Association between Dietary Diversity and All-Cause Mortality: A Multivariable Model in a Mediterranean Population with 18 Years of Follow-Up
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Dietary Assessment
2.3. Dietary Diversity Score Construction
2.4. Mortality Assessment
2.5. Other Variables
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Afshin, A.; Sur, P.J.; Fay, K.A.; Cornaby, L.; Ferrara, G.; Salama, J.S.; Mullany, E.C.; Abate, K.H.; Abbafati, C.; Abebe, Z.; et al. Health Effects of Dietary Risks in 195 Countries, 1990–2017: A Systematic Analysis for the Global Burden of Disease Study 2017. Lancet 2019, 393, 1958–1972. [Google Scholar] [CrossRef] [Green Version]
- Atkins, J.L.; Whincup, P.H.; Morris, R.W.; Lennon, L.T.; Papacosta, O.; Wannamethee, S.G. Dietary Patterns and the Risk of CVD and All-Cause Mortality in Older British Men. Br. J. Nutr. 2016, 116, 1246–1255. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruel, M.T. Operationalizing Dietary Diversity: A Review of Measurement Issues and Research Priorities. J. Nutr. 2003, 133, 3911S–3926S. [Google Scholar] [CrossRef] [PubMed]
- Kennedy, G.; Ballard, T.; Dop, M.-C. Guidelines for Measuring Household and Individual Dietary Diversity; FAO: Rome, Italy, 2011; ISBN 978-92-5-106749-9. [Google Scholar]
- Kant, A.K.; Thompson, F.E. Measures of Overall Diet Quality from a Food Frequency Questionnaire: National Health Interview Survey, 1992. Nutr. Res. 1997, 17, 1443–1456. [Google Scholar] [CrossRef]
- Hu, F.B. Dietary Pattern Analysis: A New Direction in Nutritional Epidemiology. Curr. Opin. Lipidol. 2002, 13, 3–9. [Google Scholar] [CrossRef]
- Habte, T.; Krawinkel, M. Dietary Diversity Score: A Measure of Nutritional Adequacy or an Indicator of Healthy Diet? J. Nutr. Health Sci. 2016, 3, 303. [Google Scholar] [CrossRef] [Green Version]
- Foote, J.A.; Murphy, S.P.; Wilkens, L.R.; Basiotis, P.P.; Carlson, A. Dietary Variety Increases the Probability of Nutrient Adequacy among Adults. J. Nutr. 2004, 134, 1779–1785. [Google Scholar] [CrossRef] [Green Version]
- Cano-Ibáñez, N.; Gea, A.; Martínez-González, M.A.; Salas-Salvadó, J.; Corella, D.; Zomeño, M.D.; Romaguera, D.; Vioque, J.; Aros, F.; Wärnberg, J.; et al. Dietary Diversity and Nutritional Adequacy among an Older Spanish Population with Metabolic Syndrome in the PREDIMED-Plus Study: A Cross-Sectional Analysis. Nutrients 2019, 11, 958. [Google Scholar] [CrossRef] [Green Version]
- Conklin, A.I.; Monsivais, P.; Khaw, K.-T.; Wareham, N.J.; Forouhi, N.G. Dietary Diversity, Diet Cost, and Incidence of Type 2 Diabetes in the United Kingdom: A Prospective Cohort Study. PLoS Med. 2016, 13, e1002085. [Google Scholar] [CrossRef]
- Azadbakht, L.; Mirmiran, P.; Azizi, F. Dietary Diversity Score Is Favorably Associated with the Metabolic Syndrome in Tehranian Adults. Int. J. Obes. 2005, 29, 1361–1367. [Google Scholar] [CrossRef] [Green Version]
