Association of Low Protein-to-Carbohydrate Energy Ratio with Cognitive Impairment in Elderly Type 2 Diabetes Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects and Design
2.2. Clinical, Anthropometric and Laboratory Data
2.3. Cognitive Performance Assessment
2.4. Statistical Analysis
3. Results
3.1. Baseline Patient Clinical Characteristics and Dietary Composition Across MoCA Groups
3.2. Clinical Characteristics and Cognitive Function Across Tertiles of Protein-to-Carbohydrate Intake
3.3. Cognitive Function Scales and Subscales Among Protein-to-Carbohydrate Ratio Tertiles
3.4. Optimal Cutoff of Protein-to-Carbohydrate Ratio Associated with MCI or Dementia (vs. Non-CI) in Patients with T2DM
3.5. Protein-to-Carbohydrate Ratio as a Risk Factor for MCI or Dementia (vs. No-CI) in Patients with T2DM
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- The Global Burden of Metabolic Risk Factors for Chronic Diseases Collaboration. Cardiovascular Disease, Chronic Kidney Disease, and Diabetes Mortality Burden of Cardio-Metabolic Risk Factors between 1980 and 2010: Comparative Risk Assessment. Lancet Diabetes Endocrinol. 2014, 2, 634–647. [Google Scholar] [CrossRef] [PubMed]
- GBD 2016 Dementia Collaborators Global, Regional, and National Burden of Alzheimer’s Disease and Other Dementias, 1990-2016: A Systematic Analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2019, 18, 88–106. [CrossRef] [PubMed]
- Livingston, G.; Huntley, J.; Liu, K.Y.; Costafreda, S.G.; Selbæk, G.; Alladi, S.; Ames, D.; Banerjee, S.; Burns, A.; Brayne, C.; et al. Dementia Prevention, Intervention, and Care: 2024 Report of the Lancet Standing Commission. Lancet 2024, 404, 572–628. [Google Scholar] [CrossRef] [PubMed]
- Burger, K.N.J.; Beulens, J.W.J.; van der Schouw, Y.T.; Sluijs, I.; Spijkerman, A.M.W.; Sluik, D.; Boeing, H.; Kaaks, R.; Teucher, B.; Dethlefsen, C.; et al. Dietary Fiber, Carbohydrate Quality and Quantity, and Mortality Risk of Individuals with Diabetes Mellitus. PLoS ONE 2012, 7, e43127. [Google Scholar] [CrossRef]
- Psaltopoulou, T.; Kyrozis, A.; Stathopoulos, P.; Trichopoulos, D.; Vassilopoulos, D.; Trichopoulou, A. Diet, Physical Activity and Cognitive Impairment among Elders: The EPIC-Greece Cohort (European Prospective Investigation into Cancer and Nutrition). Public Health Nutr. 2008, 11, 1054–1062. [Google Scholar] [CrossRef]
- Roberts, R.O.; Roberts, L.A.; Geda, Y.E.; Cha, R.H.; Pankratz, V.S.; O’Connor, H.M.; Knopman, D.S.; Petersen, R.C. Relative Intake of Macronutrients Impacts Risk of Mild Cognitive Impairment or Dementia. J. Alzheimers Dis. 2012, 32, 329–339. [Google Scholar] [CrossRef]
- Chen, W.; Zhang, S.; Hu, X.; Chen, F.; Li, D. A Review of Healthy Dietary Choices for Cardiovascular Disease: From Individual Nutrients and Foods to Dietary Patterns. Nutrients 2023, 15, 4898. [Google Scholar] [CrossRef]
- Schulze, M.B.; Haardt, J.; Amini, A.M.; Kalotai, N.; Lehmann, A.; Schmidt, A.; Buyken, A.E.; Egert, S.; Ellinger, S.; Kroke, A.; et al. Protein Intake and Type 2 Diabetes Mellitus: An Umbrella Review of Systematic Reviews for the Evidence-Based Guideline for Protein Intake of the German Nutrition Society. Eur. J. Nutr. 2024, 63, 33–50. [Google Scholar] [CrossRef]
- Gibson, E.L.; Mw, G. Nutritional Influences on Cognitive Function: Mechanisms of Susceptibility. Nutr. Res. Rev. 2002, 15, 169–206. [Google Scholar] [CrossRef]
