Discovery of Curcuminoids as Pancreatic Lipase Inhibitors from Medicine-and-Food Homology Plants
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Preparation of Plant Extracts
2.2. Pancreatic Lipase Inhibition with In Vitro Testing
2.3. Identification of Compounds in the Turmeric Extracts by UPLC-Q-TOF-MS
2.4. Affinity Screening by Ultrafiltration Coupled with HPLC
2.5. Enzyme Inhibition Kinetics
2.6. Fluorescence Spectrometry
2.7. Circular Dichroism Measurement
2.8. Molecular Docking Simulation
2.9. Statistical Analysis
3. Results and Discussion
3.1. Pancreatic Lipase-Inhibitory Activities of the Extracts of 20 Medicine-and-Food Homology Plants
3.2. Identification and Quantification of Major Compounds in the Turmeric Extracts
3.3. Online Screening of Pancreatic Lipase Inhibitors from the Turmeric Extract
3.4. Inhibitory Effects and Mechanisms of the Promising Inhibitors on Pancreatic Lipase
3.5. Fluorescence Spectroscopy
3.5.1. Fluorescence-Quenching Spectrum Analysis
3.5.2. Fluorescence-Quenching Type and Binding Site Number Analysis
3.5.3. Thermodynamic Parameter and Binding Force Analysis
3.6. Circular Dichroism Analysis
3.7. Docking Simulation Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bray, G.A.; Fruhbeck, G.; Ryan, D.H.; Wilding, J.P.H. Management of obesity. Lancet 2016, 387, 1947–1956. [Google Scholar] [CrossRef] [PubMed]
- Pan, X.F.; Wang, L.M.; Pan, A. Epidemiology and determinants of obesity in China. Lancet Diabetes Endocrinol. 2021, 9, 373–392. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, A.; Sharma, D.; Trivedi, R.; Singh, J. Treatment of insulin resistance in obesity-associated type 2 diabetes mellitus through adiponectin gene therapy. Int. J. Pharm. 2020, 583, 119357. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Zhu, J.; Wang, L.; Jing, H.; Ma, C.; Kou, X.; Wang, H. Inhibitory mechanisms and interaction of tangeretin, 5-demethyltangeretin, nobiletin, and 5-demethylnobiletin from citrus peels on pancreatic lipase: Kinetics, spectroscopies, and molecular dynamics simulation. Int. J. Biol. Macromol. 2020, 164, 1927–1938. [Google Scholar] [CrossRef] [PubMed]
- Perdomo, C.M.; Cohen, R.V.; Sumithran, P.; Clement, K.; Fruhbeck, G. Contemporary medical, device, and surgical therapies for obesity in adults. Lancet 2023, 401, 1116–1130. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, M.C.; Vullings, J.; van de Loo, F.A.J. Osteoporosis and osteoarthritis are two sides of the same coin paid for obesity. Nutrition 2020, 70, 110486. [Google Scholar] [CrossRef] [PubMed]
- Qi, J.; Li, Y.; Yokoyama, W.; Majeed, H.; Masamba, K.G.; Zhong, F.; Ma, J. Cellulosic fraction of rice bran fibre alters the conformation and inhibits the activity of porcine pancreatic lipase. J. Funct. Foods 2015, 19, 39–48. [Google Scholar] [CrossRef]
- Sumithran, P.; Proietto, J. Benefit-risk assessment of orlistat in the treatment of obesity. Drug Saf. 2014, 37, 597–608. [Google Scholar] [CrossRef] [PubMed]
- Zou, L.; Li, H.; Ding, X.; Liu, Z.; He, D.; Kowah, J.A.H.; Wang, L.; Yuan, M.; Liu, X. A Review of the application of spectroscopy to flavonoids from medicine and food homology materials. Molecules 2022, 27, 7766. [Google Scholar] [CrossRef]
