Selenium and Episodic Memory: The Moderating Role of Apolipoprotein E ε4
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Standard Protocol Approvals, Registrations, and Participants’ Consent
2.3. Clinical Assessments
2.4. Measuring Serum Levels of Selenium and Other Blood Biomarkers
2.5. APOE4 Genotyping
2.6. Statistical Analysis
3. Results
3.1. Participant Characteristics
3.2. Association of the Serum Se Levels with Cognition
3.3. APOE4 Moderation of the Association Between the Serum Se Levels and Cognition
3.4. Sensitivity Analyses
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kieliszek, M. Selenium(-)Fascinating Microelement, Properties and Sources in Food. Molecules 2019, 24, 1298. [Google Scholar] [CrossRef] [PubMed Central]
- Tinggi, U. Selenium: Its role as antioxidant in human health. Environ. Health Prev. Med. 2008, 13, 102–108. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhang, X.; Zhong, Y.; He, K. The causal effects between selenium levels and the brain cortical structure: A two-sample Mendelian randomization study. Brain Behav. 2023, 13, e3296. [Google Scholar] [CrossRef] [PubMed Central]
- Solovyev, N.D. Importance of selenium and selenoprotein for brain function: From antioxidant protection to neuronal signalling. J. Inorg. Biochem. 2015, 153, 1–12. [Google Scholar] [CrossRef]
- Naziroglu, M. Role of selenium on calcium signaling and oxidative stress-induced molecular pathways in epilepsy. Neurochem. Res. 2009, 34, 2181–2191. [Google Scholar] [CrossRef] [PubMed]
- Santamaria, A.; Vazquez-Roman, B.; La Cruz, V.P.; Gonzalez-Cortes, C.; Trejo-Solis, M.C.; Galvan-Arzate, S.; Jara-Prado, A.; Guevara-Fonseca, J.; Ali, S.F. Selenium reduces the proapoptotic signaling associated to NF-kappaB pathway and stimulates glutathione peroxidase activity during excitotoxic damage produced by quinolinate in rat corpus striatum. Synapse 2005, 58, 258–266. [Google Scholar] [CrossRef] [PubMed]
- Cardoso, B.R.; Ong, T.P.; Jacob-Filho, W.; Jaluul, O.; Freitas, M.I.; Cozzolino, S.M. Nutritional status of selenium in Alzheimer’s disease patients. Br. J. Nutr. 2010, 103, 803–806. [Google Scholar] [CrossRef] [PubMed]
- Vural, H.; Demirin, H.; Kara, Y.; Eren, I.; Delibas, N. Alterations of plasma magnesium, copper, zinc, iron and selenium concentrations and some related erythrocyte antioxidant enzyme activities in patients with Alzheimer’s disease. J. Trace Elem. Med. Biol. 2010, 24, 169–173. [Google Scholar] [CrossRef] [PubMed]
- Socha, K.; Klimiuk, K.; Naliwajko, S.K.; Soroczynska, J.; Puscion-Jakubik, A.; Markiewicz-Zukowska, R.; Kochanowicz, J. Dietary Habits, Selenium, Copper, Zinc and Total Antioxidant Status in Serum in Relation to Cognitive Functions of Patients with Alzheimer’s Disease. Nutrients 2021, 13, 287. [Google Scholar] [CrossRef] [PubMed Central]
- Pillai, R.; Uyehara-Lock, J.H.; Bellinger, F.P. Selenium and selenoprotein function in brain disorders. IUBMB Life 2014, 66, 229–239. [Google Scholar] [CrossRef]
- Zhang, S.; Rocourt, C.; Cheng, W.H. Selenoproteins and the aging brain. Mech. Ageing Dev. 2010, 131, 253–260. [Google Scholar] [CrossRef] [PubMed]
- Braak, H.; Braak, E. Staging of Alzheimer’s disease-related neurofibrillary changes. Neurobiol. Aging 1995, 16, 271–278; discussion 278–284. [Google Scholar] [CrossRef]