- Azadbakht, L.; Mirmiran, P.; Esmaillzadeh, A.; Azizi, F. Dietary Diversity Score and Cardiovascular Risk Factors in Tehranian Adults. Public Health Nutr. 2006, 9, 728–736. [Google Scholar] [CrossRef] [PubMed]
- Farhangi, M.A.; Jahangiry, L. Dietary Diversity Score Is Associated with Cardiovascular Risk Factors and Serum Adiponectin Concentrations in Patients with Metabolic Syndrome. BMC Cardiovasc. Disord. 2018, 18, 68. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Larsson, S.C.; Åkesson, A.; Wolk, A. Overall Diet Quality and Risk of Stroke: A Prospective Cohort Study in Women. Atherosclerosis 2014, 233, 27–29. [Google Scholar] [CrossRef] [PubMed]
- Otsuka, R.; Tange, C.; Nishita, Y.; Kato, Y.; Tomida, M.; Imai, T.; Ando, F.; Shimokata, H. Dietary Diversity and All-Cause and Cause-Specific Mortality in Japanese Community-Dwelling Older Adults. Nutrients 2020, 12, 1052. [Google Scholar] [CrossRef] [PubMed]
- Tao, L.; Xie, Z.; Huang, T. Dietary Diversity and All-Cause Mortality among Chinese Adults Aged 65 or Older: A Community-Based Cohort Study. Asia Pac. J. Clin. Nutr. 2020, 29, 152–160. [Google Scholar] [CrossRef]
- Lv, Y.; Kraus, V.B.; Gao, X.; Yin, Z.; Zhou, J.; Mao, C.; Duan, J.; Zeng, Y.; Brasher, M.S.; Shi, W.; et al. Higher Dietary Diversity Scores and Protein-Rich Food Consumption Were Associated with Lower Risk of All-Cause Mortality in the Oldest Old. Clin. Nutr. 2020, 39, 2246–2254. [Google Scholar] [CrossRef]
- Kant, A.K.; Schatzkin, A.; Harris, T.B.; Ziegler, R.G.; Block, G. Dietary Diversity and Subsequent Mortality in the First National Health and Nutrition Examination Survey Epidemiologic Follow-up Study. Am. J. Clin. Nutr. 1993, 57, 434–440. [Google Scholar] [CrossRef]
- Kant, A.K.; Schatzkin, A.; Ziegler, R.G. Dietary Diversity and Subsequent Cause-Specific Mortality in the NHANES I Epidemiologic Follow-up Study. J. Am. Coll. Nutr. 1995, 14, 233–238. [Google Scholar] [CrossRef]
- Kobayashi, M.; Sasazuki, S.; Shimazu, T.; Sawada, N.; Yamaji, T.; Iwasaki, M.; Mizoue, T.; Tsugane, S. Association of Dietary Diversity with Total Mortality and Major Causes of Mortality in the Japanese Population: JPHC Study. Eur. J. Clin. Nutr. 2020, 74, 54–66. [Google Scholar] [CrossRef]
- Quiles, J.; Vioque, J. Prevalence of obesity in the Valencian community. Med. Clin. 1998, 110, 319. [Google Scholar]
- Willett, W.C. Nutritional Epidemiology, 3rd ed.; Oxford University Press: New York, NY, USA, 2013. [Google Scholar]
- Willett, W.C.; Sampson, L.; Stampfer, M.J.; Rosner, B.; Bain, C.; Witschi, J.; Hennekens, C.H.; Speizer, F.E. Reproducibility and Validity of a Semiquantitative Food Frequency Questionnaire. Am. J. Epidemiol. 1985, 122, 51–65. [Google Scholar] [CrossRef]
- Vioque, J.; González, L. Validity of a Food Frequency Questionnaire (Preliminary Results). Eur. J. Cancer Prev. 1991, 1, 19–20. [Google Scholar] [CrossRef]
- Vioque, J. Validez de la Evaluación de la Ingesta Dietética; Masson: Barcelona, Spain, 2006; ISBN 84-458-1528-8. [Google Scholar]