- Hou, Y.; Jiang, J.G. Origin and concept of medicine food homology and its application in modern functional foods. Food Funct. 2013, 4, 1727–1741. [Google Scholar] [CrossRef]
- Zhang, R.; Zhang, Q.; Zhu, S.; Liu, B.; Liu, F.; Xu, Y. Mulberry leaf (Morus alba L.): A review of its potential influences in mechanisms of action on metabolic diseases. Pharmacol. Res. 2021, 175, 106029. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Chai, X.; Zhao, F.; Hou, G.; Meng, Q. Food Applications and Potential Health Benefits of Hawthorn. Foods 2022, 11, 2861. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Xue, Z.; Jia, Y.; Wang, Y.; Li, S.; Zhou, J.; Liu, J.; Zhang, M.; He, C.; Chen, H. Polysaccharides from mulberry (Morus alba L.) leaf prevents obesity by inhibiting pancreatic lipase in high-fat diet induced mice. Int. J. Biol. Macromol. 2021, 192, 452–460. [Google Scholar] [CrossRef] [PubMed]
- Song, H.-P.; Chen, J.; Hong, J.-Y.; Hao, H.; Qi, L.-W.; Lu, J.; Fu, Y.; Wu, B.; Yang, H.; Li, P. A strategy for screening of high-quality enzyme inhibitors from herbal medicines based on ultrafiltration LC-MS and in silico molecular docking. Chem. Commun. 2014, 51, 1494–1497. [Google Scholar] [CrossRef] [PubMed]
- Xie, L.H.; Xie, J.H.; Xu, Y.; Chen, W. Discovery of anthocyanins from cranberry extract as pancreatic lipase inhibitors using a combined approach of ultrafiltration, molecular simulation and spectroscopy. Food Funct. 2020, 11, 8527–8536. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Chen, L.; Liu, H.; Xie, J.; Yin, W.; Xu, Z.; Ma, H.; Wu, W.; Zheng, M.; Liu, M.; et al. Characterization of the synergistic inhibitory effect of cyanidin-3-O-glucoside and catechin on pancreatic lipase. Food Chem. 2023, 404, 134672. [Google Scholar] [CrossRef] [PubMed]
- Jiang, C.; Wang, L.; Shao, J.; Jing, H.; Ye, X.; Jiang, C.; Wang, H.; Ma, C. Screening and identifying of alpha-amylase inhibitors from medicine food homology plants: Insights from computational analysis and experimental studies. J. Food Biochem. 2020, 44, 13536. [Google Scholar] [CrossRef]
- Junshi, C. Essential role of medicine and food homology in health and wellness. J. Chin. Herb. Med. 2023, 15, 347–348. [Google Scholar]
- Podsedek, A.; Majewska, I.; Redzynia, M.; Sosnowska, D.; Koziolkiewicz, M. In vitro inhibitory effect on digestive enzymes and antioxidant potential of commonly consumed fruits. J. Agric. Food Chem. 2014, 62, 4610–4617. [Google Scholar] [CrossRef]
- Li, S.; Hu, X.; Pan, J.H.; Gong, D.M.; Zhang, G.W. Mechanistic insights into the inhibition of pancreatic lipase by apigenin: Inhibitory interaction, conformational change and molecular docking studies. J. Mol. Liq. 2021, 335, 116505. [Google Scholar] [CrossRef]
- Zhu, W.; Jia, Y.Y.; Peng, J.M.; Li, C.M. Inhibitory effect of persimmon tannin on pancreatic lipase and the underlying mechanism in vitro. J. Agric. Food Chem. 2018, 66, 6013–6021. [Google Scholar] [CrossRef]
