The Impact of Parental Preconception Nutrition, Body Weight, and Exercise Habits on Offspring Health Outcomes: A Narrative Review
Abstract
:1. Introduction
2. Methodology
3. The Impact of Parental Health During Preconception on Offspring
3.1. The Impact of Parental Diet During Preconception
3.1.1. The Impact of Maternal Diet
3.1.2. The Impact of Paternal Diet
3.2. The Impact of Parental Obesity During Preconception
3.2.1. The Impact of Maternal Obesity
3.2.2. The Impact of Paternal Obesity
3.3. The Impact of Parental Diabetes During Preconception
3.3.1. The Impact of Maternal Diabetes
3.3.2. The Impact of Paternal Diabetes
3.4. The Impact of Parental Exercise During Preconception
3.4.1. The Impact of Maternal Exercise
3.4.2. The Impact of Paternal Exercise
3.4.3. Interactive Effects of Diet and Exercise
4. The Impact of Parental Diet on Metabolism
4.1. The Effect of Parental Diet on Glucose Metabolism in Offspring
4.1.1. The Impact of Maternal Diet
4.1.2. The Impact of Paternal Diet
4.2. The Effect of Parental Diet on Lipid Metabolism in Offspring
4.2.1. The Impact of Maternal Diet
4.2.2. The Impact of Paternal Diet
5. The Impact of Parental Diet on Immune System and Inflammation
5.1. The Impact of Parental Health on the Immune System
5.1.1. The Effect of Maternal Diet
5.1.2. The Effect of Paternal Diet
5.2. The Impact of Parental Health on Inflammation
6. The Impact of Parental Diet on Offspring Behavior
6.1. The Impact of Maternal Diet
6.2. The Impact of Paternal Diet
7. Future Directions
8. Study Limitations and Strengths
9. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Aris, I.M.; Fleisch, A.F.; Oken, E. Developmental Origins of Disease: Emerging Prenatal Risk Factors and Future Disease Risk. Curr. Epidemiol. Rep. 2018, 5, 293–302. [Google Scholar] [CrossRef] [PubMed]
- Hieronimus, B.; Ensenauer, R. Influence of Maternal and Paternal Pre-Conception Overweight/Obesity on Offspring Outcomes and Strategies for Prevention. Eur. J. Clin. Nutr. 2021, 75, 1735–1744. [Google Scholar] [CrossRef] [PubMed]
- Sharp, G.C.; Lawlor, D.A. Paternal Impact on the Life Course Development of Obesity and Type 2 Diabetes in the Offspring. Diabetologia 2019, 62, 1802–1810. [Google Scholar] [CrossRef] [PubMed]
- Dahlen, C.R.; Amat, S.; Caton, J.S.; Crouse, M.S.; Da Silva Diniz, W.J.; Reynolds, L.P. Paternal Effects on Fetal Programming. Anim. Reprod. 2023, 20, e20230076. [Google Scholar] [CrossRef]
- Eberle, C.; Kirchner, M.F.; Herden, R.; Stichling, S. Paternal Metabolic and Cardiovascular Programming of Their Offspring: A Systematic Scoping Review. PLoS ONE 2020, 15, e0244826. [Google Scholar] [CrossRef]
- Dimofski, P.; Meyre, D.; Dreumont, N.; Leininger-Muller, B. Consequences of Paternal Nutrition on Offspring Health and Disease. Nutrients 2021, 13, 2818. [Google Scholar] [CrossRef]
- Fullston, T.; Teague, E.M.C.O.; Palmer, N.O.; Deblasio, M.J.; Mitchell, M.; Corbett, M.; Print, C.G.; Owens, J.A.; Lane, M. Paternal Obesity Initiates Metabolic Disturbances in Two Generations of Mice with Incomplete Penetrance to the F2 Generation and Alters the Transcriptional Profile of Testis and Sperm MicroRNA Content. FASEB J. 2013, 27, 4226–4243. [Google Scholar] [CrossRef]
- Raad, G.; Hazzouri, M.; Bottini, S.; Trabucchi, M.; Azoury, J.; Grandjean, V. Paternal Obesity: How Bad Is It for Sperm Quality and Progeny Health? Basic Clin. Androl. 2017, 27, 20. [Google Scholar] [CrossRef]
- Soubry, A.; Schildkraut, J.M.; Murtha, A.; Wang, F.; Huang, Z.; Bernal, A.; Kurtzberg, J.; Jirtle, R.L.; Murphy, S.K.; Hoyo, C. Paternal Obesity Is Associated with IGF2 Hypomethylation in Newborns: Results from a Newborn Epigenetics Study (NEST) Cohort. BMC Med. 2013, 11, 29. [Google Scholar] [CrossRef]
- Bromfield, J.J.; Schjenken, J.E.; Chin, P.Y.; Care, A.S.; Jasper, M.J.; Robertson, S.A. Maternal Tract Factors Contribute to Paternal Seminal Fluid Impact on Metabolic Phenotype in Offspring. Proc. Natl. Acad. Sci. USA 2014, 111, 2200–2205. [Google Scholar] [CrossRef]
- Hardy, K.; Spanos, S. Growth Factor Expression and Function in the Human and Mouse Preimplantation Embryo. J. Endocrinol. 2002, 172, 221–236. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.; Li, Z.; Wang, G.; Wang, H.; Zhou, Y.; Zhao, X.; Cheng, C.Y.; Qiao, Y.; Sun, F. Sperm Epigenetic Alterations Contribute to Inter- and Transgenerational Effects of Paternal Exposure to Long-Term Psychological Stress via Evading Offspring Embryonic Reprogramming. Cell Discov. 2021, 7, 101. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Miao, Z.; Sun, M.; Wan, B. Epigenetic Mechanisms of Paternal Stress in Offspring Development and Diseases. Int. J. Genom. 2021, 2021, 6632719. [Google Scholar] [CrossRef]
- Billah, M.M.; Khatiwada, S.; Morris, M.J.; Maloney, C.A. Effects of Paternal Overnutrition and Interventions on Future Generations. Int. J. Obes. 2022, 46, 901–917. [Google Scholar] [CrossRef] [PubMed]
- Ben Maamar, M.; King, S.E.; Nilsson, E.; Beck, D.; Skinner, M.K. Epigenetic Transgenerational Inheritance of Parent-of-Origin Allelic Transmission of Outcross Pathology and Sperm Epimutations: Epigenetic Transgenerational Parent-of-Origin Allelic Transmission. Dev. Biol. 2020, 458, 106–119. [Google Scholar] [CrossRef] [PubMed]
- Mousa, A.; Naqash, A.; Lim, S. Macronutrient and Micronutrient Intake during Pregnancy: An Overview of Recent Evidence. Nutrients 2019, 11, 443. [Google Scholar] [CrossRef]
- Marshall, N.E.; Abrams, B.; Barbour, L.A.; Catalano, P.; Christian, P.; Friedman, J.E.; Hay, W.W.; Hernandez, T.L.; Krebs, N.F.; Oken, E.; et al. The Importance of Nutrition in Pregnancy and Lactation: Lifelong Consequences. Am. J. Obstet. Gynecol. 2022, 226, 607–632. [Google Scholar] [CrossRef]
- Lowensohn, R.I.; Stadler, D.D.; Naze, C. Current Concepts of Maternal Nutrition. Obstet. Gynecol. Surv. 2016, 71, 413–426. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zeng, Y.m.; Luo, Y.d.; He, J.; Luo, B.w.; Lu, X.c.; Zhu, L.l. Effects of Folic Acid and Folic Acid plus Zinc Supplements on the Sperm Characteristics and Pregnancy Outcomes of Infertile Men: A Systematic Review and Meta-Analysis. Heliyon 2023, 9, e18224. [Google Scholar] [CrossRef]
- Crider, K.S.; Qi, Y.P.; Yeung, L.F.; Mai, C.T.; Head Zauche, L.; Wang, A.; Daniels, K.; Williams, J.L. Folic Acid and the Prevention of Birth Defects: 30 Years of Opportunity and Controversies. Annu. Rev. Nutr. 2022, 42, 423–452. [Google Scholar] [CrossRef]
- Levine, S.Z.; Kodesh, A.; Viktorin, A.; Smith, L.; Uher, R.; Reichenberg, A.; Sandin, S. Association of Maternal Use of Folic Acid and Multivitamin Supplements in the Periods before and during Pregnancy with the Risk of Autism Spectrum Disorder in Offspring. JAMA Psychiatry 2018, 75, 176–184. [Google Scholar] [CrossRef] [PubMed]