- Nagao, K. Cognition and Nutrition: The Role of Dietary Protein and Amino Acids in Cognitive Health. Curr. Opin. Clin. Nutr. Metab. Care 2024, 27, 40–46. [Google Scholar] [CrossRef]
- Sluijs, I.; Beulens, J.W.J.; van der A, D.L.; Spijkerman, A.M.W.; Grobbee, D.E.; van der Schouw, Y.T. Dietary Intake of Total, Animal, and Vegetable Protein and Risk of Type 2 Diabetes in the European Prospective Investigation into Cancer and Nutrition (EPIC)-NL Study. Diabetes Care 2010, 33, 43–48. [Google Scholar] [CrossRef] [PubMed]
- Solon-Biet, S.M.; Mitchell, S.J.; de Cabo, R.; Raubenheimer, D.; Le Couteur, D.G.; Simpson, S.J. Macronutrients and Caloric Intake in Health and Longevity. J. Endocrinol. 2015, 226, R17–R28. [Google Scholar] [CrossRef] [PubMed]
- Shang, X.; Scott, D.; Hodge, A.; English, D.R.; Giles, G.G.; Ebeling, P.R.; Sanders, K.M. Dietary Protein from Different Food Sources, Incident Metabolic Syndrome and Changes in Its Components: An 11-Year Longitudinal Study in Healthy Community-Dwelling Adults. Clin. Nutr. 2017, 36, 1540–1548. [Google Scholar] [CrossRef] [PubMed]
- Chu, Z.; Gao, J.; Ma, L.; Zhou, H.; Zhong, F.; Chen, L.; Gao, T.; Ma, A. Cognitive Function and Elderly Macronutrient Intakes from Rural Diets in Qingdao, China. Asia Pac. J. Clin. Nutr. 2022, 31, 118–127. [Google Scholar] [CrossRef]
- Yeh, T.-S.; Yuan, C.; Ascherio, A.; Rosner, B.A.; Blacker, D.; Willett, W.C. Long-Term Dietary Protein Intake and Subjective Cognitive Decline in US Men and Women. Am. J. Clin. Nutr. 2022, 115, 199–210. [Google Scholar] [CrossRef]
- Wabo, T.M.C.; Wang, Y.; Nyamao, R.M.; Wang, W.; Zhu, S. Protein-to-Carbohydrate Ratio Is Informative of Diet Quality and Associates with All-Cause Mortality: Findings from the National Health and Nutrition Examination Survey (2007–2014). Front. Public Health 2022, 10, 1043035. [Google Scholar] [CrossRef]
- Pujol, A.; Sanchis, P.; Tamayo, M.I.; Nicolau, J.; Grases, F.; Espino, A.; Estremera, A.; Rigo, E.; Amengual, G.J.; Rodríguez, M.; et al. Oral Phytate Supplementation on the Progression of Mild Cognitive Impairment, Brain Iron Deposition and Diabetic Retinopathy in Patients with Type 2 Diabetes: A Concept Paper for a Randomized Double Blind Placebo Controlled Trial (the PHYND Trial). Front. Endocrinol. 2024, 15, 1332237. [Google Scholar] [CrossRef]
- Milani, S.A.; Marsiske, M.; Cottler, L.B.; Chen, X.; Striley, C.W. Optimal Cutoffs for the Montreal Cognitive Assessment Vary by Race and Ethnicity. Alzheimers Dement. 2018, 10, 773–781. [Google Scholar] [CrossRef]
- American Diabetes Association. Diagnosis and Classification of Diabetes Mellitus. Diabetes Care 2014, 37, S81–S90. [Google Scholar] [CrossRef]
- Chobanian, A.V.; Bakris, G.L.; Black, H.R.; Cushman, W.C.; Green, L.A.; Izzo, J.L.; Jones, D.W.; Materson, B.J.; Oparil, S.; Wright, J.T.; et al. Seventh Report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure. Hypertension 2003, 42, 1206–1252. [Google Scholar] [CrossRef]
- National Cholesterol Education Program (NCEP). Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) Final Report. Circulation 2002, 106, 3143–3421. [Google Scholar]
- Levey, A.S.; Eckardt, K.-U.; Tsukamoto, Y.; Levin, A.; Coresh, J.; Rossert, J.; De Zeeuw, D.; Hostetter, T.H.; Lameire, N.; Eknoyan, G. Definition and Classification of Chronic Kidney Disease: A Position Statement from Kidney Disease: Improving Global Outcomes (KDIGO). Kidney Int. 2005, 67, 2089–2100. [Google Scholar] [CrossRef] [PubMed]