- Whitmore, L.; Wallace, B.A. Protein secondary structure analyses from circular dichroism spectroscopy: Methods and Reference Databases. Biopolymers 2008, 89, 392–400. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, S.; Wei, C.; Gong, H.; Li, L.; Ye, X. Chemical and cellular assays combined with in vitro digestion to determine the antioxidant activity of flavonoids from chinese bayberry (Myrica rubra sieb. et zucc.) leaves. PLoS ONE 2016, 11, 0167484. [Google Scholar] [CrossRef]
- Huang, R.; Zhang, Y.; Shen, S.; Zhi, Z.; Cheng, H.; Chen, S.; Ye, X. Antioxidant and pancreatic lipase inhibitory effects of flavonoids from different citrus peel extracts: An in vitro study. Food Chem. 2020, 326, 126785. [Google Scholar] [CrossRef]
- Pu, Y.J.; Chen, L.Y.; He, X.; Cao, J.K.; Jiang, W.B. Soluble polysaccharides decrease inhibitory activity of banana condensed tannins against porcine pancreatic lipase. Food Chem. 2023, 418, 136013. [Google Scholar] [CrossRef]
- Proença, C.; Freitas, M.; Ribeiro, D.; Tomé, S.M.; Oliveira, E.F.T.; Viegas, M.F.; Araújo, A.N.; Ramos, M.J.; Silva, A.M.S.; Fernandes, P.A.; et al. Evaluation of a flavonoids library for inhibition of pancreatic α-amylase towards a structure-activity relationship. J. Enzym. Inhib. Med. Chem. 2019, 34, 577–588. [Google Scholar] [CrossRef]
- Chen, H.H.; Li, J.; Yao, R.X.; Yan, S.L.; Wang, Q.Z. Mechanism of lipid metabolism regulation by soluble dietary fibre from micronized and non-micronized powders of lotus root nodes as revealed by their adsorption and activity inhibition of pancreatic lipase. Food Chem. 2020, 305, 125435. [Google Scholar] [CrossRef]
- Xu, H.; Lu, Y.; Zhang, T.; Liu, K.; Liu, L.; He, Z.; Xu, B.; Wu, X. Characterization of binding interactions of anthraquinones and bovine β-lactoglobulin. Food Chem. 2019, 12, 077. [Google Scholar] [CrossRef]
- Li, X.X.; Jiang, H.T.; Pu, Y.J.; Cao, J.K.; Jiang, W.B. Inhibitory effect of condensed tannins from banana pulp on cholesterol esterase and mechanisms of interaction. J. Agric. Food Chem. 2019, 67, 14066–14073. [Google Scholar] [PubMed]
- Sun, L.; Chen, W.; Meng, Y.; Yang, X.; Yuan, L.; Guo, Y. Interactions between polyphenols in thinned young apples and porcine pancreatic alpha-amylase: Inhibition, detailed kinetics and fluorescence quenching. Food Chem. 2016, 208, 51–60. [Google Scholar] [CrossRef] [PubMed]
- Yu, B.; Tang, Q.M.; Fu, C.X.; Regenstein, J.; Huang, J.Y.; Wang, L.F. Effects of different particle-sized insoluble dietary fibre from citrus peel on adsorption and activity inhibition of pancreatic lipase. Food Chem. 2023, 398, 133834. [Google Scholar] [CrossRef]
- Ross, P.D.; Subramanian, S. Thermodynamics of protein association reactions-Forces contributing to stability. Biochemistry 1981, 20, 3096–3102. [Google Scholar] [CrossRef]
- Suo, H.; Gao, Z.; Xu, L.; Xu, C.; Yu, D.; Xiang, X.; Huang, H.; Hu, Y. Synthesis of functional ionic liquid modified magnetic chitosan nanoparticles for porcine pancreatic lipase immobilization. Mater. Sci. Eng. C Mater. Biol. Appl. 2019, 96, 356–364. [Google Scholar] [CrossRef]
