.92 (0.64, 1.32) | 0.65 |
Liver | 324 | 2.45 (0.81, 7.45) | 0.11 | 2.11 (1.16, 3.83) | 0.01 | 10.89 (2.44, 48.59) | 2.0×10−3 | 0.30 (0.17, 0.53) | 2.0×10−5 |
Biliary tract | 387 | 0.67 (0.34, 1.32) | 0.25 | 1.06 (0.65, 1.72) | 0.81 | 1.33 (0.31, 5.63) | 0.70 | 0.77 (0.42, 1.43) | 0.41 |
Sex-specific | |||||||||
Breast (UKBB) | 13,666 | 1.10 (1.00, 1.22) | 0.05 | 1.06 (0.98, 1.16) | 0.16 | 1.18 (0.89, 1.56) | 0.25 | 0.94 (0.81, 1.10) | 0.47 |
Breast (BCAC) | 122,977 | 0.99 (0.94, 1.03) | 0.62 | 0.99 (0.96, 1.03) | 0.65 | 0.98 (0.88, 1.08) | 0.66 | 1.01 (0.96, 1.06) | 0.75 |
Breast ER+ (BCAC) | 69,501 | 1.01 (0.96, 1.07) | 0.73 | 1.00 (0.97, 1.03) | 0.85 | 1.03 (0.91, 1.17) | 0.63 | 0.98 (0.93, 1.05) | 0.60 |
Breast ER- (BCAC) | 21,468 | 0.93 (0.85, 1.01) | 0.07 | 0.95 (0.89, 1.01) | 0.08 | 0.85 (0.70, 1.02) | 0.09 | 1.07 (0.98, 1.18) | 0.14 |
Uterus | 1931 | 0.99 (0.79, 1.24) | 0.95 | 0.98 (0.84, 1.15) | 0.83 | 0.94 (0.58, 1.53) | 0.80 | 1.06 (0.83, 1.33) | 0.65 |
Cervix | 1928 | 1.11 (0.88, 1.41) | 0.38 | 1.06 (0.88, 1.27) | 0.53 | 1.18 (0.67, 2.08) | 0.57 | 0.97 (0.73, 1.30) | 0.84 |
Ovary | 1520 | 0.98 (0.69, 1.39) | 0.91 | 0.97 (0.76, 1.24) | 0.82 | 0.92 (0.43, 1.94) | 0.82 | 1.08 (0.76, 1.53) | 0.66 |
Prostate | 7872 | 1.10 (0.91, 1.33) | 0.34 | 1.07 (0.94, 1.22) | 0.32 | 1.24 (0.83, 1.85) | 0.29 | 0.91 (0.74, 1.12) | 0.40 |
Testis | 735 | 1.11 (0.77, 1.60) | 0.57 | 1.11 (0.86, 1.44) | 0.43 | 1.42 (0.64, 3.12) | 0.39 | 0.81 (0.56, 1.19) | 0.29 |
Urinary tract | |||||||||
Bladder | 2588 | 1.08 (0.89, 1.31) | 0.46 | 1.045 (0.91, 1.2) | 0.51 | 1.15 (0.75, 1.76) | 0.52 | 0.96 (0.78, 1.17) | 0.67 |
Kidney | 1310 | 0.97 (0.73, 1.28) | 0.82 | 1.01 (0.82, 1.23) | 0.95 | 1.07 (0.58, 1.96) | 0.83 | 0.93 (0.70, 1.23) | 0.60 |
Blood/bone marrow/lymph | |||||||||
Leukemia | 1403 | 0.99 (0.77, 1.29) | 0.96 | 0.98 (0.81, 1.18) | 0.82 | 0.91 (0.51, 1.61) | 0.75 | 1.07 (0.81, 1.40) | 0.65 |
Non-Hodgkin lymphoma | 2296 | 0.92 (0.75, 1.13) | 0.43 | 0.95 (0.82, 1.10) | 0.50 | 0.87 (0.55, 1.36) | 0.53 | 1.05 (0.84, 1.30) | 0.67 |
Multiple myeloma | 656 | 0.80 (0.41, 1.59) | 0.53 | 0.80 (0.60, 1.08) | 0.15 | 0.51 (0.21, 1.22) | 0.13 | 1.33 (0.82, 2.14) | 0.25 |
Other | |||||||||
Thyroid | 375 | 1.68 (0.63, 4.49) | 0.30 | 1.54 (0.81, 2.93) | 0.19 | 4.06 (0.65, 25.53) | 0.14 | 0.51 (0.21, 1.24) | 0.14 |
Lung | 2838 | 0.93 (0.77, 1.12) | 0.43 | 0.93 (0.82, 1.07) | 0.31 | 0.80 (0.54, 1.20) | 0.29 | 1.13 (0.94, 1.37) | 0.20 |
Melanoma | 4869 | 0.96 (0.83, 1.11) | 0.58 | 0.98 (0.88, 1.08) | 0.66 | 0.94 (0.69, 1.28) | 0.71 | 1.01 (0.87, 1.18) | 0.86 |
SNP (Gene) or Method | Serum Iron | Transferrin Saturation | Ferritin | Transferrin | ||||
---|---|---|---|---|---|---|---|---|
OR (95% CI) | p | OR (95% CI) | p | OR (95% CI) | p | OR (95% CI) | p | |
rs1800562 (HFE) | 6.65 (2.78, 15.9) | 2.02 × 10−5 | 2.94 (1.79, 4.82) | 2.02 × 10−5 | 21.0 (5.18, 85.4) | 2.02 × 10−5 | 0.27 (0.15, 0.50) | 2.02 × 10−5 |