- Vioque, J.; Weinbrenner, T.; Asensio, L.; Castelló, A.; Young, I.S.; Fletcher, A. Plasma Concentrations of Carotenoids and Vitamin C Are Better Correlated with Dietary Intake in Normal Weight than Overweight and Obese Elderly Subjects. Br. J. Nutr. 2007, 97, 977–986. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vioque, J.; Navarrete-Muñoz, E.-M.; Gimenez-Monzó, D.; García-de-la-Hera, M.; Granado, F.; Young, I.S.; Ramón, R.; Ballester, F.; Murcia, M.; Rebagliato, M.; et al. Reproducibility and Validity of a Food Frequency Questionnaire among Pregnant Women in a Mediterranean Area. Nutr. J. 2013, 12, 26. [Google Scholar] [CrossRef] [Green Version]
- U.S. Department of Agriculture (USDA), Agriuclture Research Service. USDA National Nutrient Database for Standard Reference, Release 23; Nutrient Data Laboratory: Washington, DC, USA, 2010. [Google Scholar]
- Centre d’Ensenyament Superior de Nutrició i Dietética (CESNID). Tablas de Composición de Alimentos por Medidas Caseras de Consumo Habitual en España; Mc Graw-Hill Interamericana: Madrid, Spain, 2008. [Google Scholar]
- Cano-Ibáñez, N.; Martínez-Galiano, J.M.; Amezcua-Prieto, C.; Olmedo-Requena, R.; Bueno-Cavanillas, A.; Delgado-Rodríguez, M. Maternal Dietary Diversity and Risk of Small for Gestational Age Newborn: Findings from a Case-Control Study. Clin. Nutr. 2020, 39, 1943–1950. [Google Scholar] [CrossRef] [PubMed]
- Aranceta Bartrina, J.; Arija Val, V.; Maíz Aldalur, E.; Martínez de la Victoria Muñoz, E.; Ortega Anta, R.M.; Pérez-Rodrigo, C.; Quiles Izquierdo, J.; Rodríguez Martín, A.; Román Viñas, B.; Grupo Colaborativo de la Sociedad Española de Nutrición Comunitaria (SENC); et al. Dietary guidelines for the Spanish population (SENC, December 2016); The new graphic icon of healthy nutrition. Nutr. Hosp. 2016, 33, 1–48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moreiras, O.; Carbajal, A.; Cabrera, L.; Cuadrado, C. Tablas de Composición de Alimentos; Ediciones Pirámide Madrid: Madrid, Spain, 2013. [Google Scholar]
- Kant, A.K. Consumption of Energy-Dense, Nutrient-Poor Foods by Adult Americans: Nutritional and Health Implications. The Third National Health and Nutrition Examination Survey, 1988–1994. Am. J. Clin. Nutr. 2000, 72, 929–936. [Google Scholar] [CrossRef] [Green Version]
- Bush, T.L.; Miller, S.R.; Golden, A.L.; Hale, W.E. Self-Report and Medical Record Report Agreement of Selected Medical Conditions in the Elderly. Am. J. Public Health 1989, 79, 1554–1556. [Google Scholar] [CrossRef] [Green Version]
- Harlow, S.D.; Linet, M.S. Agreement between Questionnaire Data and Medical Records. The Evidence for Accuracy of Recall. Am. J. Epidemiol. 1989, 129, 233–248. [Google Scholar] [CrossRef] [Green Version]
- Liu, D.; Zhang, X.-R.; Li, Z.-H.; Zhang, Y.-J.; Lv, Y.-B.; Wang, Z.-H.; Shen, D.; Chen, P.-L.; Zhong, W.-F.; Huang, Q.-M.; et al. Association of Dietary Diversity Changes and Mortality among Older People: A Prospective Cohort Study. Clin. Nutr. 2021, 40, 2620–2629. [Google Scholar] [CrossRef]
