Application of Response Surface Methodology for the Extraction of Phytochemicals from Upcycled Kale (Brassica oleracea var. acephala)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Chemicals
2.2. Sample Preparation
2.3. Experimental Design
2.4. Extraction, Purification, and Isolation of Carotenoids, Glucosinolates, and Flavonoids
2.4.1. Extraction Through Ultrasound-Assisted Technique
2.4.2. Determination of Total Carotenoid Content
2.4.3. Determination of Total Phenolic Concentration
2.4.4. Determination of Total Antioxidant Capacity
FRAP Assay
DPPH Radical Scavenging Assay
2.5. UPLC-ESI-MS Analysis of the Extracts
2.6. Statistical Methods
3. Results and Discussion
3.1. Influence of UAE Parameters on TCC
3.2. UAE Model Fitting
3.3. Optimization of the Extraction and Model Validation
3.4. The Recovery Percentage of Optimized Conditions for TCC
3.5. Comparison of Optimized Extraction Conditions of UAE with Different Extraction Methods
3.5.1. Total Carotenoid Content
3.5.2. Total Phenolic Content
3.5.3. Total Antioxidant Capacity
3.6. Phytochemical Characterization of Kale Extracts Using UPLC-ESI-MS Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Šamec, D.; Urlić, B.; Salopek-Sondi, B. Kale (Brassica oleracea var. acephala) as a Superfood: Review of the Scientific Evidence behind the Statement. Crit. Rev. Food Sci. Nutr. 2019, 59, 2411–2422. [Google Scholar] [CrossRef] [PubMed]
- Satheesh, N.; Workneh Fanta, S. Kale: Review on Nutritional Composition, Bio-Active Compounds, Anti-Nutritional Factors, Health Beneficial Properties and Value-Added Products. Cogent Food Agric. 2020, 6, 1811048. [Google Scholar] [CrossRef]
- U.S. Department of Agriculture, and National Agricultural Statistics Service Table 36 Vegetables, Potatoes, and Melons Harvested for Sale, Census of Agriculture 2022. Available online: https://www.nass.usda.gov/Publications/AgCensus/2022/Full_Report/Volume_1,_Chapter_1_US/st99_1_036_036.pdf (accessed on 10 August 2024).
- Statistics Canada Table 32-10-0355-01 Field Vegetables, Census of Agriculture. 2022. Available online: https://www150.statcan.gc.ca/t1/tbl1/en/tv.action?pid=3210035501 (accessed on 10 August 2024).
- Statista Search Department Global Food Consumption from 2015 to 2017, by Food Product Group. Statista. 2022. Available online: https://www.statista.com/forecasts/1298375/volume-food-consumption-worldwide (accessed on 31 August 2024).
- Upcycled Food Definition Task force Defining Upcycled Foods: A Definition for Use Across Industry, Government, and Academia. Denver, CO: Upcycled Food Association, 20. 2020. Available online: https://www.upcycledfood.org/upcycled-food (accessed on 31 August 2024).