- Solomon, S.D.; Chew, E.; Duh, E.J.; Sobrin, L.; Sun, J.K.; VanderBeek, B.L.; Wykoff, C.C.; Gardner, T.W. Diabetic Retinopathy: A Position Statement by the American Diabetes Association. Diabetes Care 2017, 40, 412–418. [Google Scholar] [CrossRef] [PubMed]
- Martin-Moreno, J.M.; Boyle, P.; Gorgojo, L.; Maisonneuve, P.; Fernandez-Rodriguez, J.C.; Salvini, S.; Willett, W.C. Development and Validation of a Food Frequency Questionnaire in Spain. Int. J. Epidemiol. 1993, 22, 512–519. [Google Scholar] [CrossRef] [PubMed]
- Tuny, O.M.; Azcona, Á.C.; Forneiro, L.C.; Vives, C.C. Tablas de Composición de Alimentos, 16th ed.; Pirámides: Madrid, Spain, 2016; ISBN 978-84-368-3623-3. [Google Scholar]
- Galvin, J.E.; Sadowsky, C.H. Practical Guidelines for the Recognition and Diagnosis of Dementia. J. Am. Board Fam. Med. 2012, 25, 367–382. [Google Scholar] [CrossRef]
- Lam, B.; Middleton, L.E.; Masellis, M.; Stuss, D.T.; Harry, R.D.; Kiss, A.; Black, S.E. Criterion and Convergent Validity of the Montreal Cognitive Assessment with Screening and Standardized Neuropsychological Testing. J. Am. Geriatr. Soc. 2013, 61, 2181–2185. [Google Scholar] [CrossRef]
- Scharre, D.W.; Chang, S.-I.; Murden, R.A.; Lamb, J.; Beversdorf, D.Q.; Kataki, M.; Nagaraja, H.N.; Bornstein, R.A. Self-Administered Gerocognitive Examination (SAGE): A Brief Cognitive Assessment Instrument for Mild Cognitive Impairment (MCI) and Early Dementia. Alzheimer Dis. Assoc. Disord. 2010, 24, 64–71. [Google Scholar] [CrossRef]
- Bourre, J.M. Effects of Nutrients (in Food) on the Structure and Function of the Nervous System: Update on Dietary Requirements for Brain. Part 2: Macronutrients. J. Nutr. Health Aging 2006, 10, 386–399. [Google Scholar]
- Tang, J.P.; Melethil, S. Effect of Aging on the Kinetics of Blood-Brain Barrier Uptake of Tryptophan in Rats. Pharm. Res. 1995, 12, 1085–1091. [Google Scholar] [CrossRef]
- Deutz, N.E.P.; Bauer, J.M.; Barazzoni, R.; Biolo, G.; Boirie, Y.; Bosy-Westphal, A.; Cederholm, T.; Cruz-Jentoft, A.; Krznariç, Z.; Nair, K.S.; et al. Protein Intake and Exercise for Optimal Muscle Function with Aging: Recommendations from the ESPEN Expert Group. Clin. Nutr. 2014, 33, 929–936. [Google Scholar] [CrossRef]
- Dashti, H.S.; Scheer, F.A.; Jacques, P.F.; Lamon-Fava, S.; Ordovás, J.M. Short Sleep Duration and Dietary Intake: Epidemiologic Evidence, Mechanisms, and Health Implications. Adv. Nutr. 2015, 6, 648–659. [Google Scholar] [CrossRef] [PubMed]
- Suga, H.; Asakura, K.; Kobayashi, S.; Nojima, M.; Sasaki, S.; Three-Generation Study of Women on Diets and Health Study Group. Association between Habitual Tryptophan Intake and Depressive Symptoms in Young and Middle-Aged Women. J. Affect. Disord. 2018, 231, 44–50. [Google Scholar] [CrossRef] [PubMed]
- Morais, J.A.; Chevalier, S.; Gougeon, R. Protein Turnover and Requirements in the Healthy and Frail Elderly. J. Nutr. Health Aging 2006, 10, 272–283. [Google Scholar]
- Shahar, D.; Shai, I.; Vardi, H.; Shahar, A.; Fraser, D. Diet and Eating Habits in High and Low Socioeconomic Groups. Nutrition 2005, 21, 559–566. [Google Scholar] [CrossRef]
- Li, Y.; Li, S.; Wang, W.; Zhang, D. Association between Dietary Protein Intake and Cognitive Function in Adults Aged 60 Years and Older. J. Nutr. Health Aging 2020, 24, 223–229. [Google Scholar] [CrossRef]