- Bingham, S.A. The Dietary Assessment of Individual: Methods, Accuracy, New Techniques and Recommendations. Nutr. Abstr. Rev. Ser. A 1987, 57, 705–742. [Google Scholar]
- Newby, P.K.; Weismayer, C.; Akesson, A.; Tucker, K.L.; Wolk, A. Long-Term Stability of Food Patterns Identified by Use of Factor Analysis among Swedish Women. J. Nutr. 2006, 136, 626–633. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jankovic, N.; Steppel, M.T.; Kampman, E.; de Groot, L.C.; Boshuizen, H.C.; Soedamah-Muthu, S.S.; Kromhout, D.; Feskens, E.J. Stability of Dietary Patterns Assessed with Reduced Rank Regression; the Zutphen Elderly Study. Nutr. J. 2014, 13, 30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Food Groups | Food Subgroups | Recommended Servings |
---|---|---|
Vegetables |
| 2 servings/day |
Fruits |
| 3 servings/day |
Dairy products |
| 2 servings/day |
Cereals |
| 4 servings/day |
Proteins |
| 3 servings/week |
Dietary Diversity Score | ||||||
---|---|---|---|---|---|---|
Total | Q1 (≥1.8, <4.5) | Q2 (≥4.5, <5.4) | Q3 (≥5.4, <6.1) | Q4 (≥6.1, <8.9) | p-Value 1 | |
DDS, n (%) | 1540 | 385 (25.0) | 385 (25.0) | 385 (25.0) | 385 (25.0) | |
Sex = women, n (%) | 822 (53.4) | 163 (42.3) | 190 (49.3) | 215 (55.8)3 | 254 (66.0) 3 | <0.001 |
Age, mean (SD) | 46.1 (18.1) | 44.3 (19.2) | 46.6 (19.1) | 46.3 (17.2) | 47.4 (16.6) | 0.11 |
Education Level, n (%) | ||||||
<Primary school | 701 (45.5) | 175 (45.4) | 176 (45.7) | 177 (46.0) | 173 (45.0) | 0.99 |
≥Primary school | 839 (54.5) | 210 (54.6) | 209 (54.3) | 208 (54.0) | 212(55.0) | |
Body Mass Index (kg/m2), n (%) | ||||||
<25 kg/m2 | 635 (41.5) | 168 (43.9) | 152 (39.9) | 165 (43.0) | 150 (39.9) | 0.83 |
25–30 kg/m2 | 615 (40.1) | 145 (38.0) | 158 (41.5) | 150 (39.0) | 162 (42.1) | |
>30 kg/m2 | 282 (18.4) | 69 (18.1) | 71 (18.6) | 69 (18.0) | 73 (19.0) | |
Smoking Status, n (%) | ||||||
Never | 763 (49.5) | 159 (41.3) | 172 (44.7) | 208 (54.0) 3 | 224 (58.2) 3 | <0.001 |
Former | 260 (16.9) | 66 (17.1) | 62 (16.1) | 62 (16.1) | 70 (18.2) | |
Current | 517 (33.6) | 160 (41.6) | 151 (39.2) | 115 (29.9) 3 | 91 (23.6) 3 | |
Diabetes 2 (yes), n (%) | 120 (7.8) | 28 (7.3) | 34 (8.8) | 37 (9.6) | 21 (5.5) | 0.14 |
Hypertension 2 (yes), (n %) | 280 (18.2) | 63 (16.4) | 73 (19.0) | 65 (16.9) | 79 (20.5) | 0.41 |
Alcohol consumption, mean (SD) | 8.5 (16.1) | 12.5 (21.6) 3 | 8.9 (16.6) 3 | 7.0 (13.4) 3 | 5.8 (9.9) 3 | <0.001 |
TV-watching, hours/day, mean (SD) | 2.5 (1.8) | 2.6 (1.9) | 2.5 (1.6) | 2.5 (1.8) | 2.3 (1.6) | 0.07 |
Sleeping time, hours/day, mean (SD) | 7.5 (1.4) | 7.4 (1.5) | 7.4 (1.4) | 7.4 (1.3) | 7.4 (1.3) | 0.88 |
Dietary Diversity Score | ||||||
---|---|---|---|---|---|---|
Q1 (≥1.8, <4.5) | Q2 (≥4.5, <5.4) | Q3 (≥5.4, <6.1) | Q4 (≥6.1, <8.9) | p-Value 2 | p-Trend 3 | |
Follow-up at 18 years | ||||||
All-cause (n, %) | 385 (25.0) | 385 (25.0) | 385 (25.0) | 385 (25.0) | ||
Deaths, n | 88 | 93 | 69 | 67 | ||
Person-years | 6120.2 | 6145.6 | 6349.4 | 6425.8 | ||
HR (95% CI) | ||||||
Age and sex adjusted | 1.00 | 0.85 (0.63–1.13) | 0.71 (0.51–0.97) | 0.68 (0.49–0.94) | 0.07 | 0.01 |