- Chambers, T.J.G.; Morgan, M.D.; Heger, A.H.; Sharpe, R.M.; Drake, A.J. High-Fat Diet Disrupts Metabolism in Two Generations of Rats in a Parent-of-Origin Specific Manner. Sci. Rep. 2016, 6, 31857. [Google Scholar] [CrossRef] [PubMed]
- De-Regil, L.M.; Fernández-Gaxiola, A.C.; Dowswell, T.; Peña-Rosas, J.P. Effects and Safety of Periconceptional Folate Supplementation for Preventing Birth Defects. Cochrane Database Syst. Rev. 2010, 2010, CD007950. [Google Scholar] [CrossRef]
- Crott, J.W. Effects of Altered Parental Folate and One-Carbon Nutrient Status on Offspring Growth and Metabolism. Mol. Aspects Med. 2017, 53, 28–35. [Google Scholar] [CrossRef]
- McCoy, C.R.; Jackson, N.L.; Brewer, R.L.; Moughnyeh, M.M.; Smith, D.L.; Clinton, S.M. A Paternal Methyl Donor Depleted Diet Leads to Increased Anxiety- and Depression-like Behavior in Adult Rat Offspring. Biosci. Rep. 2018, 38, BSR20180730. [Google Scholar] [CrossRef]
- Lambrot, R.; Xu, C.; Saint-Phar, S.; Chountalos, G.; Cohen, T.; Paquet, M.; Suderman, M.; Hallett, M.; Kimmins, S. Low Paternal Dietary Folate Alters the Mouse Sperm Epigenome and Is Associated with Negative Pregnancy Outcomes. Nat. Commun. 2013, 4, 2889. [Google Scholar] [CrossRef]
- Martín-Calvo, N.; Mínguez-Alarcón, L.; Gaskins, A.J.; Nassan, F.L.; Williams, P.L.; Souter, I.; Hauser, R.; Chavarro, J.E. Paternal Preconception Folate Intake in Relation to Gestational Age at Delivery and Birthweight of Newborns Conceived through Assisted Reproduction. Reprod. Biomed. Online 2019, 39, 835–843. [Google Scholar] [CrossRef]
- Yuan, H.F.; Zhao, K.; Zang, Y.; Liu, C.Y.; Hu, Z.Y.; Wei, J.J.; Zhou, T.; Li, Y.; Zhang, H.P. Effect of Folate Deficiency on Promoter Methylation and Gene Expression of Esr1, Cav1, and Elavl1, and Its Influence on Spermatogenesis. Oncotarget 2017, 8, 24130–24141. [Google Scholar] [CrossRef]
- Swayne, B.G.; Kawata, A.; Behan, N.A.; Williams, A.; Wade, M.G.; MacFarlane, A.J.; Yauk, C.L. Investigating the Effects of Dietary Folic Acid on Sperm Count, DNA Damage and Mutation in Balb/c Mice. Mutat. Res. Fund. Mol. Mech. Mutagen. 2012, 737, 1–7. [Google Scholar] [CrossRef]
- Tomizawa, H.; Matsuzawa, D.; Ishii, D.; Matsuda, S.; Kawai, K.; Mashimo, Y.; Sutoh, C.; Shimizu, E. Methyl-Donor Deficiency in Adolescence Affects Memory and Epigenetic Status in the Mouse Hippocampus. Genes Brain Behav. 2015, 14, 301–309. [Google Scholar] [CrossRef]
- Kim, H.W.; Kim, K.N.; Choi, Y.J.; Chang, N. Effects of Paternal Folate Deficiency on the Expression of Insulin-like Growth Factor-2 and Global DNA Methylation in the Fetal Brain. Mol. Nutr. Food Res. 2013, 57, 671–676. [Google Scholar] [CrossRef] [PubMed]
- Mejos, K.K.; Kim, H.W.; Lim, E.M.; Chang, N. Effects of Parental Folate Deficiency on the Folate Content, Global DNA Methylation, and Expressions of FRα, IGF-2 and IGF-1R in the Postnatal Rat Liver. Nutr. Res. Pract. 2013, 7, 281–286. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Duan, X.; Tan, D.; Zhang, B.; Xu, A.; Qiu, N.; Chen, Z. Iron Deficiency and Overload in Men and Woman of Reproductive Age, and Pregnant Women. Reprod. Toxicol. 2023, 118, 108381. [Google Scholar] [CrossRef]
- Zimmermann, M.B.; Boelaert, K. Iodine Deficiency and Thyroid Disorders. Lancet Diabetes Endocrinol. 2015, 3, 286–295. [Google Scholar] [CrossRef]
- Pérez-López, F.R.; Pasupuleti, V.; Mezones-Holguin, E.; Benites-Zapata, V.A.; Thota, P.; Deshpande, A.; Hernandez, A.V. Effect of Vitamin D Supplementation during Pregnancy on Maternal and Neonatal Outcomes: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Fertil. Steril. 2015, 103, 1278–1288.e4. [Google Scholar] [CrossRef]
- Stephenson, J.; Heslehurst, N.; Hall, J.; Schoenaker, D.A.J.M.; Hutchinson, J.; Cade, J.E.; Poston, L.; Barrett, G.; Crozier, S.R.; Barker, M.; et al. Before the Beginning: Nutrition and Lifestyle in the Preconception Period and Its Importance for Future Health. Lancet 2018, 391, 1830–1841. [Google Scholar] [CrossRef] [PubMed]
- Watkins, A.J.; Sinclair, K.D. Paternal Low Protein Diet Affects Adult Offspring Cardiovascular and Metabolic Function in Mice. Am. J. Physiol. Heart Circ. Physiol. 2014, 306, H1444–H1452. [Google Scholar] [CrossRef]
- Murray, C.J.L.; Barber, R.M.; Foreman, K.J.; Ozgoren, A.A.; Abd-Allah, F.; Abera, S.F.; Aboyans, V.; Abraham, J.P.; Abubakar, I.; Abu-Raddad, L.J.; et al. Global, Regional, and National Disability-Adjusted Life Years (DALYs) for 306 Diseases and Injuries and Healthy Life Expectancy (HALE) for 188 Countries, 1990-2013: Quantifying the Epidemiological Transition. Lancet 2015, 386, 2145–2191. [Google Scholar] [CrossRef]
- Wu, G.; Imhoff-Kunsch, B.; Girard, A.W. Biological Mechanisms for Nutritional Regulation of Maternal Health and Fetal Development. Paediatr. Perinat. Epidemiol. 2012, 26 (Suppl. S1), 4–26. [Google Scholar] [CrossRef]
- Cetin, I.; Mandò, C.; Calabrese, S. Maternal Predictors of Intrauterine Growth Restriction. Curr. Opin. Clin. Nutr. Metab. Care 2013, 16, 310–319. [Google Scholar] [CrossRef]
- Dean, S.V.; Lassi, Z.S.; Imam, A.M.; Bhutta, Z.A. Preconception Care: Nutritional Risks and Interventions. Reprod. Health 2014, 11 (Suppl. S3), S3. [Google Scholar] [CrossRef] [PubMed]
- Przybysz, P.; Kruszewski, A.; Kacperczyk-Bartnik, J.; Romejko-Wolniewicz, E. The Impact of Maternal Plant-Based Diet on Obstetric and Neonatal Outcomes—A Cross-Sectional Study. Nutrients 2023, 15, 4717. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, F.; Wang, X.; Wells, J.C.; Wang, X.; Shen, L.; Zhang, J. Maternal Pre-Pregnancy Nutritional Status and Infant Birth Weight in Relation to 0–2 Year-Growth Trajectory and Adiposity in Term Chinese Newborns with Appropriate Birth Weight-for-Gestational Age. Nutrients 2023, 15, 1125. [Google Scholar] [CrossRef] [PubMed]
- Terada, S.; Isumi, A.; Doi, S.; Fujiwara, T. Association of Maternal Pre-Pregnancy Body Mass Index with Resilience and Prosociality of the Offspring Aged 6–7 Years Old: A Population-Based Cohort Study in Japan. Eur. Child. Adolesc. Psychiatry 2024, 33, 861–869. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, P.H.; Young, M.F.; Khuong, L.Q.; Tran, L.M.; Duong, T.H.; Nguyen, H.C.; Martorell, R.; Ramakrishnan, U. Maternal Preconception Body Size and Early Childhood Growth during Prenatal and Postnatal Periods Are Positively Associated with Child-Attained Body Size at Age 6-7 Years: Results from a Follow-up of the PRECONCEPT Trial. J. Nutr. 2021, 151, 1302–1310. [Google Scholar] [CrossRef]
- Soliman, A.; De Sanctis, V.; Alaaraj, N.; Ahmed, S.; Alyafei, F.; Hamed, N.; Soliman, N. Early and Long-Term Consequences of Nutritional Stunting: From Childhood to Adulthood. Acta Biomed. 2021, 92, 11346. [Google Scholar] [CrossRef]
- Black, R.E.; Victora, C.G.; Walker, S.P.; Bhutta, Z.A.; Christian, P.; De Onis, M.; Ezzati, M.; Grantham-Mcgregor, S.; Katz, J.; Martorell, R.; et al. Maternal and Child Undernutrition and Overweight in Low-Income and Middle-Income Countries. Lancet 2013, 382, 427–451. [Google Scholar] [CrossRef]