- Hardy, J.; Selkoe, D.J. The amyloid hypothesis of Alzheimer’s disease: Progress and problems on the road to therapeutics. Science 2002, 297, 353–356. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Mandelkow, E. Tau in physiology and pathology. Nat. Rev. Neurosci. 2016, 17, 5–21. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, K.; Liu, F.; Gong, C.X. Tau and neurodegenerative disease: The story so far. Nat. Rev. Neurol. 2016, 12, 15–27. [Google Scholar] [CrossRef]
- Cardoso, B.R.; Roberts, B.R.; Malpas, C.B.; Vivash, L.; Genc, S.; Saling, M.M.; Desmond, P.; Steward, C.; Hicks, R.J.; Callahan, J.; et al. Supranutritional Sodium Selenate Supplementation Delivers Selenium to the Central Nervous System: Results from a Randomized Controlled Pilot Trial in Alzheimer’s Disease. Neurotherapeutics 2019, 16, 192–202. [Google Scholar] [CrossRef] [PubMed Central]
- Ferdous, K.A.; Knol, L.L.; Park, H.A. Association between selenium intake and cognitive function among older adults in the US: National Health and Nutrition Examination Surveys 2011–2014. J. Nutr. Sci. 2023, 12, e57. [Google Scholar] [CrossRef] [PubMed Central]
- Jin, Y.; Chung, Y.W.; Jung, M.K.; Lee, J.H.; Ko, K.Y.; Jang, J.K.; Ham, M.; Kang, H.; Pack, C.G.; Mihara, H.; et al. Apolipoprotein E-mediated regulation of selenoprotein P transportation via exosomes. Cell Mol. Life Sci. 2020, 77, 2367–2386. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Burk, R.F.; Hill, K.E.; Motley, A.K.; Winfrey, V.P.; Kurokawa, S.; Mitchell, S.L.; Zhang, W. Selenoprotein P and apolipoprotein E receptor-2 interact at the blood-brain barrier and also within the brain to maintain an essential selenium pool that protects against neurodegeneration. FASEB J. 2014, 28, 3579–3588. [Google Scholar] [CrossRef] [PubMed Central]
- Strittmatter, W.J.; Saunders, A.M.; Schmechel, D.; Pericak-Vance, M.; Enghild, J.; Salvesen, G.S.; Roses, A.D. Apolipoprotein E: High-avidity binding to beta-amyloid and increased frequency of type 4 allele in late-onset familial Alzheimer disease. Proc. Natl. Acad. Sci. USA 1993, 90, 1977–1981. [Google Scholar] [CrossRef] [PubMed Central]
- Raulin, A.C.; Doss, S.V.; Trottier, Z.A.; Ikezu, T.C.; Bu, G.; Liu, C.C. ApoE in Alzheimer’s disease: Pathophysiology and therapeutic strategies. Mol. Neurodegener. 2022, 17, 72. [Google Scholar] [CrossRef] [PubMed Central]
- Murphy, K.R.; Landau, S.M.; Choudhury, K.R.; Hostage, C.A.; Shpanskaya, K.S.; Sair, H.I.; Petrella, J.R.; Wong, T.Z.; Doraiswamy, P.M.; Alzheimer’s Disease Neuroimaging, I. Mapping the effects of ApoE4, age and cognitive status on 18F-florbetapir PET measured regional cortical patterns of beta-amyloid density and growth. Neuroimage 2013, 78, 474–480. [Google Scholar] [CrossRef] [PubMed Central]
- Kantarci, K.; Lowe, V.; Przybelski, S.A.; Weigand, S.D.; Senjem, M.L.; Ivnik, R.J.; Preboske, G.M.; Roberts, R.; Geda, Y.E.; Boeve, B.F.; et al. APOE modifies the association between Abeta load and cognition in cognitively normal older adults. Neurology 2012, 78, 232–240. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhao, Y.; Zhao, B. Oxidative stress and the pathogenesis of Alzheimer’s disease. Oxid. Med. Cell Longev. 2013, 2013, 316523. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chmatalova, Z.; Vyhnalek, M.; Laczo, J.; Hort, J.; Pospisilova, R.; Pechova, M.; Skoumalova, A. Relation of plasma selenium and lipid peroxidation end products in patients with Alzheimer’s disease. Physiol. Res. 2017, 66, 1049–1056. [Google Scholar] [CrossRef] [PubMed]