- La Rue, A.; Koehler, K.M.; Wayne, S.J.; Chiulli, S.J.; Haaland, K.Y.; Garry, P.J. Nutritional Status and Cognitive Functioning in a Normally Aging Sample: A 6-y Reassessment. Am. J. Clin. Nutr. 1997, 65, 20–29. [Google Scholar] [CrossRef]
- Lee, L.; Kang, S.A.; Lee, H.O.; Lee, B.H.; Park, J.S.; Kim, J.H.; Jung, I.K.; Park, Y.J.; Lee, J.E. Relationships between Dietary Intake and Cognitive Function Level in Korean Elderly People. Public Health 2001, 115, 133–138. [Google Scholar] [CrossRef]
- Hu, Y.; Peng, W.; Ren, R.; Wang, Y.; Wang, G. Sarcopenia and Mild Cognitive Impairment among Elderly Adults: The First Longitudinal Evidence from CHARLS. J. Cachexia Sarcopenia Muscle 2022, 13, 2944–2952. [Google Scholar] [CrossRef]
- van der Zwaluw, N.L.; van de Rest, O.; Tieland, M.; Adam, J.J.; Hiddink, G.J.; van Loon, L.J.C.; de Groot, L.C.P.G.M. The Impact of Protein Supplementation on Cognitive Performance in Frail Elderly. Eur. J. Nutr. 2014, 53, 803–812. [Google Scholar] [CrossRef]
- Jash, K.; Gondaliya, P.; Kirave, P.; Kulkarni, B.; Sunkaria, A.; Kalia, K. Cognitive Dysfunction: A Growing Link between Diabetes and Alzheimer’s Disease. Drug Dev. Res. 2020, 81, 144–164. [Google Scholar] [CrossRef]
- American Diabetes Association Professional Practice Committee. 5. Facilitating Positive Health Behaviors and Well-Being to Improve Health Outcomes: Standards of Care in Diabetes-2024. Diabetes Care 2024, 47, S77–S110. [Google Scholar] [CrossRef] [PubMed]
- Volpi, E.; Campbell, W.W.; Dwyer, J.T.; Johnson, M.A.; Jensen, G.L.; Morley, J.E.; Wolfe, R.R. Is the Optimal Level of Protein Intake for Older Adults Greater than the Recommended Dietary Allowance? J. Gerontol. A Biol. Sci. Med. Sci. 2013, 68, 677–681. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Mulley, G.P.; Losowsky, M.S. Why Are Alzheimer Patients Thin? Age Ageing 1988, 17, 21–28. [Google Scholar] [CrossRef] [PubMed]
- Vogt, N.M.; Kerby, R.L.; Dill-McFarland, K.A.; Harding, S.J.; Merluzzi, A.P.; Johnson, S.C.; Carlsson, C.M.; Asthana, S.; Zetterberg, H.; Blennow, K.; et al. Gut Microbiome Alterations in Alzheimer’s Disease. Sci. Rep. 2017, 7, 13537. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, Z.-Q.; Shen, L.-L.; Li, W.-W.; Fu, X.; Zeng, F.; Gui, L.; Lü, Y.; Cai, M.; Zhu, C.; Tan, Y.-L.; et al. Gut Microbiota Is Altered in Patients with Alzheimer’s Disease. J. Alzheimers Dis. 2018, 63, 1337–1346. [Google Scholar] [CrossRef]
- Wang, K.-C.; Woung, L.-C.; Tsai, M.-T.; Liu, C.-C.; Su, Y.-H.; Li, C.-Y. Risk of Alzheimer’s Disease in Relation to Diabetes: A Population-Based Cohort Study. Neuroepidemiology 2012, 38, 237–244. [Google Scholar] [CrossRef]
- Shatenstein, B.; Kergoat, M.-J.; Reid, I. Poor Nutrient Intakes during 1-Year Follow-up with Community-Dwelling Older Adults with Early-Stage Alzheimer Dementia Compared to Cognitively Intact Matched Controls. J. Am. Diet Assoc. 2007, 107, 2091–2099. [Google Scholar] [CrossRef]
- Puranen, T.M.; Pietila, S.E.; Pitkala, K.H.; Kautiainen, H.; Raivio, M.; Eloniemi-Sulkava, U.; Jyvakorpi, S.K.; Suominen, M. Caregivers’ Male Gender Is Associated with Poor Nutrient Intake in AD Families (NuAD-Trial). J. Nutr. Health Aging 2014, 18, 672–676. [Google Scholar] [CrossRef]
- Tabet, N.; Mantle, D.; Walker, Z.; Orrell, M. Higher Fat and Carbohydrate Intake in Dementia Patients Is Associated with Increased Blood Glutathione Peroxidase Activity. Int. Psychogeriatr. 2005, 17, 91–98. [Google Scholar] [CrossRef]