- Knop, M.R.; Nagashima-Hayashi, M.; Lin, R.; Saing, C.H.; Ung, M.; Oy, S.; Yam, E.L.Y.; Zahari, M.; Yi, S. Impact of MHealth Interventions on Maternal, Newborn, and Child Health from Conception to 24 Months Postpartum in Low- and Middle-Income Countries: A Systematic Review. BMC Med. 2024, 22, 196. [Google Scholar] [CrossRef]
- Han, Z.; Mulla, S.; Beyene, J.; Liao, G.; McDonald, S.D. Maternal Underweight and the Risk of Preterm Birth and Low Birth Weight: A Systematic Review and Meta-Analyses. Int. J. Epidemiol. 2011, 40, 65–101. [Google Scholar] [CrossRef]
- Nogues, P.; Dos Santos, E.; Couturier-Tarrade, A.; Berveiller, P.; Arnould, L.; Lamy, E.; Grassin-Delyle, S.; Vialard, F.; Dieudonne, M.N. Maternal Obesity Influences Placental Nutrient Transport, Inflammatory Status, and Morphology in Human Term Placenta. J. Clin. Endocrinol. Metab. 2021, 106, 1880–1896. [Google Scholar] [CrossRef]
- Perumal, N.; Bassani, D.G.; Roth, D.E. Use and Misuse of Stunting as a Measure of Child Health. J. Nutr. 2018, 148, 311–315. [Google Scholar] [CrossRef] [PubMed]
- Odhiambo, J.F.; Pankey, C.L.; Ghnenis, A.B.; Ford, S.P. A Review of Maternal Nutrition during Pregnancy and Impact on the Offspring through Development: Evidence from Animal Models of over-and Undernutrition. Int. J. Environ. Res. Public Health 2020, 17, 6926. [Google Scholar] [CrossRef] [PubMed]
- Reynolds, C.M.; Vickers, M.H. Editorial: Maternal Diet and Offspring Health. Front. Nutr. 2022, 9, 867661. [Google Scholar] [CrossRef]
- Lewis, A.J.; Austin, E.; Knapp, R.; Vaiano, T.; Galbally, M. Perinatal Maternal Mental Health, Fetal Programming and Child Development. Healthcare 2015, 3, 1212–1227. [Google Scholar] [CrossRef]
- Lillycrop, K.A.; Burdge, G.C. Epigenetic Changes in Early Life and Future Risk of Obesity. Int. J. Obes. 2011, 35, 72–83. [Google Scholar] [CrossRef]
- Matzkin, L.M.; Johnson, S.; Paight, C.; Markow, T.A. Preadult Parental Diet Affects Offspring Development and Metabolism in Drosophila Melanogaster. PLoS ONE 2013, 8, e59530. [Google Scholar] [CrossRef]
- Entringer, S.; Buss, C.; Wadhwa, P.D. Prenatal Stress, Development, Health and Disease Risk: A Psychobiological Perspective-2015 Curt Richter Award Paper. Psychoneuroendocrinology 2015, 62, 366–375. [Google Scholar] [CrossRef] [PubMed]
- Fullston, T.; Palmer, N.O.; Owens, J.A.; Mitchell, M.; Bakos, H.W.; Lane, M. Diet-Induced Paternal Obesity in the Absence of Diabetes Diminishes the Reproductive Health of Two Subsequent Generations of Mice. Hum. Reprod. 2012, 27, 1391–1400. [Google Scholar] [CrossRef]
- Salto, R.; Girón, M.D.; Manzano, M.; Martín, M.J.; Vílchez, J.D.; Bueno-Vargas, P.; Cabrera, E.; Pérez-Alegre, M.; Andujar, E.; Rueda, R.; et al. Programming Skeletal Muscle Metabolic Flexibility in Offspring of Male Rats in Response to Maternal Consumption of Slow Digesting Carbohydrates during Pregnancy. Nutrients 2020, 12, 528. [Google Scholar] [CrossRef]
- Morgan, H.L.; Aljumah, A.; Rouillon, C.; Watkins, A.J. Paternal Low Protein Diet and the Supplementation of Methyl-Donors Impact Fetal Growth and Placental Development in Mice. Placenta 2021, 103, 124–133. [Google Scholar] [CrossRef]
- Furse, S.; Morgan, H.L.; Koulman, A.; Watkins, A.J. Characterisation of the Paternal Influence on Intergenerational Offspring Cardiac and Brain Lipid Homeostasis in Mice. Int. J. Mol. Sci. 2023, 24, 1814. [Google Scholar] [CrossRef]
- Cao, R.; Xie, J.; Zhang, L. Abnormal Methylation Caused by Folic Acid Deficiency in Neural Tube Defects. Open Life Sci. 2022, 17, 1679–1688. [Google Scholar] [CrossRef] [PubMed]
- Shi, Q.; Qi, K. Developmental Origins of Health and Disease: Impact of Paternal Nutrition and Lifestyle. Pediatr. Investig. 2023, 7, 111–131. [Google Scholar] [CrossRef] [PubMed]
- Al Aboud, N.M.; Jialal, I. Tupper Connor Genetics, Epigenetic Mechanism [Updated 14 August 2023]; StatPearls [Internet]: Treasure Island, FL, USA, 2018. [Google Scholar]
- Mierziak, J.; Kostyn, K.; Boba, A.; Czemplik, M.; Kulma, A.; Wojtasik, W. Influence of the Bioactive Diet Components on the Gene Expression Regulation. Nutrients 2021, 13, 3673. [Google Scholar] [CrossRef] [PubMed]
- Banik, A.; Kandilya, D.; Ramya, S.; Stünkel, W.; Chong, Y.S.; Thameem Dheen, S. Maternal Factors That Induce Epigenetic Changes Contribute to Neurological Disorders in Offspring. Genes 2017, 8, 150. [Google Scholar] [CrossRef]
- da Cruz, R.S.; Carney, E.J.; Clarke, J.; Cao, H.; Cruz, M.I.; Benitez, C.; Jin, L.; Fu, Y.; Cheng, Z.; Wang, Y.; et al. Paternal Malnutrition Programs Breast Cancer Risk and Tumor Metabolism in Offspring. Breast Cancer Res. 2018, 20, 99. [Google Scholar] [CrossRef]
- Sabet, J.A.; Park, L.K.; Iyer, L.K.; Tai, A.K.; Koh, G.Y.; Pfalzer, A.C.; Parnell, L.D.; Mason, J.B.; Liu, Z.; Byun, A.J.; et al. Paternal B Vitamin Intake Is a Determinant of Growth, Hepatic Lipid Metabolism and Intestinal Tumor Volume in Female Apc1638N Mouse Offspring. PLoS ONE 2016, 11, e0154979. [Google Scholar] [CrossRef]
- Kanwal, R.; Gupta, S. Epigenetic Modifications in Cancer. Clin. Genet. 2012, 81, 303–311. [Google Scholar] [CrossRef]
- Wu, T.; Cai, W.; Chen, X. Epigenetic Regulation of Neurotransmitter Signaling in Neurological Disorders. Neurobiol. Dis. 2023, 184, 106232. [Google Scholar] [CrossRef]
- Pullar, J.; Wickramasinghe, K.; Demaio, A.R.; Roberts, N.; Perez-Blanco1, K.M.; Noonan, K.; Townsend, N. The Impact of Maternal Nutrition on Offspring’s Risk of Non-Communicable Diseases in Adulthood: A Systematic Review. J. Glob. Health 2019, 9, 020405. [Google Scholar] [CrossRef]
- Day, J.; Savani, S.; Krempley, B.D.; Nguyen, M.; Kitlinska, J.B. Influence of Paternal Preconception Exposures on Their Offspring: Through Epigenetics to Phenotype. Am. J. Stem Cells 2016, 5, 11–18. [Google Scholar] [PubMed]
- Fuemmeler, B.F.; Lovelady, C.A.; Zucker, N.L.; Østbye, T. Parental Obesity Moderates the Relationship between Childhood Appetitive Traits and Weight. Obesity 2013, 21, 815–823. [Google Scholar] [CrossRef] [PubMed]
- Heslehurst, N.; Vieira, R.; Akhter, Z.; Bailey, H.; Slack, E.; Ngongalah, L.; Pemu, A.; Rankin, J. The Association between Maternal Body Mass Index and Child Obesity: A Systematic Review and Meta-Analysis. PLoS Med. 2019, 16, e1002817. [Google Scholar] [CrossRef]
- Den Harink, T.; Roelofs, M.J.M.; Limpens, J.; Painter, R.C.; Roseboom, T.J.; Van Deutekom, A.W. Maternal Obesity in Pregnancy and Children’s Cardiac Function and Structure: A Systematic Review and Meta-Analysis of Evidence from Human Studies. PLoS ONE 2022, 17, e0275236. [Google Scholar] [CrossRef]
- Edlow, A.G. Maternal Obesity and Neurodevelopmental and Psychiatric Disorders in Offspring. Prenat. Diagn. 2017, 37, 95–110. [Google Scholar] [CrossRef] [PubMed]
- Adane, A.A.; Mishra, G.D.; Tooth, L.R. Maternal Pre-Pregnancy Obesity and Childhood Physical and Cognitive Development of Children: A Systematic Review. Int. J. Obes. 2016, 40, 1608–1618. [Google Scholar] [CrossRef] [PubMed]