- Wu, X.; He, W.; Yao, L.; Zhang, H.; Liu, Z.; Wang, W.; Ye, Y.; Cao, J. Characterization of binding interactions of (-)-epigallocatechin-3-gallate from green tea and lipase. J. Agric. Food Chem. 2013, 61, 8829–8835. [Google Scholar] [CrossRef]
- Brady, L.; Brzozowski, A.M.; Derewenda, Z.S.; Dodson, E.; Dodson, G.; Tolley, S.; Turkenburg, J.P.; Christiansen, L.; Huge-Jensen, B.; Norskov, L.; et al. A serine protease triad forms the catalytic center of a triacylglycerol lipase. Nature 1990, 343, 767–770. [Google Scholar] [CrossRef]
- Kawaguchi, K.; Mizuno, T.; Aida, K.; Uchino, K. Hesperidin as an inhibitor of lipases from porcine pancreas and pseudomonas. Biosci. Biotechnol. Biochem. 1997, 61, 102–104. [Google Scholar] [CrossRef]
- Buchholz, T.; Melzig, M.F. Polyphenolic compounds as pancreatic lipase inhibitors. Planta Med. 2015, 81, 771–783. [Google Scholar] [CrossRef] [PubMed]
Samples | IC50 (mg of Dried Raw Powder/mL) |
---|---|
Orlistat | 0.36 ± 0.12 a |
Turmeric | 9.70 ± 0.29 b |
Hawthorn Fruit | 23.18 ± 0.81 c |
Lotus Leaf | 38.74 ± 0.34 c |
Seabuckthorn Fruit | 43.73 ± 1.47 c |
Mulberry Fruit | 45.96 ± 3.02 c |
Palmleaf Raspberry Fruit | 62.94 ± 2.70 d |
Lesser Galangal Rhizome | 65.71 ± 0.32 d |
Solomonseal Rhizome | 76.67 ± 1.76 e |
Radish Seed | 92.91 ± 0.38 f |
Mulberry Leaf | 107.95 ± 1.08 g |
Dandelion | 132.22 ± 2.49 h |
Smoked Plum | 142.83 ± 4.83 h |
Citron Fruit | 150.41 ± 1.12 h |
Eucommia Bark | 152.47 ± 6.75 i |
Hyacinth Beau | 172.29 ± 2.67 j |
Bulbus Lilii | 214.58 ± 4.06 k |
Germinated Barley | 243.70 ± 3.99 l |
Indian Bread | 282.38 ± 1.15 l |
Tall Gastrodia Tuber | 284.84 ± 4.70 lm |
Cassia Seed | 294.30 ± 6.26 m |
No. | Formula | Retention Time (min) | Mass | Observed [M + H]+ | Error (ppm) | Identified Compounds |
---|---|---|---|---|---|---|
1 | C5H11NO2 | 0.48 | 117.0791 | 118.0864 | 1.35 | L-Valine a |
2 | C5H7NO3 | 0.766 | 129.0426 | 130.0498 | 0.11 | L-Pyroglutamic acid a |
3 | C10H13N5O4 | 1.175 | 267.0971 | 268.1044 | 1.47 | Adenosine ab |
4 | C6H6O3 | 2.451 | 126.032 | 127.0393 | 2.46 | 5-Hydroxymethyl-2-Furaldehydea |
5 | C8H8O3 | 5.718 | 152.0474 | 153.0547 | 0.63 | Vanillin ab |
6 | C8H8O2 | 6.266 | 136.0523 | 137.0596 | −1.07 | 4′-Hydroxyacetophenone a |
7 | C10H8O4 | 6.963 | 192.0426 | 193.0499 | 1.54 | Isoscopoletin a |
8 | C11H14O5 | 7.617 | 226.0846 | 227.0919 | 2.08 | Genipin a |
9 | C21H20O8 | 7.955 | 400.116 | 401.1232 | 0.38 | 4′-Demethylepipodophyllotoxin a |
10 | C28H34O15 | 10.505 | 610.1891 | 611.1967 | −1.15 | Neohesperidin a |
11 | C21H24O6 | 11.425 | 372.1577 | 373.1648 | 1.02 | Arctigenin a |
12 | C21H18O11 | 11.701 | 446.085 | 447.0923 | 0.3 | Apigenin 7-O-beta-D-glucuronide a |
13 | C23H24O6 | 12.551 | 396.1555 | 397.1629 | 0.55 | Dimethoxycurcumin ab |
14 | C10H14O | 13.297 | 150.1044 | 151.1117 | −0.51 | Carvacrol ab |
15 | C19H18O3 | 15.585 | 294.1258 | 295.1329 | 0.63 | Tanshinone II A a |
16 | C22H26O5 | 15.612 | 370.1778 | 371.1852 | −0.61 | (-)-8′-epi-Aristoligone a |
17 | C21H22O5 | 15.807 | 354.147 | 355.1542 | 0.83 | Xanthohumol ab |
18 | C11H14O2 | 16.154 | 178.0995 | 179.1068 | 0.84 | 1,2-Dimethoxy-4-(1-propenyi) benzene a |