- Doorduijn, A.S.; de van der Schueren, M.A.E.; van de Rest, O.; de Leeuw, F.A.; Hendriksen, H.M.A.; Teunissen, C.E.; Scheltens, P.; van der Flier, W.M.; Visser, M. Energy Intake and Expenditure in Patients with Alzheimer’s Disease and Mild Cognitive Impairment: The NUDAD Project. Alzheimers Res. Ther. 2020, 12, 116. [Google Scholar] [CrossRef]
- Power, S.E.; O’Toole, P.W.; Stanton, C.; Ross, R.P.; Fitzgerald, G.F. Intestinal Microbiota, Diet and Health. Br. J. Nutr. 2014, 111, 387–402. [Google Scholar] [CrossRef] [PubMed]
- Layman, D.K. Protein Quantity and Quality at Levels above the RDA Improves Adult Weight Loss. J. Am. Coll. Nutr. 2004, 23, 631S–636S. [Google Scholar] [CrossRef] [PubMed]
- Kitada, M.; Ogura, Y.; Monno, I.; Koya, D. The Impact of Dietary Protein Intake on Longevity and Metabolic Health. eBioMedicine 2019, 43, 632–640. [Google Scholar] [CrossRef] [PubMed]
- Willett, W.C. Invited Commentary: Comparison of Food Frequency Questionnaires. Am. J. Epidemiol. 1998, 148, 1157–1159; discussion 1162–1165. [Google Scholar] [CrossRef]
- Willett, W. Commentary: Dietary Diaries versus Food Frequency Questionnaires-a Case of Undigestible Data. Int. J. Epidemiol. 2001, 30, 317–319. [Google Scholar] [CrossRef]
All Participants (n = 192) | Normal Cognitive Function (n = 55) | Mild Cognitive Impairment (n = 106) | Dementia (n = 31) | p-Value | |
---|---|---|---|---|---|
Age (years) | 71 (65–75) | 66 (63–71) | 71 (67–76) | 72 (71–77) | 0.010 |
Gender (female) | 89 (46.4%) | 26 (47.3%) | 49 (46.2%) | 14 (45.2%) | 0.982 |
BMI (kg/m2) | 30 (27–34) | 30 (26–35) | 30 (27–33) | 29 (27–33) | 0.666 |
Waist circumference (cm) | 108 (98–121) | 110 (98–119) | 107 (98–118) | 108 (100–124) | 0.938 |
Time from diagnosis T2DM | 0.767 | ||||
Less than 5 years | 8 (4.2%) | 3 (5.5%) | 4 (3.8%) | 1 (3.2%) | |
Between 5 and 10 years | 14 (7.3%) | 6 (10.9%) | 6 (5.7%) | 2 (6.5%) | |
More than 10 years | 170 (88.5%) | 46 (83.6%) | 96 (90.6%) | 28 (90.3%) | |
Education level | 0.363 | ||||
Less than 13 years | 119 (61.5%) | 35 (63.6%) | 60 (56.6%) | 23 (74.2%) | |
Between 13 and 16 years | 48 (25.0%) | 14 (25.5%) | 28 (26.4%) | 6 (19.4%) | |
More than 16 years | 26 (13.5%) | 6 (10.9%) | 18 (17.0%) | 2 (6.5%) | |
Comorbidities | |||||
Diabetic retinopathy | 17 (8.9%) | 4 (7.3%) | 11 (10.4%) | 2 (6.5%) | 0.706 |
Diabetic nephropathy | 33 (17.2%) | 4 (7.3%) | 21 (19.8%) | 8 (25.8%) | 0.052 |
Intermittent claudication | 2 (1.0%) | 1 (1.8%) | 1 (0.9%) | 0 (0.0%) | 0.720 |
Cerebrovascular accident | 10 (5.2%) | 4 (7.3%) | 6 (5.7%) | 0 (0.0%) | 0.329 |
Polyneuropathy | 16 (8.3%) | 5 (9.1%) | 10 (9.4%) | 1 (3.2%) | 0.530 |
Diabetic foot | 4 (2.1%) | 0 (0.0%) | 3 (2.8%) | 1 (3.2%) | 0.436 |
Atherosclerosis | 173 (90.6%) | 51 (92.7%) | 93 (87.7%) | 30 (96.8%) | 0.258 |
Hypertension | 165 (85.9%) | 46 (83.6%) | 92 (86.8%) | 27 (87.1% | 0.844 |
Smoking | 12 (6.3%) | 5 (9.1%) | 7 (6.6%) | 0 (0.0%) | 0.452 |
Alcohol | 9 (4.7%) | 3 (5.5%) | 5 (4.7%) | 1 (3.2%) | 0.895 |
Anti-diabetic drugs | |||||
Insulin | 84 (43.8%) | 27 (49.1%) | 43 (40.6%) | 14 (45.2%) | 0.570 |
Metformin | 146 (76.0%) | 46 (83.6%) | 77 (72.6%) | 23 (74.2%) | 0.290 |
GLP-1 RA | 86 (44.8%) | 25 (44.5%) | 46 (43.4%) | 15 (48.4%) | 0.880 |
i-SGLT-2 | 45 (23.2%) | 14 (25.7%) | 25 (23.8%) | 6 (19.2%) | 0.800 |