- Álvarez-Bueno, C.; Cavero-Redondo, I.; Lucas-de la Cruz, L.; Notario-Pacheco, B.; Martínez-Vizcaíno, V. Association between Pre-Pregnancy Overweight and Obesity and Children’s Neurocognitive Development: A Systematic Review and Meta-Analysis of Observational Studies. Int. J. Epidemiol. 2017, 46, 1653–1666. [Google Scholar] [CrossRef] [PubMed]
- Lei, X.Y.; Li, Y.J.; Ou, J.J.; Li, Y.M. Association between Parental Body Mass Index and Autism Spectrum Disorder: A Systematic Review and Meta-Analysis. Eur. Child. Adolesc. Psychiatry 2019, 28, 933–947. [Google Scholar] [CrossRef]
- Li, L.; Lagerberg, T.; Chang, Z.; Cortese, S.; Rosenqvist, M.A.; Almqvist, C.; D’Onofrio, B.M.; Hegvik, T.A.; Hartman, C.; Chen, Q.; et al. Maternal Pre-Pregnancy Overweight/Obesity and the Risk of Attention-Deficit/Hyperactivity Disorder in Offspring: A Systematic Review, Metaanalysis and Quasi-Experimental Family-Based Study. Int. J. Epidemiol. 2021, 49, 857–875. [Google Scholar] [CrossRef]
- Li, Y.M.; Ou, J.J.; Liu, L.; Zhang, D.; Zhao, J.P.; Tang, S.Y. Association Between Maternal Obesity and Autism Spectrum Disorder in Offspring: A Meta-Analysis. J. Autism. Dev. Disord. 2016, 46, 95–102. [Google Scholar] [CrossRef]
- Sanchez, C.E.; Barry, C.; Sabhlok, A.; Russell, K.; Majors, A.; Kollins, S.H.; Fuemmeler, B.F. Maternal Pre-Pregnancy Obesity and Child Neurodevelopmental Outcomes: A Meta-Analysis. Obesity Rev. 2018, 19, 464–484. [Google Scholar] [CrossRef] [PubMed]
- Yeung, A.Y.; Tadi, P. Physiology, Obesity Neurohormonal Appetite And Satiety Control. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
- Zheng, L.; Yang, L.; Guo, Z.; Yao, N.; Zhang, S.; Pu, P. Obesity and Its Impact on Female Reproductive Health: Unraveling the Connections. Front. Endocrinol. 2023, 14, 1326546. [Google Scholar] [CrossRef] [PubMed]
- Santangelo, C.; Varì, R.; Scazzocchio, B.; Filesi, C.; Masella, R. Management of Reproduction and Pregnancy Complications in Maternal Obesity: Which Role for Dietary Polyphenols? BioFactors 2014, 40, 79–102. [Google Scholar] [CrossRef]
- Tahiri, I.; Llana, S.R.; Fos-Domènech, J.; Milà-Guash, M.; Toledo, M.; Haddad-Tóvolli, R.; Claret, M.; Obri, A. Paternal Obesity Induces Changes in Sperm Chromatin Accessibility and Has a Mild Effect on Offspring Metabolic Health. Heliyon 2024, 10, e34043. [Google Scholar] [CrossRef]
- de Castro Barbosa, T.; Ingerslev, L.R.; Alm, P.S.; Versteyhe, S.; Massart, J.; Rasmussen, M.; Donkin, I.; Sjögren, R.; Mudry, J.M.; Vetterli, L.; et al. High-Fat Diet Reprograms the Epigenome of Rat Spermatozoa and Transgenerationally Affects Metabolism of the Offspring. Mol. Metab. 2016, 5, 184–197. [Google Scholar] [CrossRef]
- Ng, S.F.; Lin, R.C.Y.; Laybutt, D.R.; Barres, R.; Owens, J.A.; Morris, M.J. Chronic High-Fat Diet in Fathers Programs β 2-Cell Dysfunction in Female Rat Offspring. Nature 2010, 467, 963–966. [Google Scholar] [CrossRef] [PubMed]
- Öst, A.; Lempradl, A.; Casas, E.; Weigert, M.; Tiko, T.; Deniz, M.; Pantano, L.; Boenisch, U.; Itskov, P.M.; Stoeckius, M.; et al. Paternal Diet Defines Offspring Chromatin State and Intergenerational Obesity. Cell 2014, 159, 1352–1364. [Google Scholar] [CrossRef]
- Raad, G.; Serra, F.; Martin, L.; Derieppe, M.A.; Gilleron, J.; Costa, V.L.; Pisani, D.F.; Amri, E.Z.; Trabucchi, M.; Grandjean, V. Paternal Multigenerational Exposure to an Obesogenic Diet Drives Epigenetic Predisposition to Metabolic Diseases in Mice. eLife 2021, 10, e61736. [Google Scholar] [CrossRef]
- Aizawa, S.; Tochihara, A.; Yamamuro, Y. Paternal High-Fat Diet Alters Triglyceride Metabolism-Related Gene Expression in Liver and White Adipose Tissue of Male Mouse Offspring. Biochem. Biophys. Rep. 2022, 31, 101330. [Google Scholar] [CrossRef]
- Fullston, T.; McPherson, N.O.; Owens, J.A.; Kang, W.X.; Sandeman, L.Y.; Lane, M. Paternal Obesity Induces Metabolic and Sperm Disturbances in Male Offspring That Are Exacerbated by Their Exposure to an “Obesogenic” Diet. Physiol. Rep. 2015, 3, e12336. [Google Scholar] [CrossRef]
- Masuyama, H.; Mitsui, T.; Eguchi, T.; Tamada, S.; Hiramatsu, Y. The Effects of Paternal High-Fat Diet Exposure on Offspring Metabolism with Epigenetic Changes in the Mouse Adiponectin and Leptin Gene Promoters. Am. J. Physiol. Endocrinol. Metab. 2016, 311, E236–E245. [Google Scholar] [CrossRef] [PubMed]
- Casasnovas, J.; Damron, C.L.; Jarrell, J.; Orr, K.S.; Bone, R.N.; Archer-Hartmann, S.; Azadi, P.; Kua, K.L. Offspring of Obese Dams Exhibit Sex-Differences in Pancreatic Heparan Sulfate Glycosaminoglycans and Islet Insulin Secretion. Front. Endocrinol. 2021, 12, 658439. [Google Scholar] [CrossRef]
- Ramaraju, G.A.; Teppala, S.; Prathigudupu, K.; Kalagara, M.; Thota, S.; Kota, M.; Cheemakurthi, R. Association between Obesity and Sperm Quality. Andrologia 2018, 50, e12888. [Google Scholar] [CrossRef] [PubMed]
- Panera, N.; Mandato, C.; Crudele, A.; Bertrando, S.; Vajro, P.; Alisi, A. Genetics, Epigenetics and Transgenerational Transmission of Obesity in Children. Front. Endocrinol. 2022, 13, 1006008. [Google Scholar] [CrossRef]
- Cabler, S.; Agarwal, A.; Flint, M.; Du Plessis, S.S. Obesity: Modern Man’s Fertility Nemesis. Asian J. Androl. 2010, 12, 480–489. [Google Scholar] [CrossRef]
- Kort, H.I.; Massey, J.B.; Elsner, C.W.; Mitchell-Leef, D.; Shapiro, D.B.; Witt, M.A.; Roudebush, W.E. Impact of Body Mass Index Values on Sperm Quantity and Quality. J. Androl. 2006, 27, 450–452. [Google Scholar] [CrossRef]
- Macdonald, A.A.; Stewart, A.W.; Farquhar, C.M. Body Mass Index in Relation to Semen Quality and Reproductive Hormones in New Zealand Men: A Cross-Sectional Study in Fertility Clinics. Hum. Reprod. 2013, 28, 3178–3187. [Google Scholar] [CrossRef] [PubMed]
- Hammoud, A.O.; Wilde, N.; Gibson, M.; Parks, A.; Carrell, D.T.; Meikle, A.W. Male Obesity and Alteration in Sperm Parameters. Fertil. Steril. 2008, 90, 2222–2225. [Google Scholar] [CrossRef]
- González-Domínguez, Á.; Jurado-Sumariva, L.; Domínguez-Riscart, J.; Saez-Benito, A.; González-Domínguez, R. Parental Obesity Predisposes to Exacerbated Metabolic and Inflammatory Disturbances in Childhood Obesity within the Framework of an Altered Profile of Trace Elements. Nutr. Diabetes 2024, 14, 2. [Google Scholar] [CrossRef]
- Rodgers, A.B.; Morgan, C.P.; Leu, N.A.; Bale, T.L. Transgenerational Epigenetic Programming via Sperm MicroRNA Recapitulates Effects of Paternal Stress. Proc. Natl. Acad. Sci. USA 2015, 112, 13699–13704. [Google Scholar] [CrossRef]
- Ly, L.; Chan, D.; Trasler, J.M. Developmental Windows of Susceptibility for Epigenetic Inheritance through the Male Germline. Semin. Cell Dev. Biol. 2015, 43, 96–105. [Google Scholar] [CrossRef] [PubMed]
- Almujaydil, M.S. The Role of Dietary Nutrients in Male Infertility: A Review. Life 2023, 13, 519. [Google Scholar] [CrossRef] [PubMed]