- Gao, S.; Jin, Y.; Hall, K.S.; Liang, C.; Unverzagt, F.W.; Ma, F.; Cheng, Y.; Shen, J.; Cao, J.; Matesan, J.; et al. Selenium level is associated with apoE epsilon4 in rural elderly Chinese. Public. Health Nutr. 2009, 12, 2371–2376. [Google Scholar] [CrossRef] [PubMed Central]
- Cardoso, B.R.; Hare, D.J.; Lind, M.; McLean, C.A.; Volitakis, I.; Laws, S.M.; Masters, C.L.; Bush, A.I.; Roberts, B.R. The APOE epsilon4 Allele Is Associated with Lower Selenium Levels in the Brain: Implications for Alzheimer’s Disease. ACS Chem. Neurosci. 2017, 8, 1459–1464. [Google Scholar] [CrossRef] [PubMed]
- Davies, J.; Chen, J.; Pink, R.; Carter, D.; Saunders, N.; Sotiriadis, G.; Bai, B.; Pan, Y.; Howlett, D.; Payne, A.; et al. Orexin receptors exert a neuroprotective effect in Alzheimer’s disease (AD) via heterodimerization with GPR103. Sci. Rep. 2015, 5, 12584. [Google Scholar] [CrossRef] [PubMed Central]
- Alster, P.; Madetko-Alster, N.; Otto-Slusarczyk, D.; Migda, A.; Migda, B.; Struga, M.; Friedman, A. Role of orexin in pathogenesis of neurodegenerative parkinsonisms. Neurol. Neurochir. Pol. 2023, 57, 335–343. [Google Scholar] [CrossRef] [PubMed]
- Morris, J.C. The Clinical Dementia Rating (CDR): Current version and scoring rules. Neurology 1993, 43, 2412–2414. [Google Scholar] [CrossRef]
- Morris, J.C.; Heyman, A.; Mohs, R.C.; Hughes, J.P.; van Belle, G.; Fillenbaum, G.; Mellits, E.D.; Clark, C. The Consortium to Establish a Registry for Alzheimer’s Disease (CERAD). Part I. Clinical and neuropsychological assessment of Alzheimer’s disease. Neurology 1989, 39, 1159–1165. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.H.; Lee, K.U.; Lee, D.Y.; Kim, K.W.; Jhoo, J.H.; Kim, J.H.; Lee, K.H.; Kim, S.Y.; Han, S.H.; Woo, J.I. Development of the Korean version of the Consortium to Establish a Registry for Alzheimer’s Disease Assessment Packet (CERAD-K): Clinical and neuropsychological assessment batteries. J. Gerontol. B Psychol. Sci. Soc. Sci. 2002, 57, P47–P53. [Google Scholar] [CrossRef]
- Lee, D.Y.; Lee, K.U.; Lee, J.H.; Kim, K.W.; Jhoo, J.H.; Kim, S.Y.; Yoon, J.C.; Woo, S.I.; Ha, J.; Woo, J.I. A normative study of the CERAD neuropsychological assessment battery in the Korean elderly. J. Int. Neuropsychol. Soc. 2004, 10, 72–81. [Google Scholar] [CrossRef] [PubMed]
- Howieson, D.B.; Dame, A.; Camicioli, R.; Sexton, G.; Payami, H.; Kaye, J.A. Cognitive markers preceding Alzheimer’s dementia in the healthy oldest old. J. Am. Geriatr. Soc. 1997, 45, 584–589. [Google Scholar] [CrossRef]
- Grober, E.; Lipton, R.B.; Hall, C.; Crystal, H. Memory impairment on free and cued selective reminding predicts dementia. Neurology 2000, 54, 827–832. [Google Scholar] [CrossRef] [PubMed]
- Tromp, D.; Dufour, A.; Lithfous, S.; Pebayle, T.; Despres, O. Episodic memory in normal aging and Alzheimer disease: Insights from imaging and behavioral studies. Ageing Res. Rev. 2015, 24, 232–262. [Google Scholar] [CrossRef] [PubMed]