Secretagogues | 47 (24.5%) | 10 (18.2%) | 27 (25.5%) | 10 (32.3%) | 0.324 |
iDPP4 | 84 (43.8%) | 24 (43.6%) | 42 (39.6%) | 18 (58.1%) | 0.191 |
Pioglitazone | 3 (1.6%) | 0 (0.0%) | 3 (2.8%) | 0 (0.0%) | 0.290 |
Dietary parameters | |||||
Vegetables (g/day) | 621 (439–792) | 627 (484–773) | 630 (414–798) | 587 (410–842) | 0.349 |
Fruits (g/day) | 590 (472–737) | 572 (434–701) | 616 (481–766) | 582 (461–704) | 0.872 |
Legumes (g/day) | 64 (43–64) | 64 (43–64) | 64 (32–64) | 64 (43–64) | 0.860 |
Cereals (g/day) | 101 (88–142) | 96 (86–131) | 111 (88–151) | 99 (88–142) | 0.730 |
Whole cereals (g/day) | 75 (12–81) | 55 (2–75) | 75 (21–88) | 58 (0–82) | 0.919 |
Dairy (g/day) | 258 (227–338) | 270 (227–345) | 256 (230–333) | 261 (220–338) | 0.880 |
Meat (g/day) | 120 (79–163) | 116 (81–167) | 127 (78–167) | 111 (74–126) | 0.119 |
Olive oil (g/day) | 15 (15–17) | 15 (15–18) | 15 (15–17) | 15 (15–17) | 0.918 |
Fish (g/day) | 68 (48–97) | 74 (50–108) | 67 (45–90) | 61 (48–86) | 0.191 |
Nuts (g/day) | 9 (0–24) | 11 (0–21) | 9 (2–30) | 6 (0–13) | 0.030 |
Sweets (g/day) | 4 (0–18) | 3 (0–13) | 4 (0–18) | 3 (0–18) | 0.843 |
Alcoholic drinks (g/day) | 4 (0–100) | 4 (0–94) | 8 (0–100) | 0 (0–24) | 0.533 |
Nonalcoholic drinks (g/day) | 107 (56–250) | 121 (64–243) | 107 (57–250) | 79 (50–225) | 0.469 |
Eggs (g/day) | 29 (14–36) | 29 (21–36) | 29 (14–36) | 21 (14–29) | 0.083 |
Total energy (kcal/day) | 2006 (1642–2512) | 1966 (1597–2607) | 2061 (1731–2605) | 1713 (1590–2279) | 0.115 |
Protein (g/day) | 95 (77–114) | 94 (78–115) | 97 (77–117) | 88 (76–102) | 0.044 |
Lipids (g/day) | 89 (70–112) | 91 (71–106) | 91 (72–115) | 79 (63–91) | 0.093 |
Carbohydrates (g/day) | 246 (205–308) | 230 (192–305) | 250 (207–314) | 246 (206–295) | 0.873 |
Fiber (g/day) | 41 (34–50) | 38 (34–48) | 42 (34–51) | 43 (31–49) | 0.727 |
% E Protein | 19 (17–20) | 19 (17–21) | 18 (16–20) | 19 (17–20) | 0.879 |
% E Lipids | 38 (33–43) | 40 (34–43) | 38 (33–43) | 37 (33–41) | 0.649 |
% E Carbohydrates | 50 (46–54) | 48 (45–53) | 50 (46–55) | 50 (48–54) | 0.006 |
Tertile 1 (n = 64) | Tertile 2 (n = 64) | Tertile 3 (n = 64) | p-Value Trend | |
---|---|---|---|---|
%E P:C < 0.340 | %E P:C [0.340–0.415] | %E P:C > 0.415 | ||
Anthropometric and clinical variables | ||||
Age (years) | 73 (67–78) | 70 (65–75) | 69 (64–73) | <0.001 |
Gender (female) | 26 (40.6%) | 36 (56.3%) | 27 (42.2%) | 0.860 |
BMI (kg/cm2) | 29 (26–35) | 30 (27–33) | 30 (27–34) | 0.863 |
Waist circumference (cm) | 110 (98–119) | 107 (98–118) | 108 (100–124) | 0.782 |
Systolic blood pressure (mmHg) | 146 (130–158) | 140 (129–160) | 145 (130–154) | 0.742 |
Diastolic blood pressure (mmHg) | 76 (70–84) | 80 (71–89) | 80 (74–89) | 0.051 |
Hear rate (bpm) | 77 (71–84) | 80 (72–88) | 79 (76–84) | 0.618 |
Glucose (mg/dL) | 134 (108–171) | 136 (108–174) | 135 (111–156) | 0.682 |
HbA1c (%) | 7.3 (6.5–8.0) | 7.4 (6.4–8.1) | 7.2 (6.6–8.2) | 0.984 |
Total cholesterol (mg/dL) | 148 (127–171) | 158 (132–176) | 146 (124–175) | 0.925 |
HDL cholesterol (mg/dL) | 41 (35–51) | 44 (36–52) | 42 (37–48) | 0.882 |
LDL cholesterol (mg/dL) | 76 (55–96) | 82 (67–98) | 76 (56–96) | 0.501 |
Triglicerides (mg/dL) | 127 (96–166) | 123 (92–171) | 149 (102–209) | 0.228 |
Cognitive function | ||||
Self-Administered Gerocognitive Exam (SAGE) | 15.0 (12.0–17.0) | 16.0 (13.0–18.8) | 17.0 (14.3–19.0) | 0.005 |