19 | C12H18O2 | 16.941 | 194.13 | 195.1373 | −3.42 | Neocnidilide a |
20 | C15H24O2 | 16.993 | 236.178 | 237.1852 | 1.37 | Curdione ab |
21 | C20H20O5 | 17.016 | 340.1315 | 341.1387 | 1.22 | Rel-(8R,8′R)-dimethyl-(7S,7′R)-bis (3,4-methylenedioxyphenyl)tetrahydro-furan a |
22 | C19H16O4 | 17.215 | 308.1049 | 309.1121 | −0.01 | Bisdemethoxycurcumin ab |
23 | C22H22O7 | 17.258 | 398.1365 | 399.1438 | −0.02 | (-)-Deoxypodophyllotoxin a |
24 | C20H18O5 | 17.261 | 338.1156 | 339.1229 | −4.5 | Demethoxycurcumin ab |
25 | C26H43NO6 | 17.277 | 465.3089 | 466.3165 | −0.23 | Glycocholic acid a |
26 | C21H20O6 | 17.308 | 368.126 | 369.1333 | 0.04 | Curcumin ab |
27 | C21H20O6 | 17.308 | 368.126 | 369.1333 | 0.04 | Glycycoumarin a |
28 | C17H16O4 | 17.308 | 284.1045 | 285.1118 | −1.12 | Batatasin I a |
29 | C30H26O13 | 17.712 | 594.1374 | 595.1444 | 0.13 | Orientin 2″-O-p-trans-coumarate a |
30 | C30H44O5 | 18.208 | 484.3193 | 485.3266 | 0.82 | Poricoic acid B a |
31 | C30H46O3 | 18.866 | 454.3446 | 455.3518 | −0.24 | Liquidambaric acid a |
Compounds | Curcumin | Demethoxycurcumin | Bisdemethoxycurcumin | |||
---|---|---|---|---|---|---|
Temperature (K) | 298 | 310 | 298 | 310 | 298 | 310 |
Kq (×1012 L·mol−1·s−1) | 1.94 ± 0.10 | 4.28 ± 0.25 | 1.64 ± 0.13 | 3.61 ± 0.24 | 1.6 ± 0.07 | 2.97 ± 0.11 |
Ra | 0.999 | 0.993 | 0.996 | 0.986 | 0.996 | 0.988 |
Ka (×104 L·mol−1) | 1.68 ± 0.11 | 2.86 ± 0.14 | 1.20 ± 0.16 | 1.96 ± 0.22 | 1.04 ± 0.09 | 1.65 ± 0.13 |
Rb | 0.998 | 0.987 | 0.996 | 0.999 | 0.996 | 0.997 |
n | 1.14 ± 0.02 | 1.2 ± 0.02 | 1.12 ± 0.04 | 1.40 ± 0.01 | 1.13 ± 0.03 | 1.45 ± 0.02 |
ΔG (kJ·mol−1) | −24.11 ± 0.13 | −26.44 ± 0.25 | −23.28 ± 0.14 | −25.48 ± 0.21 | −22.91 ± 0.24 | −25.02 ± 0.15 |
ΔH (kJ·mol−1) | −33.88 ± 0.30 | −31.31 ± 0.22 | −29.47 ± 0.17 | |||
ΔS (J·mol−1·K) | −23.99 ± 0.10 | −18.82 ± 0.09 | −14.33 ± 0.14 |
Samples | α-Helix (%) | β-Sheet (%) | β-Turn (%) | Random Coil (%) |
---|---|---|---|---|
Pancreatic lipase | 17.7 | 25.4 | 14.8 | 42.1 |
Pancreatic lipase + curcumin | 34.3 | 15.3 | 15.7 | 34.7 |
Pancreatic lipase + demethoxycurcumin | 26.4 | 16.9 | 16.5 | 40.2 |
Pancreatic lipase + bisdemethoxycurcumin | 21.3 | 21.7 | 15.9 | 41.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, X.-Q.; Zou, H.-D.; Liu, Y.; Chen, X.-J.; Atanasov, A.G.; Wang, X.-L.; Xia, Y.; Ng, S.B.; Matin, M.; Wu, D.-T.; et al. Discovery of Curcuminoids as Pancreatic Lipase Inhibitors from Medicine-and-Food Homology Plants. Nutrients 2024, 16, 2566. https://doi.org/10.3390/nu16152566
He X-Q, Zou H-D, Liu Y, Chen X-J, Atanasov AG, Wang X-L, Xia Y, Ng SB, Matin M, Wu D-T, et al. Discovery of Curcuminoids as Pancreatic Lipase Inhibitors from Medicine-and-Food Homology Plants. Nutrients. 2024; 16(15):2566. https://doi.org/10.3390/nu16152566
Chicago/Turabian StyleHe, Xiao-Qin, Hai-Dan Zou, Yi Liu, Xue-Jiao Chen, Atanas G. Atanasov, Xiao-Li Wang, Yu Xia, Siew Bee Ng, Maima Matin, Ding-Tao Wu, and et al. 2024. "Discovery of Curcuminoids as Pancreatic Lipase Inhibitors from Medicine-and-Food Homology Plants" Nutrients 16, no. 15: 2566. https://doi.org/10.3390/nu16152566