- Backman, L.; Small, B.J.; Fratiglioni, L. Stability of the preclinical episodic memory deficit in Alzheimer’s disease. Brain 2001, 124, 96–102. [Google Scholar] [CrossRef]
- Laakso, M.P.; Hallikainen, M.; Hanninen, T.; Partanen, K.; Soininen, H. Diagnosis of Alzheimer’s disease: MRI of the hippocampus vs delayed recall. Neuropsychologia 2000, 38, 579–584. [Google Scholar] [CrossRef]
- Backman, L.; Jones, S.; Berger, A.K.; Laukka, E.J.; Small, B.J. Cognitive impairment in preclinical Alzheimer’s disease: A meta-analysis. Neuropsychology 2005, 19, 520–531. [Google Scholar] [CrossRef]
- Ferman, T.J.; Smith, G.E.; Kantarci, K.; Boeve, B.F.; Pankratz, V.S.; Dickson, D.W.; Graff-Radford, N.R.; Wszolek, Z.; Van Gerpen, J.; Uitti, R.; et al. Nonamnestic mild cognitive impairment progresses to dementia with Lewy bodies. Neurology 2013, 81, 2032–2038. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Seo, E.H.; Lee, D.Y.; Lee, J.H.; Choo, I.H.; Kim, J.W.; Kim, S.G.; Park, S.Y.; Shin, J.H.; Do, Y.J.; Yoon, J.C.; et al. Total scores of the CERAD neuropsychological assessment battery: Validation for mild cognitive impairment and dementia patients with diverse etiologies. Am. J. Geriatr. Psychiatry 2010, 18, 801–809. [Google Scholar] [CrossRef] [PubMed]
- DeCarli, C.; Mungas, D.; Harvey, D.; Reed, B.; Weiner, M.; Chui, H.; Jagust, W. Memory impairment, but not cerebrovascular disease, predicts progression of MCI to dementia. Neurology 2004, 63, 220–227. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Vellas, B.; Guigoz, Y.; Garry, P.J.; Nourhashemi, F.; Bennahum, D.; Lauque, S.; Albarede, J.L. The Mini Nutritional Assessment (MNA) and its use in grading the nutritional state of elderly patients. Nutrition 1999, 15, 116–122. [Google Scholar] [CrossRef]
- Rayman, M.P. Selenium and human health. Lancet 2012, 379, 1256–1268. [Google Scholar] [CrossRef]
- Perri, G.; Mathers, J.C.; Martin-Ruiz, C.; Parker, C.; Demircan, K.; Chillon, T.S.; Schomburg, L.; Robinson, L.; Stevenson, E.J.; Shannon, O.M.; et al. The association between selenium status and global and attention-specific cognition in very old adults in the Newcastle 85+ Study: Cross-sectional and longitudinal analyses. Am. J. Clin. Nutr. 2024, 120, 1019–1028. [Google Scholar] [CrossRef] [PubMed Central]
- Li, J.M.; Bai, Y.Z.; Zhang, S.Q. Roles of selenium in cognition. Int. J. Vitam. Nutr. Res. 2024, 94, 323–324. [Google Scholar] [CrossRef] [PubMed]
- Rita Cardoso, B.; Apolinario, D.; da Silva Bandeira, V.; Busse, A.L.; Magaldi, R.M.; Jacob-Filho, W.; Cozzolino, S.M. Effects of Brazil nut consumption on selenium status and cognitive performance in older adults with mild cognitive impairment: A randomized controlled pilot trial. Eur. J. Nutr. 2016, 55, 107–116. [Google Scholar] [CrossRef] [PubMed]
- Avery, J.C.; Hoffmann, P.R. Selenium, Selenoproteins, and Immunity. Nutrients 2018, 10, 1203. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hawkes, W.C.; Alkan, Z. Regulation of redox signaling by selenoproteins. Biol. Trace Elem. Res. 2010, 134, 235–251. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kim, G.H.; Kim, J.E.; Rhie, S.J.; Yoon, S. The Role of Oxidative Stress in Neurodegenerative Diseases. Exp. Neurobiol. 2015, 24, 325–340. [Google Scholar] [CrossRef] [PubMed Central]