Normal cognitive function | 19 (29.7%) | 28 (43.8%) | 3453.1%) | 0.008 |
Mild cognitive impairment | 18 (28.1%) | 14 (21.9%) | 1421.9%) | |
Severe Cognitive Impairment or dementia | 27 (42.2%) | 22 (34.4%) | 1625.0%) | |
Montreal Cognitive Assessment (MOCA) | 21.0 (18.0–23.0) | 22.0 (19.0–24.0) | 22.5 (20.0–25.0) | 0.014 |
Normal cognitive function | 13.0 (20.3%) | 19.0 (29.7%) | 23.0 (35.9%) | 0.044 |
Mild cognitive impairment | 38.0 (59.4%) | 34.0 (53.1%) | 34.0 (53.1%) | |
Severe Cognitive Impairment or dementia | 13.0 (20.3%) | 11.0 (17.2%) | 7.0 (10.9%) |
Tertile 1 (n = 64) | Tertile 2 (n = 64) | Tertile 3 (n = 64) | p-Value Trend | %E P:C | p-Value | |||
---|---|---|---|---|---|---|---|---|
%E P:C < 0.340 | %E P:C [0.340–0.415] | %E P:C > 0.415 | (Per Each 0.2 Units) | |||||
Montreal Cognitive Assessment (MOCA) | ||||||||
Visuospatial/Executive Function | ||||||||
Crude Model | 0 (reference) | 0.141 (−0.197–0.478) | 0.109 (−0.228–0.447) | 0.523 | 0.035 (−0.093–0.154) | 0.635 | ||
Adjusted Model * | 0 (reference) | 0.103 (−0.231–0.436) | 0.064 (−0.272–0.400) | 0.714 | 0.039 (−0.099–0.166) | 0.592 | ||
Naming | ||||||||
Crude Model | 0 (reference) | 0.188 (0.055–0.320) | 0.156 (0.024–0.289) | 0.022 | 0.160 (0.011–0.313) | 0.027 | ||
Adjusted Model * | 0 (reference) | 0.223 (0.090–0.356) | 0.187 (0.053 –0.322) | 0.008 | 0.201 (0.039–0.355) | 0.006 | ||
Attention | ||||||||
Crude Model | 0 (reference) | 0.125 (−0.375–0.625) | 0.312 (−0.187–0.812) | 0.218 | 0.112 (−0.002–0.243) | 0.123 | ||
Adjusted Model * | 0 (reference) | 0.150 (−0.328–0.628) | 0.323 (−0.159–0.806) | 0.186 | 0.146 (0.016–0.289) | 0.046 | ||
Language Fluency | ||||||||
Crude Model | 0 (reference) | 0.203 (−0.143–0.549) | 0.156 (−0.190–0.502) | 0.374 | 0.100 (−0.043–0.233) | 0.168 | ||
Adjusted Model * | 0 (reference) | 0.141 (−0.190–0.471) | 0.100 (−0.234–0.434) | 0.562 | 0.112 (−0.039–0.273) | 0.128 | ||
Abstraction | ||||||||
Crude Model | 0 (reference) | 0.172 (−0.110–0.454) | 0.219 (−0.063–0.501) | 0.127 | 0.054 (−0.088–0.215) | 0.457 | ||
Adjusted Model * | 0 (reference) | 0.139 (−0.142–0.420) | 0.212 (−0.071–0.496) | 0.141 | 0.068 (−0.096–0.224) | 0.353 | ||
Memory | ||||||||
Crude Model | 0 (reference) | 0.406 (−0.094–0.906) | 0.625 (0.125–1.125) | 0.014 | 0.152 (0.024–0.289) | 0.035 | ||
Adjusted Model * | 0 (reference) | 0.213 (−0.286–0.713) | 0.494 (−0.010–0.998) | 0.054 | 0.133 (0.004–0.274) | 0.069 | ||
Orientation | ||||||||
Crude Model | 0 (reference) | −0.031 (−0.240–0.178) | 0.156 (−0.053–0.365) | 0.143 | 0.075 (−0.056–0.197) | 0.301 | ||
Adjusted Model * | 0 (reference) | −0.028 (−0.240–0.183) | 0.192 (−0.022–0.405) | 0.074 | 0.109 (−0.033 –0.237) | 0.136 | ||
Total MOCA | ||||||||
Crude Model | 0 (reference) | 1.109 (−0.198–2.417) | 1.641 (0.333 –2.948) | 0.014 | 0.171 (0.059–0.297) | 0.017 | ||
Adjusted Model * | 0 (reference) | 0.874 (−0.358–2.107) | 1.441 (0.197–2.685) | 0.023 | 0.195 (0.072–0.326) | 0.007 | ||
Self-Administered Gerocognitive Exam (SAGE) | ||||||||
Orientation | ||||||||
Crude Model | 0 (reference) | 0.031 (−0.191–0.254) | 0.172 (−0.050–0.394) | 0.128 | 0.133 (0.023–0.242) | 0.067 | ||
Adjusted Model * | 0 (reference) | 0.040 (−0.189–0.269) | 0.206 (−0.025–0.437) | 0.078 | 0.161 (0.052–0.270) | 0.028 | ||
Naming | ||||||||
Crude Model | 0 (reference) | 0.016 (−0.149–0.180) | −0.016 (−0.180–0.149) | 0.851 | −0.056 (−0.191–0.091) | 0.440 | ||