- Jiao, P.; Lu, H.; Hao, L.; Degen, A.A.; Cheng, J.; Yin, Z.; Mao, S.; Xue, Y. Nutrigenetic and Epigenetic Mechanisms of Maternal Nutrition–Induced Glucolipid Metabolism Changes in the Offspring. Nutr. Rev. 2024, nuae048. [Google Scholar] [CrossRef] [PubMed]
- Gilley, S.P.; Harrall, K.K.; Friedman, C.; Glueck, D.H.; Cohen, C.C.; Perng, W.; Sauder, K.A.; Krebs, N.F.; Shankar, K.; Dabelea, D. Association of Maternal BMI and Rapid Infant Weight Gain with Childhood Body Size and Composition. Pediatrics 2023, 151, e2022059244. [Google Scholar] [CrossRef]
- Sasidharan Pillai, S.; Gagnon, C.A.; Foster, C.; Ashraf, A.P. Exploring the Gut Microbiota: Key Insights Into Its Role in Obesity, Metabolic Syndrome, and Type 2 Diabetes. J. Clin. Endocrinol. Metab. 2024, 109, 2709–2719. [Google Scholar] [CrossRef]
- Li, R.L.; Kang, S. Rewriting Cellular Fate: Epigenetic Interventions in Obesity and Cellular Programming. Mol. Med. 2024, 30, 169. [Google Scholar] [CrossRef]
- Champroux, A.; Cocquet, J.; Henry-Berger, J.; Drevet, J.R.; Kocer, A. A Decade of Exploring the Mammalian Sperm Epigenome: Paternal Epigenetic and Transgenerational Inheritance. Front. Cell Dev. Biol. 2018, 6, 50. [Google Scholar] [CrossRef]
- Harmancıoğlu, B.; Kabaran, S. Maternal High Fat Diets: Impacts on Offspring Obesity and Epigenetic Hypothalamic Programming. Front. Genet. 2023, 14, 1158089. [Google Scholar] [CrossRef]
- Braun, K.; Champagne, F.A. Paternal Influences on Offspring Development: Behavioural and Epigenetic Pathways. J. Neuroendocrinol. 2014, 26, 697–706. [Google Scholar] [CrossRef]
- Sanchez-Garrido, M.A.; Ruiz-Pino, F.; Velasco, I.; Barroso, A.; Fernandois, D.; Heras, V.; Manfredi-Lozano, M.; Vazquez, M.J.; Castellano, J.M.; Roa, J.; et al. Intergenerational Influence of Paternal Obesity on Metabolic and Reproductive Health Parameters of the Offspring: Male-Preferential Impact and Involvement of Kiss1-Mediated Pathways. Endocrinology 2018, 159, 1005–1018. [Google Scholar] [CrossRef]
- McPherson, N.O.; Owens, J.A.; Fullston, T.; Lane, M. Preconception Diet or Exercise Intervention in Obese Fathers Normalizes Sperm MicroRNA Profile and Metabolic Syndrome in Female Offspring. Am. J. Physiol. Endocrinol. Metab. 2015, 308, E805–E821. [Google Scholar] [CrossRef] [PubMed]
- McIntyre, H.D.; Catalano, P.; Zhang, C.; Desoye, G.; Mathiesen, E.R.; Damm, P. Gestational Diabetes Mellitus. Nat. Rev. Dis. Primers 2019, 5, 47. [Google Scholar] [CrossRef] [PubMed]
- Yessoufou, A.; Moutairou, K. Maternal Diabetes in Pregnancy: Early and Long-Term Outcomes on the Offspring and the Concept of “Metabolic Memory”. Exp. Diabetes Res. 2011, 2011, 218598. [Google Scholar] [CrossRef] [PubMed]
- Aiken, C.E.; Ozanne, S.E. Transgenerational Developmental Programming. Hum. Reprod. Update 2014, 20, 63–75. [Google Scholar] [CrossRef]
- Nteeba, J.; Nteeba, J.; Varberg, K.M.; Varberg, K.M.; Scott, R.L.; Scott, R.L.; Simon, M.E.; Simon, M.E.; Iqbal, K.; Iqbal, K.; et al. Poorly Controlled Diabetes Mellitus Alters Placental Structure, Efficiency, and Plasticity. BMJ Open Diabetes Res. Care 2020, 8, e001243. [Google Scholar] [CrossRef]
- Dabelea, D.; Crume, T. Maternal Environment and the Transgenerational Cycle of Obesity and Diabetes. Diabetes 2011, 60, 1849–1855. [Google Scholar] [CrossRef] [PubMed]
- Xiang, A.H.; Wang, X.; Martinez, M.P.; Walthall, J.C.; Curry, E.S.; Page, K.; Buchanan, T.A.; Coleman, K.J.; Getahun, D. Association of Maternal Diabetes with Autism in Offspring. JAMA 2015, 313, 1425–1434. [Google Scholar] [CrossRef]
- Linares Segovia, B.; Gutiérrez Tinoco, M.; Izquierdo Arrizon, A.; Guízar Mendoza, J.M.; Amador Licona, N. Long-Term Consequences for Offspring of Paternal Diabetes and Metabolic Syndrome. Exp. Diabetes Res. 2012, 2012, 684562. [Google Scholar] [CrossRef]
- Gilbert, E.R.; Liu, D. Epigenetics the Missing Link to Understanding β-Cell Dysfunction in the Pathogenesis of Type 2 Diabetes. Epigenetics 2012, 7, 841–852. [Google Scholar] [CrossRef]
- Zhu, Z.; Cao, F.; Li, X. Epigenetic Programming and Fetal Metabolic Programming. Front. Endocrinol. 2019, 10, 764. [Google Scholar] [CrossRef]
- Penesova, A.; Bunt, J.C.; Bogardus, C.; Krakoff, J. Effect of Paternal Diabetes on Pre-Diabetic Phenotypes in Adult Offspring. Diabetes Care 2010, 33, 1823–1828. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.; Yang, C.R.; Wei, Y.P.; Zhao, Z.A.; Hou, Y.; Schatten, H.; Sun, Q.Y. Paternally Induced Transgenerational Inheritance of Susceptibility to Diabetes in Mammals. Proc. Natl. Acad. Sci. USA 2014, 111, 1873–1878. [Google Scholar] [CrossRef] [PubMed]
- Wannamethee, S.G.; Lawlor, D.A.; Whincup, P.H.; Walker, M.; Ebrahim, S.; Davey-Smith, G. Birthweight of Offspring and Paternal Insulin Resistance and Paternal Diabetes in Late Adulthood: Cross Sectional Survey. Diabetologia 2004, 47, 12–18. [Google Scholar] [CrossRef]
- Lindsay, R.S.; Dabelea, D.; Roumain, J.; Hanson, R.L.; Bennett, P.H.; Knowler, W.C. Type 2 and Low Birth Weight: The Role of Paternal Inheritance in the Association of Low Birth Weight and Diabetes. Diabetes 2000, 49, 445–449. [Google Scholar] [CrossRef] [PubMed]
- Dornhorst, A.; Rossi, M. Risk and Prevention of Type 2 Diabetes in Women with Gestational Diabetes. Diabetes Care 1998, 21 (Suppl. S2), B43–B49. [Google Scholar]
- Kusuyama, J.; Alves-Wagner, A.B.; Makarewicz, N.S.; Goodyear, L.J. Effects of Maternal and Paternal Exercise on Offspring Metabolism. Nat. Metab. 2020, 2, 858–872. [Google Scholar] [CrossRef]
- Falcão-Tebas, F.; Kuang, J.; Arceri, C.; Kerris, J.P.; Andrikopoulos, S.; Marin, E.C.; McConell, G.K. Four Weeks of Exercise Early in Life Reprograms Adult Skeletal Muscle Insulin Resistance Caused by a Paternal High-Fat Diet. J. Physiol. 2019, 597, 121–136. [Google Scholar] [CrossRef]
- Mega, F.; de Meireles, A.L.F.; Piazza, F.V.; Spindler, C.; Segabinazi, E.; dos Santos Salvalaggio, G.; Achaval, M.; Marcuzzo, S. Paternal Physical Exercise Demethylates the Hippocampal DNA of Male Pups without Modifying the Cognitive and Physical Development. Behav. Brain Res. 2018, 348, 1–8. [Google Scholar] [CrossRef]
- Vieira de Sousa Neto, I.; Fontes, W.; Prestes, J.; de Cassia Marqueti, R. Impact of Paternal Exercise on Physiological Systems in the Offspring. Acta Physiol. 2021, 231, e13620. [Google Scholar] [CrossRef]
- Denham, J.; O’Brien, B.J.; Harvey, J.T.; Charchar, F.J. Genome-Wide Sperm DNA Methylation Changes after 3 Months of Exercise Training in Humans. Epigenomics 2015, 7, 717–731. [Google Scholar] [CrossRef]
- Murashov, A.K.; Pak, E.S.; Koury, M.; Ajmera, A.; Jeyakumar, M.; Parker, M.; Williams, O.; Ding, J.; Walters, D.; Neufer, P.D. Paternal Long-Term Exercise Programs Offspring for Low Energy Expenditure and Increased Risk for Obesity in Mice. FASEB J. 2016, 30, 775–784. [Google Scholar] [CrossRef] [PubMed]