- Aschemann-Witzel, J.; Asioli, D.; Banovic, M.; Perito, M.A.; Peschel, A.O.; Stancu, V. Defining Upcycled Food: The Dual Role of Upcycling in Reducing Food Loss and Waste. Trends Food Sci. Technol. 2023, 132, 132–137. [Google Scholar] [CrossRef]
- Ortega-Hernández, E.; Antunes-Ricardo, M.; Jacobo-Velázquez, D.A. Improving the Health-Benefits of Kales (Brassica oleracea L. var. acephala DC) through the Application of Controlled Abiotic Stresses: A Review. Plants 2021, 10, 2629. [Google Scholar] [CrossRef]
- Artés-Hernández, F.; Martínez-Zamora, L.; Cano-Lamadrid, M.; Hashemi, S.; Castillejo, N. Genus Brassica By-Products Revalorization with Green Technologies to Fortify Innovative Foods: A Scoping Review. Foods 2023, 12, 561. [Google Scholar] [CrossRef]
- Doria, E.; Buonocore, D.; Marra, A.; Bontà, V.; Gazzola, A.; Dossena, M.; Verri, M.; Calvio, C. Bacterial-Assisted Extraction of Bioactive Compounds from Cauliflower. Plants 2022, 11, 816. [Google Scholar] [CrossRef]
- Valisakkagari, H.; Chaturvedi, C.; Rupasinghe, H.P.V. Green Extraction of Phytochemicals from Fresh Vegetable Waste and Their Potential Application as Cosmeceuticals for Skin Health. Processes 2024, 12, 742. [Google Scholar] [CrossRef]
- Cui, T.; Li, J.; Li, N.; Li, F.; Song, Y.; Li, L. Optimization of Ultrasonic-Assisted Extraction of Arbutin from Pear Fruitlets Using Response Surface Methodology. Food Meas. 2022, 16, 3130–3139. [Google Scholar] [CrossRef]
- González-Silva, N.; Nolasco-González, Y.; Aguilar-Hernández, G.; Sáyago-Ayerdi, S.G.; Villagrán, Z.; Acosta, J.L.; Montalvo-González, E.; Anaya-Esparza, L.M. Ultrasound-Assisted Extraction of Phenolic Compounds from Psidium cattleianum Leaves: Optimization Using the Response Surface Methodology. Molecules 2022, 27, 3557. [Google Scholar] [CrossRef]
- Rodríguez García, S.L.; Raghavan, V. Green Extraction Techniques from Fruit and Vegetable Waste to Obtain Bioactive Compounds—A Review. Crit. Rev. Food Sci. Nutr. 2021, 62, 6446–6466. [Google Scholar] [CrossRef]
- de Carvalho, L.M.J.; Gomes, P.B.; Godoy, R.L.d.O.; Pacheco, S.; do Monte, P.H.F.; de Carvalho, J.L.V.; Nutti, M.R.; Neves, A.C.L.; Vieira, A.C.R.A.; Ramos, S.R.R. Total Carotenoid Content, α-Carotene and β-Carotene, of Landrace Pumpkins (Cucurbita moschata duch): A Preliminary Study. Food Res. Int. 2012, 47, 337–340. [Google Scholar] [CrossRef]
- Rupasinghe, H.P.V.; Huber, G.M.; Embree, C.; Forsline, P.L. Red-Fleshed Apple as a Source for Functional Beverages. Can. J. Plant Sci. 2010, 90, 95–100. [Google Scholar] [CrossRef]
- Kang, H.-J.; Ko, M.-J.; Chung, M.-S. Anthocyanin Structure and pH Dependent Extraction Characteristics from Blueberries (Vaccinium corymbosum) and Chokeberries (Aronia melanocarpa) in Subcritical Water State. Foods 2021, 10, 527. [Google Scholar] [CrossRef] [PubMed]
- Blois, M.S. Antioxidant Determinations by the Use of a Stable Free Radical. Nature 1958, 181, 1199–1200. [Google Scholar] [CrossRef]
- Thilakarathna, W.P.D.W.; Rupasinghe, H.P.V. Optimization of the Extraction of Proanthocyanidins from Grape Seeds Using Ultrasonication-Assisted Aqueous Ethanol and Evaluation of Anti-Steatosis Activity In Vitro. Molecules 2022, 27, 1363. [Google Scholar] [CrossRef] [PubMed]