Adjusted Model * | 0 (reference) | 0.005 (−0.163–0.172) | −0.019 (−0.188–0.149) | 0.817 | −0.048 (−0.195–0.098) | 0.512 | ||
Similarities | ||||||||
Crude Model | 0 (reference) | 0.219 (−0.122–0.559) | 0.406 (0.066 –0.747) | 0.019 | 0.075 (−0.061–0.217) | 0.299 | ||
Adjusted Model * | 0 (reference) | 0.193 (−0.145–0.532) | 0.410 (0.068–0.751) | 0.019 | 0.083 (−0.069–0.236) | 0.259 | ||
Calculation | ||||||||
Crude Model | 0 (reference) | 0.109 (−0.162–0.381) | 0.141 (−0.131–0.412) | 0.308 | 0.096 (−0.041–0.230) | 0.186 | ||
Adjusted Model * | 0 (reference) | 0.093 (−0.185–0.371) | 0.124 (−0.157–0.4049 | 0.386 | 0.099 (−0.043–0.242) | 0.178 | ||
Construction | ||||||||
Crude Model | 0 (reference) | 0.438 (−0.031–0.906) | 0.281 (−0.187–0.750) | 0.239 | 0.068 (−0.072–0.208) | 0.346 | ||
Adjusted Model * | 0 (reference) | 0.467 (0.016–0.919) | 0.272 (−0.183–0.728) | 0.254 | 0.088 (−0.059–0.232) | 0.232 | ||
Verbal Fluency | ||||||||
Crude Model | 0 (reference) | −0.047 (−0.170–0.077) | −0.001 (−0.124–0.124) | 1.000 | 0.006 (−0.075–0.090) | 0.929 | ||
Adjusted Model * | 0 (reference) | −0.058 (−0.185–0.069) | −0.009 (−0.137–0.728) | 0.905 | 0.010 (−0.056–0.084) | 0.896 | ||
Executive Function | ||||||||
Crude Model | 0 (reference) | 0.313 (−0.043 –0.668) | 0.438 (0.082–0.793) | 0.016 | 0.180 (0.058–0.309) | 0.013 | ||
Adjusted Model * | 0 (reference) | 0.316 (−0.041–0.673) | 0.494 (0.134–0.854) | 0.008 | 0.209 (0.081–0.327) | 0.004 | ||
Memory | ||||||||
Crude Model | 0 (reference) | 0.172 (−0.117 –0.460) | 0.281 (−0.007–0.570) | 0.055 | 0.089 (−0.040–0.229) | 0.219 | ||
Adjusted Model * | 0 (reference) | 0.146 (−0.123–0.416) | 0.253 (−0.019–0.525) | 0.068 | 0.103 (−0.054–0.252) | 0.159 | ||
Total SAGE | ||||||||
Crude Model | 0 (reference) | 1.250 (0.065 –2.435) | 1.703 (0.518–2.888) | 0.005 | 0.162 (0.035–0.303) | 0.025 | ||
Adjusted Model * | 0 (reference) | 1.202 (0.145 –2.259) | 1.731 (0.664–2.797) | 0.002 | 0.212 (0.068–0.352) | 0.004 |
Crude OR | (95% CI for OR) | p-Value | Adjusted OR * | (95% CI for OR) | p-Value | |
---|---|---|---|---|---|---|
Protein-to-carbohydrate ratio < 0.375 units | 1.996 | (1.049–3.800) | 0.035 | 2.089 | (1.019–4.283) | 0.044 |
Protein-to-carbohydrate ratio (per each decrease of 0.2 units) | 2.413 | (1.155–5.043) | 0.019 | 2.544 | (1.121–5.775) | 0.026 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pujol, A.; Sanchis, P.; Tamayo, M.I.; Godoy, S.; Andrés, P.; Speranskaya, A.; Espino, A.; Estremera, A.; Rigo, E.; Amengual, G.J.; et al. Association of Low Protein-to-Carbohydrate Energy Ratio with Cognitive Impairment in Elderly Type 2 Diabetes Patients. Nutrients 2024, 16, 3888. https://doi.org/10.3390/nu16223888
Pujol A, Sanchis P, Tamayo MI, Godoy S, Andrés P, Speranskaya A, Espino A, Estremera A, Rigo E, Amengual GJ, et al. Association of Low Protein-to-Carbohydrate Energy Ratio with Cognitive Impairment in Elderly Type 2 Diabetes Patients. Nutrients. 2024; 16(22):3888. https://doi.org/10.3390/nu16223888
Chicago/Turabian StylePujol, Antelm, Pilar Sanchis, María I. Tamayo, Samantha Godoy, Pilar Andrés, Aleksandra Speranskaya, Ana Espino, Ana Estremera, Elena Rigo, Guillermo J. Amengual, and et al. 2024. "Association of Low Protein-to-Carbohydrate Energy Ratio with Cognitive Impairment in Elderly Type 2 Diabetes Patients" Nutrients 16, no. 22: 3888. https://doi.org/10.3390/nu16223888