- Barrès, R.; Zierath, J.R. The Role of Diet and Exercise in the Transgenerational Epigenetic Landscape of T2DM. Nat. Rev. Endocrinol. 2016, 12, 441–451. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.; Xiao, X.; Zhang, Q.; Yu, M.; Xu, J.; Wang, Z. Maternal High-Fat Diet Modulates Hepatic Glucose, Lipid Homeostasis and Gene Expression in the PPAR Pathway in the Early Life of Offspring. Int. J. Mol. Sci. 2014, 15, 14967–14983. [Google Scholar] [CrossRef] [PubMed]
- Stanford, K.I.; Lee, M.Y.; Getchell, K.M.; So, K.; Hirshman, M.F.; Goodyear, L.J. Exercise before and during Pregnancy Prevents the Deleterious Effects of Maternal High-Fat Feeding on Metabolic Health of Male Offspring. Diabetes 2015, 64, 427–433. [Google Scholar] [CrossRef]
- Claycombe-Larson, K.G.; Bundy, A.N.; Roemmich, J.N. Paternal High-Fat Diet and Exercise Regulate Sperm MiRNA and Histone Methylation to Modify Placental Inflammation, Nutrient Transporter MRNA Expression and Fetal Weight in a Sex-Dependent Manner. J. Nutr. Biochem. 2020, 81, 108373. [Google Scholar] [CrossRef]
- Stanford, K.I.; Rasmussen, M.; Baer, L.A.; Lehnig, A.C.; Rowland, L.A.; White, J.D.; So, K.; De Sousa-Coelho, A.L.; Hirshman, M.F.; Patti, M.E.; et al. Paternal Exercise Improves Glucose Metabolism in Adult Offspring. Diabetes 2018, 67, 2530–2540. [Google Scholar] [CrossRef]
- Costa-Júnior, J.M.; Ferreira, S.M.; Kurauti, M.A.; Bernstein, D.L.; Ruano, E.G.; Kameswaran, V.; Schug, J.; Freitas-Dias, R.; Zoppi, C.C.; Boschero, A.C.; et al. Paternal Exercise Improves the Metabolic Health of Offspring via Epigenetic Modulation of the Germline. Int. J. Mol. Sci. 2022, 23, 1. [Google Scholar] [CrossRef]
- Spindler, C.; Segabinazi, E.; De Meireles, A.L.F.; Piazza, F.V.; Mega, F.; Dos Santos Salvalaggio, G.; Achaval, M.; Elsner, V.R.; Marcuzzo, S. Paternal Physical Exercise Modulates Global DNA Methylation Status in the Hippocampus of Male Rat Offspring. Neural Regen. Res. 2019, 14, 491–500. [Google Scholar] [CrossRef]
- Krout, D.; Roemmich, J.N.; Bundy, A.; Garcia, R.A.; Yan, L.; Claycombe-Larson, K.J. Paternal Exercise Protects Mouse Offspring from High-Fat-Diet-Induced Type 2 Diabetes Risk by Increasing Skeletal Muscle Insulin Signaling. J. Nutr. Biochem. 2018, 57, 35–44. [Google Scholar] [CrossRef]
- Kankowski, L.; Ardissino, M.; McCracken, C.; Lewandowski, A.J.; Leeson, P.; Neubauer, S.; Harvey, N.C.; Petersen, S.E.; Raisi-Estabragh, Z. The Impact of Maternal Obesity on Offspring Cardiovascular Health: A Systematic Literature Review. Front. Endocrinol. 2022, 13, 868441. [Google Scholar] [CrossRef]
- Şanlı, E.; Kabaran, S. Maternal Obesity, Maternal Overnutrition and Fetal Programming: Effects of Epigenetic Mechanisms on the Development of Metabolic Disorders. Curr. Genom. 2019, 20, 419–427. [Google Scholar] [CrossRef] [PubMed]
- Radford, B.N.; Han, V.K.M. Offspring from Maternal Nutrient Restriction in Mice Show Variations in Adult Glucose Metabolism Similar to Human Fetal Growth Restriction. J. Dev. Orig. Health Dis. 2019, 10, 469–478. [Google Scholar] [CrossRef] [PubMed]
- Cooke, C.L.; Zhao, L.; Gysler, S.; Arany, E.; Regnault, T.R.H. Sex-Specific Effects of Low Protein Diet on in Utero Programming of Renal G-Protein Coupled Receptors. J. Dev. Orig. Health Dis. 2014, 5, 36–44. [Google Scholar] [CrossRef] [PubMed]
- Rando, O.J.; Simmons, R.A. I’m Eating for Two: Parental Dietary Effects on Offspring Metabolism. Cell 2015, 161, 93–105. [Google Scholar] [CrossRef]
- McKay, J.A.; Mathers, J.C. Maternal Folate Deficiency and Metabolic Dysfunction in Offspring. Proc. Nutr. Soc. 2016, 75, 90–95. [Google Scholar] [CrossRef]
- Watkins, A.J.; Dias, I.; Tsuro, H.; Allen, D.; Emes, R.D.; Moreton, J.; Wilson, R.; Ingram, R.J.M.; Sinclair, K.D. Paternal Diet Programs Offspring Health through Sperm- and Seminal Plasma-Specific Pathways in Mice. Proc. Natl. Acad. Sci. USA 2018, 115, 10064–10069. [Google Scholar] [CrossRef]
- McPherson, N.O.; Fullston, T.; Kang, W.X.; Sandeman, L.Y.; Corbett, M.A.; Owens, J.A.; Lane, M. Paternal Under-Nutrition Programs Metabolic Syndrome in Offspring Which Can Be Reversed by Antioxidant/Vitamin Food Fortification in Fathers. Sci. Rep. 2016, 6, 27010. [Google Scholar] [CrossRef]
- Fante, T.; Simino, L.A.P.; Fontana, M.F.; Reginato, A.; Ramalheira, T.G.; Rodrigues, H.G.; Lisboa, P.C.; De Moura, E.G.; Ignácio-Souza, L.M.; Milanski, M.; et al. Maternal High-Fat Diet Consumption Programs Male Offspring to Mitigate Complications in Liver Regeneration. J. Dev. Orig. Health Dis. 2022, 13, 575–582. [Google Scholar] [CrossRef]
- Alfaradhi, M.Z.; Ozanne, S.E. Developmental Programming in Response to Maternal Overnutrition. Front Genet 2011, 2, 27. [Google Scholar] [CrossRef]
- Robertson, R.C.; Kaliannan, K.; Strain, C.R.; Ross, R.P.; Stanton, C.; Kang, J.X. Maternal Omega-3 Fatty Acids Regulate Offspring Obesity through Persistent Modulation of Gut Microbiota. Microbiome 2018, 6, 95. [Google Scholar] [CrossRef]
- Kim, S.M.; Oh, S.; Lee, S.S.; Park, S.; Hur, Y.M.; Ansari, A.Z.; Lee, G.; Paik, M.J.; You, Y.A.; Kim, Y.J. Maternal Diet during Pregnancy Alters the Metabolites in Relation to Metabolic and Neurodegenerative Diseases in Young Adult Offspring. Int. J. Mol. Sci. 2024, 25, 11046. [Google Scholar] [CrossRef] [PubMed]
- Sohi, G.; Marchand, K.; Revesz, A.; Arany, E.; Hardy, D.B. Maternal Protein Restriction Elevates Cholesterol in Adult Rat Offspring Due to Repressive Changes in Histone Modifications at the Cholesterol 7α-Hydroxylase Promoter. Mol. Endocrinol. 2011, 25, 785–798. [Google Scholar] [CrossRef] [PubMed]
- Benatti, R.O.; Melo, A.M.; Borges, F.O.; Ignacio-Souza, L.M.; Simino, L.A.P.; Milanski, M.; Velloso, L.A.; Torsoni, M.A.; Torsoni, A.S. Maternal High-Fat Diet Consumption Modulates Hepatic Lipid Metabolism and MicroRNA-122 (MiR-122) and MicroRNA-370 (MiR-370) Expression in Offspring. Br. J. Nutr. 2014, 111, 2112–2122. [Google Scholar] [CrossRef] [PubMed]
- Nelson, B.N.; Friedman, J.E. Developmental Programming of the Fetal Immune System by Maternal Western-Style Diet: Mechanisms and Implications for Disease Pathways in the Offspring. Int. J. Mol. Sci. 2024, 25, 5951. [Google Scholar] [CrossRef]
- Knuesel, I.; Chicha, L.; Britschgi, M.; Schobel, S.A.; Bodmer, M.; Hellings, J.A.; Toovey, S.; Prinssen, E.P. Maternal Immune Activation and Abnormal Brain Development across CNS Disorders. Nat. Rev. Neurol. 2014, 10, 643–660. [Google Scholar] [CrossRef]
- Boulanger-Bertolus, J.; Pancaro, C.; Mashour, G.A. Increasing Role of Maternal Immune Activation in Neurodevelopmental Disorders. Front. Behav. Neurosci. 2018, 12, 230. [Google Scholar] [CrossRef]
- Sakurada, K.; Noda, Y. Neurodevelopmental Disorders Induced by Maternal Immune Activation: Toward a Prevention Strategy in the Era of the COVID-19 Pandemic. Psychiatry Int. 2020, 1, 3. [Google Scholar] [CrossRef]
- Rees, G.; Brough, L.; Orsatti, G.M.; Lodge, A.; Walker, S. Do Micronutrient and Omega-3 Fatty Acid Supplements Affect Human Maternal Immunity during Pregnancy? A Scoping Review. Nutrients 2022, 14, 367. [Google Scholar] [CrossRef]