- Morón-Ortiz, Á.; Mapelli-Brahm, P.; Meléndez-Martínez, A.J. Sustainable Green Extraction of Carotenoid Pigments: Innovative Technologies and Bio-Based Solvents. Antioxidants 2024, 13, 239. [Google Scholar] [CrossRef] [PubMed]
- Chemat, F.; Vian, M.A.; Cravotto, G. Green Extraction of Natural Products: Concept and Principles. IJMS 2012, 13, 8615–8627. [Google Scholar] [CrossRef]
- Saini, R.K.; Keum, Y.-S. Carotenoid Extraction Methods: A Review of Recent Developments. Food Chem. 2018, 240, 90–103. [Google Scholar] [CrossRef] [PubMed]
- Cravotto, C.; Fabiano-Tixier, A.-S.; Claux, O.; Abert-Vian, M.; Tabasso, S.; Cravotto, G.; Chemat, F. Towards Substitution of Hexane as Extraction Solvent of Food Products and Ingredients with No Regrets. Foods 2022, 11, 3412. [Google Scholar] [CrossRef] [PubMed]
- Onuki, S.; Koziel, J.A.; Jenks, W.S.; Cai, L.; Grewell, D.; Van Leeuwen, J. Taking Ethanol Quality beyond Fuel Grade: A Review. J. Inst. Brew. 2016, 122, 588–598. [Google Scholar] [CrossRef]
- Linares, G.; Rojas, M.L. Ultrasound-Assisted Extraction of Natural Pigments From Food Processing By-Products: A Review. Front. Nutr. 2022, 9, 891462. [Google Scholar] [CrossRef]
- Kumar, M.; Dahuja, A.; Tiwari, S.; Punia, S.; Tak, Y.; Amarowicz, R.; Bhoite, A.G.; Singh, S.; Joshi, S.; Panesar, P.S.; et al. Recent Trends in Extraction of Plant Bioactives Using Green Technologies: A Review. Food Chem. 2021, 353, 129431. [Google Scholar] [CrossRef]
- Gunathilake, K.; Ranaweera, K.; Rupasinghe, H.P.V.; Rathnayaka, R. Optimizing the Extraction of Bioactive Compounds from Leaves of Gymnema lactiferum, an Edible Green Leafy Vegetable. South Asian Res. J. Nat. Prod. 2018, 1, 77–85. [Google Scholar]
- Viñas-Ospino, A.; López-Malo, D.; Esteve, M.J.; Frígola, A.; Blesa, J. Green Solvents: Emerging Alternatives for Carotenoid Extraction from Fruit and Vegetable By-Products. Foods 2023, 12, 863. [Google Scholar] [CrossRef]
- Šeregelj, V.; Estivi, L.; Brandolini, A.; Ćetković, G.; Tumbas Šaponjac, V.; Hidalgo, A. Kinetics of Carotenoids Degradation during the Storage of Encapsulated Carrot Waste Extracts. Molecules 2022, 27, 8759. [Google Scholar] [CrossRef]
- Chutia, H.; Mahanta, C.L. Green Ultrasound and Microwave Extraction of Carotenoids from Passion Fruit Peel Using Vegetable Oils as a Solvent: Optimization, Comparison, Kinetics, and Thermodynamic Studies. Innov. Food Sci. Emerg. Technol. 2021, 67, 102547. [Google Scholar] [CrossRef]
- Kultys, E.; Kurek, M.A. Green Extraction of Carotenoids from Fruit and Vegetable Byproducts: A Review. Molecules 2022, 27, 518. [Google Scholar] [CrossRef] [PubMed]
- Chemat, F.; Rombaut, N.; Sicaire, A.-G.; Meullemiestre, A.; Fabiano-Tixier, A.-S.; Abert-Vian, M. Ultrasound Assisted Extraction of Food and Natural Products. Mechanisms, Techniques, Combinations, Protocols and Applications. A Review. Ultrason. Sonochemistry 2017, 34, 540–560. [Google Scholar] [CrossRef] [PubMed]