Multivariable 1 | 1.00 | 0.87 (0.64–1.17) | 0.72 (0.51–1.00) | 0.79 (0.57–1.10) | 0.23 | 0.09 |
CVD (n, %) | 330 (24.7) | 324 (24.2) | 341 (25.5) | 343 (25.6) | ||
Deaths, n | 33 | 32 | 25 | 25 | ||
Person-years | 5657.1 | 5560.7 | 5941.0 | 5983.6 | ||
HR (95% CI) | ||||||
Age and sex adjusted | 1.00 | 0.74 (0.45–1.21) | 0.64 (0.38–1.07) | 0.55 (0.32–0.93) | 0.14 | 0.02 |
Multivariable 1 | 1.00 | 0.81 (0.48–1.35) | 0.71 (0.41–1.22) | 0.61 (0.35–1.07) | 0.37 | 0.08 |
Cancer (n, %) | 316 (24.1) | 320 (24.5) | 334 (25.6) | 335.25.7 | ||
Deaths, n | 19 | 28 | 18 | 17 | ||
Person-years | 5490.1 | 5513.5 | 5880.5 | 5889.8 | ||
HR (95% CI) | ||||||
Age and sex adjusted | 1.00 | 1.26 (0.70–2.26) | 0.86 (0.45–1.66) | 0.74 (0.38–1.45) | 0.35 | 0.21 |
Multivariable 1 | 1.00 | 1.34 (0.73–2.45) | 0.99 (0.50–1.95) | 1.05 (0.52–2.13) | 0.40 | 0.90 |
Food Components of the DDS | ||||||
---|---|---|---|---|---|---|
p-Value 2 | p-Trend | |||||
Fruit group | C1 (0.0 p) | C2 (0.0; <1.0 p) | C3 (1.0 p) | C4 (≥1.5 p) | ||
All-cause mortality, (n, %) | 250 (16.2) | 576 (37.4) | 431 (28.0) | 283 (18.4) | ||
Deaths; person-years | 37; 4132.9 | 123; 9282.9 | 98; 7036.5 | 59; 4588.6 | ||
Multivariable 1 | 1.00 | 0.99 (0.68–1.44) | 0.97 (0.66–1.42) | 1.13 (0.73–1.72) | 0.84 | 0.60 |
CVD (n, %) | 223 (16.7) | 505 (37.7) | 368 (27.5) | 242 (18.1) | ||
Deaths; person-years | 10; 3909.8 | 52; 8645.5 | 35; 6371.6 | 18; 4215.4 | ||
Multivariable 1 | 1.00 | 0.94 (046–1.90) | 0.98 (0.48–2.02) | 0.85 (0.37–1.90) | 0.96 | 0.75 |
Cancer (n, %) | 226 (17.3) | 482 (36.9) | 358 (27.4) | 239 (18.3) | ||
Deaths; person-years | 13; 3943.4 | 29; 8387.9 | 25; 6266.9 | 15; 4175.7 | ||
Multivariable 1 | 1.00 | 0.76 (0.38–1.51) | 0.83 (0.42–1.68) | 0.97 (0.45–2.09) | 0.83 | 0.88 |
Vegetable group | C1 (0.0 p) | C2 (0.0; <1.0 p) | C3 (1.0 p) | C4 (≥1.5 p) | ||
All-cause mortality, (n, %) | 285 (18.5) | 372 (24.2) | 479 (31.1) | 404 (26.2) | ||
Deaths; person-years | 68; 4480.5 | 82; 6059.3 | 91; 7867.5 | 76; 6633.7 | ||
Multivariable 1 | 1.00 | 0.79 (0.57–1.11) | 0.71 (0.51–0.98) | 0.70 (0.50–0.99) | 0.16 | 0.04 |
CVD (n, %) | 247 (18.5) | 317 (23.7) | 421 (31.5) | 353 (26.4) | ||
Deaths; person-years | 30; 4173.9 | 27; 5519.8 | 33; 7279.2 | 25; 6169.4 | ||
Multivariable 1 | 1.00 | 0.55 (0.31–0.96) | 0.63 (0.37–1.07) | 0.52 (0.30–0.91) | 0.09 | 0.05 |
Cancer (n, %) | 233 (17.8) | 316 (24.2) | 405 (31.0) | 351 (26.9) | ||
Deaths; person-years | 16; 4039.3 | 26; 5458.9 | 17; 7153.8 | 23; 6121.9 | ||
Multivariable 1 | 1.00 | 1.23 (0.64–2.37) | 0.59 (0.29–1.18) | 0.79 (0.40–1.50) | 0.12 | 0.14 |
Cereal group | C1 (<1.0 p) | C2 (1.0 p) | C3 (1.5 p) | C4 (≥2.0 p) | ||
All-cause mortality, (n, %) | 418 (27.1) | 546 (35.4) | 403 (26.2) | 173 (11.2) | ||
Deaths; person-years | 86; 6745.9 | 124; 8788.6 | 79; 6645.3 | 28; 25,040.9 | ||
Multivariable 1 | 1.00 | 0.98 (0.74–1.31) | 1.03 (0.75–1.42) | 1.10 (0.71–1.71) | 0.95 | 0.66 |
CVD (n, %) | 360 (26.9) | 472 (35.3) | 350 (26.2) | 156 (11.7) | ||