rs1799945 (HFE) | 1.01 (0.32, 3.16) | 0.99 | 1.01 (0.40, 2.56) | 0.99 | 1.03 (0.04, 28.3) | 0.99 | 0.98 (0.15, 6.50) | 0.99 |
rs855791 (TMPRSS6) | 1.54 (0.65, 3.64) | 0.32 | 1.51 (0.67, 3.42) | 0.32 | 4.14 (0.24, 70.3) | 0.32 | 0.17 (0.01, 5.82) | 0.32 |
IVW-Random effects | 2.45 (0.81, 7.45) | 0.11 | 2.11 (1.16, 3.83) | 0.01 | 10.9 (2.44, 48.6) | 2.00 × 10−3 | 0.30 (0.17, 0.53) | 2.99 × 10−5 |
Weighted median | 2.08 (0.97, 4.47) | 0.06 | 2.14 (1.39, 3.31) | 1.00 × 10−3 | 12.1 (3.24, 45.2) | 3.43 × 10−4 | 0.30 (0.17, 0.53) | 3.31 × 10−5 |
MR-Egger | 49.0 (5.64, 424) | 4.17 × 10−4 | 4.36 (1.87, 10.1) | 1.00 × 10−3 | 46.4 (5.47, 394) | 4.38 × 10−4 | 0.28 (0.11, 0.70) | 7.00 × 10−3 |
Heterogeneity (I2) | 76 (23, 93) | 0.01 | 58 (0, 88) | 0.09 | 38 (0, 81) | 0.20 | 0 (0, 90) | 0.43 |
Pleiotropy (Intercept) | NA | 5.00 × 10−3 | NA | 0.06 | NA | 0.11 | NA | 0.76 |
SNP (Gene) or Method | Serum Iron | Transferrin Saturation | Ferritin | Transferrin | ||||
---|---|---|---|---|---|---|---|---|
OR (95% CI) | p | OR (95% CI) | p | OR (95% CI) | p | OR (95% CI) | p | |
rs1800562 (HFE) | 1.09 (0.53, 2.24) | 0.82 | 1.07 (0.59, 1.93) | 0.82 | 1.28 (0.16, 10.4) | 0.82 | 5.04 (0.54, 47.4) | 0.82 |
rs1799945 (HFE) | 0.54 (0.31, 0.95) | 0.16 | 0.69 (0.41, 1.16) | 0.16 | 0.27 (0.05, 1.65) | 0.16 | 0.87 (0.26, 2.88) | 0.16 |
rs855791 (TMPRSS6) | 0.67 (0.39, 1.16) | 0.03 | 0.71 (0.51, 0.97) | 0.03 | 0.37 (0.15, 0.92) | 0.03 | 1.52 (1.04, 2.23) | 0.03 |
IVW-Random effects | 0.69 (0.48, 1.00) | 0.05 | 0.75 (0.59, 0.97) | 0.03 | 0.41 (0.20, 0.88) | 0.02 | 1.49 (1.04, 2.14) | 0.03 |
Weighted median | 0.65 (0.44, 0.96) | 0.03 | 0.71 (0.53, 0.93) | 0.02 | 0.37 (0.16, 0.83) | 0.02 | 1.46 (1.01, 2.13) | 0.05 |
MR-Egger | 0.35 (0.07, 1.63) | 0.18 | 0.68 (0.36, 1.29) | 0.24 | 0.36 (0.08, 1.69) | 0.19 | 1.38 (0.74, 2.57) | 0.31 |
Heterogeneity (I2) | 11 (0, 91) | 0.33 | 0 (0, 90) | 0.44 | 0 (0, 90) | 0.51 | 0 (0, 90) | 0.38 |
Pleiotropy (Intercept) | NA | 0.37 | NA | 0.72 | NA | 0.82 | NA | 0.72 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, S.; Carter, P.; Vithayathil, M.; Kar, S.; Giovannucci, E.; Mason, A.M.; Burgess, S.; Larsson, S.C. Iron Status and Cancer Risk in UK Biobank: A Two-Sample Mendelian Randomization Study. Nutrients 2020, 12, 526. https://doi.org/10.3390/nu12020526
Yuan S, Carter P, Vithayathil M, Kar S, Giovannucci E, Mason AM, Burgess S, Larsson SC. Iron Status and Cancer Risk in UK Biobank: A Two-Sample Mendelian Randomization Study. Nutrients. 2020; 12(2):526. https://doi.org/10.3390/nu12020526
Chicago/Turabian StyleYuan, Shuai, Paul Carter, Mathew Vithayathil, Siddhartha Kar, Edward Giovannucci, Amy M. Mason, Stephen Burgess, and Susanna C. Larsson. 2020. "Iron Status and Cancer Risk in UK Biobank: A Two-Sample Mendelian Randomization Study" Nutrients 12, no. 2: 526. https://doi.org/10.3390/nu12020526