- Roy, R.G.; Mandal, P.K.; Maroon, J.C. Oxidative Stress Occurs Prior to Amyloid Abeta Plaque Formation and Tau Phosphorylation in Alzheimer’s Disease: Role of Glutathione and Metal Ions. ACS Chem. Neurosci. 2023, 14, 2944–2954. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zakeri, N.; Kelishadi, M.R.; Asbaghi, O.; Naeini, F.; Afsharfar, M.; Mirzadeh, E.; Naserizadeh, S.k. Selenium supplementation and oxidative stress: A review. PharmaNutrition 2021, 17, 100263. [Google Scholar] [CrossRef]
- Wang, L.; Yin, Y.L.; Liu, X.Z.; Shen, P.; Zheng, Y.G.; Lan, X.R.; Lu, C.B.; Wang, J.Z. Current understanding of metal ions in the pathogenesis of Alzheimer’s disease. Transl. Neurodegener. 2020, 9, 10. [Google Scholar] [CrossRef] [PubMed Central]
- Liu, F.; Zhang, Z.; Zhang, L.; Meng, R.N.; Gao, J.; Jin, M.; Li, M.; Wang, X.P. Effect of metal ions on Alzheimer’s disease. Brain Behav. 2022, 12, e2527. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Liu, M.C.; Xu, Y.; Chen, Y.M.; Li, J.; Zhao, F.; Zheng, G.; Jing, J.F.; Ke, T.; Chen, J.Y.; Luo, W.J. The effect of sodium selenite on lead induced cognitive dysfunction. Neurotoxicology 2013, 36, 82–88. [Google Scholar] [CrossRef]
- Petersen, R.C. Mild cognitive impairment: Transition between aging and Alzheimer’s disease. Neurologia 2000, 15, 93–101. [Google Scholar] [CrossRef] [PubMed]
- Mecocci, P. Oxidative stress in mild cognitive impairment and Alzheimer disease: A continuum. J. Alzheimers Dis. 2004, 6, 159–163. [Google Scholar] [CrossRef]
- Ansari, M.A.; Rao, M.S.; Al-Jarallah, A. Insights into early pathogenesis of sporadic Alzheimer’s disease: Role of oxidative stress and loss of synaptic proteins. Front. Neurosci. 2023, 17, 1273626. [Google Scholar] [CrossRef] [PubMed Central]
- Vinceti, M.; Chiari, A.; Eichmuller, M.; Rothman, K.J.; Filippini, T.; Malagoli, C.; Weuve, J.; Tondelli, M.; Zamboni, G.; Nichelli, P.F.; et al. A selenium species in cerebrospinal fluid predicts conversion to Alzheimer’s dementia in persons with mild cognitive impairment. Alzheimer’s Res. Ther. 2017, 9, 100. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Vinceti, M.; Urbano, T.; Chiari, A.; Filippini, T.; Wise, L.A.; Tondelli, M.; Michalke, B.; Shimizu, M.; Saito, Y. Selenoprotein P concentrations and risk of progression from mild cognitive impairment to dementia. Sci. Rep. 2023, 13, 8792. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
Overall | APOE4-Negative | APOE4-Positive | p | |
---|---|---|---|---|
n | 196 | 156 | 40 | |
Age, y | 72.65 (5.95) | 72.95 (5.96) | 71.50 (5.86) | 0.170 a |
Female, n (%) | 138 (70.41) | 106 (67.95) | 32 (80.00) | 0.136 b |
Education, y | 9.62 (4.51) | 9.61 (4.55) | 9.68 (4.38) | 0.934 a |
MCI, n (%) | 113 (57.65) | 88 (56.41) | 25 (62.50) | 0.487 b |
VRS, % | 23.98 (18.58) | 23.93 (19.14) | 24.17 (16.43) | 0.943 a |
MMSE | 25.58 (3.45) | 25.52 (3.46) | 25.83 (3.43) | 0.618 |
Dietary pattern including food types | ||||
Protein, n (%) | 0.410 b | |||
High | 27 (13.78) | 19 (12.18) | 8 (20.00) | |
Moderate | 74 (37.76) | 59 (37.82) | 15 (37.50) | |
Low | 95 (48.47) | 78 (50.00) | 17 (42.50) | |
Fruit or vegetables, n (%) | 0.795 b | |||
High | 119 (60.71) | 62 (39.74) | 15 (37.50) | |
Low | 77 (39.29) | 94 (60.26) | 25 (62.50) | |
Decrease in food intake over the past three months | 1.00 c | |||