Deaths; person-years | 28; 6236.4 | 50; 8095.5 | 37; 6100.4 | 11; 2709.9 | ||
Multivariable 1 | 1.00 | 1.09 (0.67–1.76) | 0.84 (0.47–1.46) | 1.56 (0.76–3.19) | 0.41 | 0.76 |
Cancer (n, %) | 359 (27.5) | 450 (34.5) | 347 (26.6) | 149 (11.4) | ||
Deaths; person-years | 27; 6217.5 | 28; 7839.4 | 23; 6065.7 | 4; 2651.4 | ||
Multivariable 1 | 1.00 | 0.83 (0.47–1.43) | 1.11 (0.62–1.99) | 0.68 (0.23–1.99) | 0.66 | 0.90 |
Dairy group | C1 (0.0 p) | C2 (≤1.0 p) | C3 (<2.0 p) | C4 (>2.0 p) | ||
All-cause mortality, (n, %) | 143 (9.3) | 696 (45.2) | 571 (37.1) | 130 (8.4) | ||
Deaths; person-years | 41; 2228.8 | 171; 11,034.0 | 86; 9570.5 | 19; 2207.6 | ||
Multivariable 1 | 1.00 | 1.08 (0.76–1.55) | 0.87 (0.59–1.28) | 1.07 (0.61–1.90) | 0.40 | 0.41 |
CVD (n, %) | 118 (8.8) | 581 (43.4) | 522 (39.0) | 117 (8.7) | ||
Deaths; person-years | 16; 2012.6 | 56; 9944.8 | 37; 9116.3 | 6; 2068.6 | ||
Multivariable 1 | 1.00 | 0.94 (0.52–1.72) | 0.75 (0.40–1.39) | 1.04 (0.39–2.80) | 0.67 | 0.44 |
Cancer (n, %) | 112 (8.6) | 571 (43.7) | 507 (38.8) | 115 (8.8) | ||
Deaths; person-years | 10; 1923.3 | 46; 9888.1 | 22; 8931.3 | 4; 2031.4 | ||
Multivariable 1 | 1.00 | 1.02 (0.51–2.07) | 0.80 (0.37–1.71) | 1.04 (0.31–3.45) | 0.81 | 0.55 |
Protein group | C1 (≤0.5 p) | C2 (0.8 p) | C3 (≥1.2 p) | C4 (≥1.6 p) | ||
All-cause mortality, (n, %) | 170 (11.0) | 378 (24.5) | 608 (39.5) | 384 (24.9) | ||
Deaths; person-years | 64; 2507.3 | 88; 6067.8 | 122; 9910.0 | 43; 6555.7 | ||
Multivariable 1 | 1.00 | 1.01 (0.75–1.49) | 1.14 (0.83–1.57) | 0.82 (0.54–1.24) | 0.31 | 0.75 |
CVD (n, %) | 132 (9.9) | 323 (24.1) | 527 (39.4) | 356 (26.6) | ||
Deaths; person-years | 26; 2149.9 | 33; 5563.6 | 41; 9134.4 | 15; 6294.5 | ||
Multivariable 1 | 1.00 | 1.01 (0.69–1.47) | 1.16 (0.82–1.66) | 0.75 (0.47–1.20) | 0.25 | 0.47 |
Cancer (n, %) | 116 (8.9) | 314 (24.1) | 518 (39.7) | 357 (27.4) | ||
Deaths; person-years | 10; 2003.3 | 24; 5457.3 | 32; 9044.9 | 16; 6268.5 | ||
Multivariable 1 | 1.00 | 1.86 (0.85–4.10) | 1.89 (0.87–4.08) | 1.83 (0.77–4.31) | 0.35 | 0.23 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Torres-Collado, L.; García-de la Hera, M.; Cano-Ibañez, N.; Bueno-Cavanillas, A.; Vioque, J. Association between Dietary Diversity and All-Cause Mortality: A Multivariable Model in a Mediterranean Population with 18 Years of Follow-Up. Nutrients 2022, 14, 1583. https://doi.org/10.3390/nu14081583
Torres-Collado L, García-de la Hera M, Cano-Ibañez N, Bueno-Cavanillas A, Vioque J. Association between Dietary Diversity and All-Cause Mortality: A Multivariable Model in a Mediterranean Population with 18 Years of Follow-Up. Nutrients. 2022; 14(8):1583. https://doi.org/10.3390/nu14081583
Chicago/Turabian StyleTorres-Collado, Laura, Manuela García-de la Hera, Naomi Cano-Ibañez, Aurora Bueno-Cavanillas, and Jesús Vioque. 2022. "Association between Dietary Diversity and All-Cause Mortality: A Multivariable Model in a Mediterranean Population with 18 Years of Follow-Up" Nutrients 14, no. 8: 1583. https://doi.org/10.3390/nu14081583