- McNamara, K.B.; Van Lieshout, E.; Simmons, L.W. The Effect of Maternal and Paternal Immune Challenge on Offspring Immunity and Reproduction in a Cricket. J. Evol. Biol. 2014, 27, 1020–1028. [Google Scholar] [CrossRef]
- Eggert, H.; Kurtz, J.; Diddens-de Buhr, M.F. Different Effects of Paternal Transgenerational Immune Priming on Survival and Immunity in Step and Genetic Offspring. Proc. R. Soc. B Biol. Sci. 2014, 281, 20142089. [Google Scholar] [CrossRef]
- Broadney, M.M.; Chahal, N.; Michels, K.A.; McLain, A.C.; Ghassabian, A.; Lawrence, D.A.; Yeung, E.H. Impact of Parental Obesity on Neonatal Markers of Inflammation and Immune Response. Int. J. Obes. 2017, 41, 30–37. [Google Scholar] [CrossRef] [PubMed]
- Ornellas, F.; Souza-Mello, V.; Mandarim-de-Lacerda, C.A.; Aguila, M.B. Combined Parental Obesity Augments Single-Parent Obesity Effects on Hypothalamus Inflammation, Leptin Signaling (JAK/STAT), Hyperphagia, and Obesity in the Adult Mice Offspring. Physiol. Behav. 2016, 153, 47–55. [Google Scholar] [CrossRef] [PubMed]
- Bomans, K.; Schenz, J.; Tamulyte, S.; Schaack, D.; Weigand, M.A.; Uhle, F. Paternal Sepsis Induces Alterations of the Sperm Methylome and Dampens Offspring Immune Responses-an Animal Study. Clin. Epigenetics 2018, 10, 89. [Google Scholar] [CrossRef] [PubMed]
- Cortés-Albornoz, M.C.; García-Guáqueta, D.P.; Velez-Van-meerbeke, A.; Talero-Gutiérrez, C. Maternal Nutrition and Neurodevelopment: A Scoping Review. Nutrients 2021, 13, 3530. [Google Scholar] [CrossRef]
- Li, M.; Francis, E.; Hinkle, S.N.; Ajjarapu, A.S.; Zhang, C. Preconception and Prenatal Nutrition and Neurodevelopmental Disorders: A Systematic Review and Meta-Analysis. Nutrients 2019, 11, 1628. [Google Scholar] [CrossRef]
- Hamner, H.C.; Nelson, J.M.; Sharma, A.J.; Jefferds, M.E.D.; Dooyema, C.; Flores-Ayala, R.; Bremer, A.A.; Vargas, A.J.; Casavale, K.O.; de Jesus, J.M.; et al. Improving Nutrition in the First 1000 Days in the United States: A Federal Perspective. Am. J. Public Health 2022, 112, S817–S825. [Google Scholar] [CrossRef]
- Berti, C.; Biesalski, H.K.; Gärtner, R.; Lapillonne, A.; Pietrzik, K.; Poston, L.; Redman, C.; Koletzko, B.; Cetin, I. Micronutrients in Pregnancy: Current Knowledge and Unresolved Questions. Clin. Nutr. 2011, 30, 689–701. [Google Scholar] [CrossRef]
- Guéant, J.L.; Namour, F.; Guéant-Rodriguez, R.M.; Daval, J.L. Folate and Fetal Programming: A Play in Epigenomics? Trends Endocrinol. Metab. 2013, 24, 279–289. [Google Scholar] [CrossRef]
- Chu, D.; Li, L.; Jiang, Y.; Tan, J.; Ji, J.; Zhang, Y.; Jin, N.; Liu, F. Excess Folic Acid Supplementation before and during Pregnancy and Lactation Activates Fos Gene Expression and Alters Behaviors in Male Mouse Offspring. Front. Neurosci. 2019, 13, 313. [Google Scholar] [CrossRef]
- Yang, X.; Sun, W.; Wu, Q.; Lin, H.; Lu, Z.; Shen, X.; Chen, Y.; Zhou, Y.; Huang, L.; Wu, F.; et al. Excess Folic Acid Supplementation before and during Pregnancy and Lactation Alters Behaviors and Brain Gene Expression in Female Mouse Offspring. Nutrients 2022, 14, 66. [Google Scholar] [CrossRef]
- Winther, G.; Elfving, B.; Müller, H.K.; Lund, S.; Wegener, G. Maternal High-Fat Diet Programs Offspring Emotional Behavior in Adulthood. Neuroscience 2018, 388, 87–101. [Google Scholar] [CrossRef] [PubMed]
- Moser, V.C.; McDaniel, K.L.; Woolard, E.A.; Phillips, P.M.; Franklin, J.N.; Gordon, C.J. Impacts of Maternal Diet and Exercise on Offspring Behavior and Body Weights. Neurotoxicol. Teratol. 2017, 63, 46–50. [Google Scholar] [CrossRef] [PubMed]
- Jacques, A.; Chaaya, N.; Beecher, K.; Ali, S.A.; Belmer, A.; Bartlett, S. The Impact of Sugar Consumption on Stress Driven, Emotional and Addictive Behaviors. Neurosci. Biobehav. Rev. 2019, 103, 178–199. [Google Scholar] [CrossRef]
- Sullivan, E.L.; Nousen, E.K.; Chamlou, K.A. Maternal High Fat Diet Consumption during the Perinatal Period Programs Offspring Behavior. Physiol. Behav. 2014, 123, 236–242. [Google Scholar] [CrossRef]
- Urbonaite, G.; Knyzeliene, A.; Bunn, F.S.; Smalskys, A.; Neniskyte, U. The Impact of Maternal High-Fat Diet on Offspring Neurodevelopment. Front. Neurosci. 2022, 16, 909762. [Google Scholar] [CrossRef]
- Mort, E.J.; Heritage, S.; Jones, S.; Fowden, A.L.; Camm, E.J. Sex-Specific Effects of a Maternal Obesogenic Diet High in Fat and Sugar on Offspring Adiposity, Growth, and Behavior. Nutrients 2023, 15, 4594. [Google Scholar] [CrossRef]
- Pina-Camacho, L.; Jensen, S.K.; Gaysina, D.; Barker, E.D. Maternal Depression Symptoms, Unhealthy Diet and Child Emotional-Behavioural Dysregulation. Psychol. Med. 2015, 45, 1851–1860. [Google Scholar] [CrossRef]
- Cendra-Duarte, E.; Canals, J.; Becerra-Tomás, N.; Jardí, C.; Martín-Luján, F.; Arija, V. Maternal Dietary Patterns and Offspring Behavioral Problems. Pediatr. Res. 2024. [Google Scholar] [CrossRef] [PubMed]
- Gale, C.R.; Robinson, S.M.; Godfrey, K.M.; Law, C.M.; Schlotz, W.; O’Callaghan, F.J. Oily Fish Intake during Pregnancy—Association with Lower Hyperactivity but Not with Higher Full-Scale IQ in Offspring. J. Child. Psychol. Psychiatry 2008, 49, 1061–1068. [Google Scholar] [CrossRef]
- Hibbeln, J.R.; Davis, J.M.; Steer, C.; Emmett, P.; Rogers, I.; Williams, C.; Golding, J. Maternal Seafood Consumption in Pregnancy and Neurodevelopmental Outcomes in Childhood (ALSPAC Study): An Observational Cohort Study. Lancet 2007, 369, 578–585. [Google Scholar] [CrossRef]
- Queiroz, M.P.; da Silva Lima, M.; de Melo, M.F.F.T.; de Menezes Santos Bertozzo, C.C.; de Araújo, D.F.; Guerra, G.C.B.; de Cassia Ramos do Egypto Queiroga, R.; Soares, J.K.B. Maternal Suppplementation with Conjugated Linoleic Acid Reduce Anxiety and Lipid Peroxidation in the Offspring Brain. J. Affect. Disord. 2019, 243, 75–82. [Google Scholar] [CrossRef]
- Jackson, C.; Barrett, D.; Shumake, J.; Gonzalez-Lima, F.; Lane, M. Maternal Omega-3 Fatty Acid Consumption Decreases Offspring Reactivity to the Stress of a Novel Environment (684.3). FASEB J. 2014, 28, 684.3. [Google Scholar] [CrossRef]
- Jackson, C.; Alhado, M.; Gonzales, E.; Shumake, J.; Barrett, D.; Gonzalez-Lima, F.; Lane, M.A. Maternal Consumption of a Diet Lacking Omega-3 Fatty Acids during Development Alters Pup Behavior and Brain Metabolism Later in Life. FASEB J. 2016, 30, 915.3. [Google Scholar] [CrossRef]
- Sakayori, N.; Kikkawa, T.; Tokuda, H.; Kiryu, E.; Yoshizaki, K.; Kawashima, H.; Yamada, T.; Arai, H.; Kang, J.X.; Katagiri, H.; et al. Maternal Dietary Imbalance between Omega-6 and Omega-3 Polyunsaturated Fatty Acids Impairs Neocortical Development via Epoxy Metabolites. Stem Cells 2016, 34, 470–482. [Google Scholar] [CrossRef]
- Ryan, A.S.; Astwood, J.D.; Gautier, S.; Kuratko, C.N.; Nelson, E.B.; Salem, N. Effects of Long-Chain Polyunsaturated Fatty Acid Supplementation on Neurodevelopment in Childhood: A Review of Human Studies. Prostaglandins Leukot Essent Fat. Acids 2010, 82, 305–314. [Google Scholar] [CrossRef]