- Yolmeh, M.; Habibi Najafi, M.B.; Farhoosh, R. Optimisation of Ultrasound-Assisted Extraction of Natural Pigment from Annatto Seeds by Response Surface Methodology (RSM). Food Chem. 2014, 155, 319–324. [Google Scholar] [CrossRef]
- Gan, S.; Liang, S.; Zou, Q.; Shang, C. Optimization of Carotenoid Extraction of a Halophilic Microalgae. PLoS ONE 2022, 17, e0270650. [Google Scholar] [CrossRef]
- Gavril (Rațu), R.N.; Constantin, O.E.; Enachi, E.; Stoica, F.; Lipșa, F.D.; Stănciuc, N.; Aprodu, I.; Râpeanu, G. Optimization of the Parameters Influencing the Antioxidant Activity and Concentration of Carotenoids Extracted from Pumpkin Peel Using a Central Composite Design. Plants 2024, 13, 1447. [Google Scholar] [CrossRef] [PubMed]
- Umair, M.; Jabbar, S.; Nasiru, M.M.; Lu, Z.; Zhang, J.; Abid, M.; Murtaza, M.A.; Kieliszek, M.; Zhao, L. Ultrasound-Assisted Extraction of Carotenoids from Carrot Pomace and Their Optimization through Response Surface Methodology. Molecules 2021, 26, 6763. [Google Scholar] [CrossRef] [PubMed]
- Gunathilake, K.; Ranaweera, K.; Rupasinghe, H.P.V. Optimization of Phenolics and Carotenoids Extraction from Leaves of Passiflora edulis Using Response Surface Methods. Asian J. Biotechnol. Bioresour. Technol. 2017, 1, 1–11. [Google Scholar] [CrossRef]
- Gunathilake, K.; Ranaweera, K.; Rupasinghe, H.P.V. Optimization of Polyphenols and Carotenoids Extraction from Leaves of Cassia auriculata for Natural Health Products. Asian Plant Res. J. 2020, 6, 14–25. [Google Scholar] [CrossRef]
- Gunathilaka, K.; Ranaweera, K.; Rupasinghe, H.P.V.; Perera, O.; Jayaweera, H. Response Surface Optimization of Extraction of Polyphenols and Carotenoids from Sesbania grandiflora Leaves with Ethanol-Water System. Asian J. Biotechnol. Bioresour. Technol. 2017, 2, 1–10. [Google Scholar] [CrossRef]
- Benmeziane, A.; Boulekbache-Makhlouf, L.; Mapelli-Brahm, P.; Khaled Khodja, N.; Remini, H.; Madani, K.; Meléndez-Martínez, A.J. Extraction of Carotenoids from Cantaloupe Waste and Determination of Its Mineral Composition. Food Res. Int. 2018, 111, 391–398. [Google Scholar] [CrossRef]
- Da Silva, L.C.; Viganó, J.; De Souza Mesquita, L.M.; Dias, A.L.B.; De Souza, M.C.; Sanches, V.L.; Chaves, J.O.; Pizani, R.S.; Contieri, L.S.; Rostagno, M.A. Recent Advances and Trends in Extraction Techniques to Recover Polyphenols Compounds from Apple By-Products. Food Chem. X 2021, 12, 100133. [Google Scholar] [CrossRef]
- Silva, J.P.P.; Bolanho, B.C.; Stevanato, N.; Massa, T.B.; da Silva, C. Ultrasound-assisted Extraction of Red Beet Pigments (Beta vulgaris L.): Influence of Operational Parameters and Kinetic Modeling. J. Food Process. Preserv. 2020, 44, e14762. [Google Scholar] [CrossRef]
- Hikmawanti, N.P.E.; Ramadon, D.; Jantan, I.; Mun’im, A. Natural Deep Eutectic Solvents (NADES): Phytochemical Extraction Performance Enhancer for Pharmaceutical and Nutraceutical Product Development. Plants 2021, 10, 2091. [Google Scholar] [CrossRef]
- Vélez-Erazo, E.M.; Pasquel-Reátegui, J.L.; Dorronsoro-Guerrero, O.H.; Martínez-Correa, H.A. Phenolics and Carotenoids Recovery from Agroindustrial Mango Waste Using Microwave-Assisted Extraction: Extraction and Modeling. J. Food Process Eng. 2021, 44, e13774. [Google Scholar] [CrossRef]