No, n (%) | 182 (92.86) | 145 (92.95) | 37 (92.50) | |
Yes, n (%) | 14 (7.14) | 37 (23.72) | 3 (7.50) | |
Serum nutritional markers | ||||
Se, ug/L | 110.06 (21.62) | 111.88 (22.51) | 103.23 (16.38) | 0.024 a |
Albumin, g/dL | 4.57 (0.26) | 4.57 (0.26) | 4.60 (0.25) | 0.465 a |
Glucose, fasting, mg/dL | 108.15 (19.94) | 108.46 (21.02) | 106.87 (14.87) | 0.660 a |
HDL cholesterol, mg/dL | 54.64 (12.96) | 54.51 (12.89) | 55.21 (13.38) | 0.765 a |
LDL cholesterol, mg/dL | 96.41 (33.82) | 96.10 (35.42) | 97.68 (26.64) | 0.796 a |
Cognition | ||||
Memory score | ||||
EMS | 35.10 (9.48) | 35.17 (9.47) | 34.83 (9.67) | 0.840 a |
Non-memory score | ||||
NMS | 34.25 (6.62) | 34.06 (6.92) | 35.00 (5.26) | 0.423 a |
Global cognition | ||||
TS | 69.98 (15.61) | 70.00 (16.15) | 69.90 (13.52) | 0.971 a |
B | 95% CI | p | |
---|---|---|---|
EMS | |||
Model 1 | 0.061 | 0.019 to 0.104 | 0.005 |
Model 2 | 0.065 | 0.020 to 0.110 | 0.005 |
NMS | |||
Model 1 | 0.028 | −0.005 to 0.061 | 0.096 |
Model 2 | 0.033 | −0.003 to 0.068 | 0.069 |
TS | |||
Model 1 | 0.117 | 0.048 to 0.186 | <0.001 |
Model 2 | 0.119 | 0.046 to 0.193 | 0.002 |
B | 95% CI | p | |
---|---|---|---|
EMS | |||
Se levels | 0.079 | 0.035 to 0.123 | <0.001 |
APOE4 positivity | 6.655 | 2.915 to 10.395 | <0.001 |
Se levels APOE4 positivity | −0.074 | −0.109 to −0.039 | <0.001 |
NMS | |||
Se levels | 0.035 | −0.001 to 0.070 | 0.059 |
APOE4 positivity | 1.724 | −1.346 to 4.794 | 0.269 |
Se levels APOE4 positivity | −0.009 | −0.038 to 0.020 | 0.546 |
TS | |||
Se levels | 0.132 | 0.059 to 0.205 | <0.001 |
APOE4 positivity | 6.182 | −0.078 to 12.441 | 0.053 |
Se levels APOE4 positivity | −0.069 | −0.128 to −0.010 | 0.022 |
B | 95% CI | p | |
---|---|---|---|
EMS | |||
APOE4-negative | |||
Model 1 | 0.065 | 0.021 to 0.109 | 0.004 |
Model 2 | 0.072 | 0.025 to 0.119 | 0.003 |
APOE4-positive | |||
Model 1 | 0.031 | −0.109 to 0.171 | 0.656 |
Model 2 | −0.014 | −0.196 to 0.168 | 0.876 |
TS | |||
APOE4-negative | |||
Model 1 | 0.126 | 0.052 to 0.199 | <0.001 |
Model 2 | 0.125 | 0.046 to 0.204 | 0.002 |
APOE4-positive | |||
Model 1 | 0.040 | −0.155 to 0.235 | 0.681 |
Model 2 | −0.042 | −0.274 to 0.191 | 0.716 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, S.G.; Keum, M.; Choe, Y.M.; Suh, G.-H.; Lee, B.C.; Kim, H.S.; Lee, J.H.; Hwang, J.; Yi, D.; Kim, J.W. Selenium and Episodic Memory: The Moderating Role of Apolipoprotein E ε4. Nutrients 2025, 17, 595. https://doi.org/10.3390/nu17030595
Kim SG, Keum M, Choe YM, Suh G-H, Lee BC, Kim HS, Lee JH, Hwang J, Yi D, Kim JW. Selenium and Episodic Memory: The Moderating Role of Apolipoprotein E ε4. Nutrients. 2025; 17(3):595. https://doi.org/10.3390/nu17030595
Chicago/Turabian StyleKim, Shin Gyeom, Musung Keum, Young Min Choe, Guk-Hee Suh, Boung Chul Lee, Hyun Soo Kim, Jun Hyung Lee, Jaeuk Hwang, Dahyun Yi, and Jee Wook Kim. 2025. "Selenium and Episodic Memory: The Moderating Role of Apolipoprotein E ε4" Nutrients 17, no. 3: 595. https://doi.org/10.3390/nu17030595
APA StyleKim, S. G., Keum, M., Choe, Y. M., Suh, G.-H., Lee, B. C., Kim, H. S., Lee, J. H., Hwang, J., Yi, D., & Kim, J. W. (2025). Selenium and Episodic Memory: The Moderating Role of Apolipoprotein E ε4. Nutrients, 17(3), 595. https://doi.org/10.3390/nu17030595