- Bertrand, P.C.; O’Kusky, J.R.; Innis, S.M. Maternal Dietary (n-3) Fatty Acid Deficiency Alters Neurogenesis in the Embryonic Rat Brain. J. Nutr. 2006, 136, 1570–1575. [Google Scholar] [CrossRef]
- Harvey, L.; Boksa, P. Additive Effects of Maternal Iron Deficiency and Prenatal Immune Activation on Adult Behaviors in Rat Offspring. Brain Behav. Immun. 2014, 40, 27–37. [Google Scholar] [CrossRef]
- Hsieh, H.Y.; Chen, Y.C.; Hsu, M.H.; Yu, H.R.; Su, C.H.; Tain, Y.L.; Huang, L.T.; Sheen, J.M. Maternal Iron Deficiency Programs Offspring Cognition and Its Relationship with Gastrointestinal Microbiota and Metabolites. Int. J. Environ. Res. Public Health 2020, 17, 6070. [Google Scholar] [CrossRef]
- Berglund, S.K.; Torres-Espínola, F.J.; García-Valdés, L.; Segura, M.T.; Martínez-Zaldívar, C.; Padilla, C.; Rueda, R.; Pérez García, M.; McArdle, H.J.; Campoy, C. The Impacts of Maternal Iron Deficiency and Being Overweight during Pregnancy on Neurodevelopment of the Offspring. Br. J. Nutr. 2017, 118, 533–540. [Google Scholar] [CrossRef]
- Eyles, D.W.; Feron, F.; Cui, X.; Kesby, J.P.; Harms, L.H.; Ko, P.; McGrath, J.J.; Burne, T.H.J. Developmental Vitamin D Deficiency Causes Abnormal Brain Development. Psychoneuroendocrinology 2009, 34 (Suppl. S1), S247–S257. [Google Scholar] [CrossRef]
- Becker, A.; Eyles, D.W.; McGrath, J.J.; Grecksch, G. Transient Prenatal Vitamin D Deficiency Is Associated with Subtle Alterations in Learning and Memory Functions in Adult Rats. Behav. Brain Res. 2005, 161, 306–312. [Google Scholar] [CrossRef]
- Harms, L.R.; Eyles, D.W.; McGrath, J.J.; Mackay-Sim, A.; Burne, T.H.J. Developmental Vitamin D Deficiency Alters Adult Behaviour in 129/SvJ and C57BL/6J Mice. Behav. Brain Res. 2008, 187, 343–350. [Google Scholar] [CrossRef]
- Kesby, J.P.; O’Loan, J.C.; Alexander, S.; Deng, C.; Huang, X.F.; McGrath, J.J.; Eyles, D.W.; Burne, T.H.J. Developmental Vitamin D Deficiency Alters MK-801-Induced Behaviours in Adult Offspring. Psychopharmacology 2012, 220, 455–463. [Google Scholar] [CrossRef]
- Watkins, A.J.; Rubini, E.; Hosier, E.D.; Morgan, H.L. Paternal Programming of Offspring Health. Early Hum. Dev. 2020, 150, 105185. [Google Scholar] [CrossRef]
- Mcmahon, D.M.; Liu, J.; Zhang, H.; Torres, M.E.; Best, R.G. Maternal Obesity, Folate Intake, and Neural Tube Defects in Offspring. Birth Defects Res. A Clin. Mol. Teratol. 2013, 97, 115–122. [Google Scholar] [CrossRef]
- Ryan, D.P.; Henzel, K.S.; Pearson, B.L.; Siwek, M.E.; Papazoglou, A.; Guo, L.; Paesler, K.; Yu, M.; Müller, R.; Xie, K.; et al. A Paternal Methyl Donor-Rich Diet Altered Cognitive and Neural Functions in Offspring Mice. Mol. Psychiatry 2018, 23, 1345–1355. [Google Scholar] [CrossRef]
- Korgan, A.C.; Foxx, C.L.; Hashmi, H.; Sago, S.A.; Stamper, C.E.; Heinze, J.D.; O’Leary, E.; King, J.L.; Perrot, T.S.; Lowry, C.A.; et al. Effects of Paternal High-Fat Diet and Maternal Rearing Environment on the Gut Microbiota and Behavior. Sci. Rep. 2022, 12, 10179. [Google Scholar] [CrossRef]
- Trujillo-Villarreal, L.A.; Cruz-Carrillo, G.; Angeles-Valdez, D.; Garza-Villarreal, E.A.; Camacho-Morales, A. Paternal Prenatal and Lactation Exposure to a High-Calorie Diet Shapes Transgenerational Brain Macro- and Microstructure Defects, Impacting Anxiety-Like Behavior in Male Offspring Rats. eNeuro 2024, 11, ENEURO.0194-23.2023. [Google Scholar] [CrossRef]
- Hollander, J.; McNivens, M.; Pautassi, R.M.; Nizhnikov, M.E. Offspring of Male Rats Exposed to Binge Alcohol Exhibit Heightened Ethanol Intake at Infancy and Alterations in T-Maze Performance. Alcohol 2019, 76, 65–71. [Google Scholar] [CrossRef]
- Koabel, J.; McNivens, M.; McKee, P.; Pautassi, R.; Bordner, K.; Nizhnikov, M. The Offspring of Alcohol-Exposed Sires Exhibit Heightened Ethanol Intake and Behavioral Alterations in the Elevated plus Maze. Alcohol 2021, 92, 65–72. [Google Scholar] [CrossRef]
- Meek, L.R.; Myren, K.; Sturm, J.; Burau, D. Acute Paternal Alcohol Use Affects Offspring Development and Adult Behavior. Physiol. Behav. 2007, 91, 154–160. [Google Scholar] [CrossRef]
- Ledig, M.; Misslin, R.; Vogel, E.; Holownia, A.; Copin, J.C.; Tholey, G. Paternal Alcohol Exposure: Developmental and Behavioral Effects on the Offspring of Rats. Neuropharmacology 1998, 37, 57–66. [Google Scholar] [CrossRef]
- Nieto, S.J.; Harding, M.J.; Nielsen, D.A.; Kosten, T.A. Paternal Alcohol Exposure Has Task- and Sex-Dependent Behavioral Effect in Offspring. Alcohol Clin. Exp. Res. 2022, 46, 2191–2202. [Google Scholar] [CrossRef]
- Rathod, R.S.; Ferguson, C.; Seth, A.; Baratta, A.M.; Plasil, S.L.; Homanics, G.E. Effects of Paternal Preconception Vapor Alcohol Exposure Paradigms on Behavioral Responses in Offspring. Brain Sci. 2020, 10, 658. [Google Scholar] [CrossRef]
- Luo, G.; Wei, R.; Wang, S.; Luo, G.; Wei, R. Paternal Bisphenol a Diet Changes Prefrontal Cortex Proteome and Provokes Behavioral Dysfunction in Male Offspring. Chemosphere 2017, 184, 720–729. [Google Scholar] [CrossRef]
- Fan, Y.; Tian, C.; Liu, Q.; Zhen, X.; Zhang, H.; Zhou, L.; Li, T.; Zhang, Y.; Ding, S.; He, D.; et al. Preconception Paternal Bisphenol A Exposure Induces Sex-Specific Anxiety and Depression Behaviors in Adult Rats. PLoS ONE 2018, 13, e0192434. [Google Scholar] [CrossRef]
- Fan, Y.; Ding, S.; Ye, X.; Manyande, A.; He, D.; Zhao, N.; Yang, H.; Jin, X.; Liu, J.; Tian, C.; et al. Does Preconception Paternal Exposure to a Physiologically Relevant Level of Bisphenol A Alter Spatial Memory in an Adult Rat? Horm. Behav. 2013, 64, 598–604. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jahan-Mihan, A.; Leftwich, J.; Berg, K.; Labyak, C.; Nodarse, R.R.; Allen, S.; Griggs, J. The Impact of Parental Preconception Nutrition, Body Weight, and Exercise Habits on Offspring Health Outcomes: A Narrative Review. Nutrients 2024, 16, 4276. https://doi.org/10.3390/nu16244276
Jahan-Mihan A, Leftwich J, Berg K, Labyak C, Nodarse RR, Allen S, Griggs J. The Impact of Parental Preconception Nutrition, Body Weight, and Exercise Habits on Offspring Health Outcomes: A Narrative Review. Nutrients. 2024; 16(24):4276. https://doi.org/10.3390/nu16244276
Chicago/Turabian StyleJahan-Mihan, Alireza, Jamisha Leftwich, Kristin Berg, Corinne Labyak, Reniel R. Nodarse, Sarah Allen, and Jennifer Griggs. 2024. "The Impact of Parental Preconception Nutrition, Body Weight, and Exercise Habits on Offspring Health Outcomes: A Narrative Review" Nutrients 16, no. 24: 4276. https://doi.org/10.3390/nu16244276
APA StyleJahan-Mihan, A., Leftwich, J., Berg, K., Labyak, C., Nodarse, R. R., Allen, S., & Griggs, J. (2024). The Impact of Parental Preconception Nutrition, Body Weight, and Exercise Habits on Offspring Health Outcomes: A Narrative Review. Nutrients, 16(24), 4276. https://doi.org/10.3390/nu16244276