- Vu, H.T.; Scarlett, C.J.; Vuong, Q.V. Maximising Recovery of Phenolic Compounds and Antioxidant Properties from Banana Peel Using Microwave Assisted Extraction and Water. J. Food Sci. Technol. 2019, 56, 1360–1370. [Google Scholar] [CrossRef]
- Silva, Y.P.A.; Ferreira, T.A.P.C.; Jiao, G.; Brooks, M.S. Sustainable Approach for Lycopene Extraction from Tomato Processing By-Product Using Hydrophobic Eutectic Solvents. J Food Sci Technol 2019, 56, 1649–1654. [Google Scholar] [CrossRef] [PubMed]
- Sharma, M.; Bhat, R. Extraction of Carotenoids from Pumpkin Peel and Pulp: Comparison between Innovative Green Extraction Technologies (Ultrasonic and Microwave-Assisted Extractions Using Corn Oil). Foods 2021, 10, 787. [Google Scholar] [CrossRef] [PubMed]
- Elik, A.; Yanık, D.K.; Göğüş, F. Microwave-Assisted Extraction of Carotenoids from Carrot Juice Processing Waste Using Flaxseed Oil as a Solvent. LWT 2020, 123, 109100. [Google Scholar] [CrossRef]
- Park, S.-Y.; Choi, S.R.; Lim, S.-H.; Yeo, Y.; Kweon, S.J.; Bae, Y.-S.; Kim, K.W.; Im, K.-H.; Ahn, S.K.; Ha, S.-H.; et al. Identification and Quantification of Carotenoids in Paprika Fruits and Cabbage, Kale, and Lettuce Leaves. J Korean Soc. Appl. Biol. Chem. 2014, 57, 355–358. [Google Scholar] [CrossRef]
- Kaulmann, A.; Jonville, M.-C.; Schneider, Y.-J.; Hoffmann, L.; Bohn, T. Carotenoids, Polyphenols and Micronutrient Profiles of Brassica Oleraceae and Plum Varieties and Their Contribution to Measures of Total Antioxidant Capacity. Food Chem. 2014, 155, 240–250. [Google Scholar] [CrossRef]
- Lee, E.H.; Faulhaber, D.; Hanson, K.M.; Ding, W.; Peters, S.; Kodali, S.; Granstein, R.D. Dietary Lutein Reduces Ultraviolet Radiation-Induced Inflammation and Immunosuppression. J. Investig. Dermatol. 2004, 122, 510–517. [Google Scholar] [CrossRef]
- Žmitek, K.; Žmitek, J.; Rogl Butina, M.; Hristov, H.; Pogačnik, T.; Pravst, I. Dietary Lutein Supplementation Protects against Ultraviolet-Radiation-Induced Erythema: Results of a Randomized Double-Blind Placebo-Controlled Study. J. Funct. Foods 2020, 75, 104265. [Google Scholar] [CrossRef]
- Zheng, W.V.; Xu, W.; Li, Y.; Qin, J.; Zhou, T.; Li, D.; Xu, Y.; Cheng, X.; Xiong, Y.; Chen, Z. Anti-Aging Effect of β-Carotene through Regulating the KAT7-P15 Signaling Axis, Inflammation and Oxidative Stress Process. Cell Mol. Biol. Lett. 2022, 27, 86. [Google Scholar] [CrossRef]
- Lefsrud, M.; Kopsell, D.; Wenzel, A.; Sheehan, J. Changes in Kale (Brassica oleracea L. var. acephala) Carotenoid and Chlorophyll Pigment Concentrations during Leaf Ontogeny. Sci. Hortic. 2007, 112, 136–141. [Google Scholar] [CrossRef]
- Lučić, D.; Pavlović, I.; Brkljačić, L.; Bogdanović, S.; Farkaš, V.; Cedilak, A.; Nanić, L.; Rubelj, I.; Salopek-Sondi, B. Antioxidant and Antiproliferative Activities of Kale (Brassica oleracea L. var. acephala DC.) and Wild Cabbage (Brassica incana ten.) Polyphenolic Extracts. Molecules 2023, 28, 1840. [Google Scholar] [CrossRef]
- Jeon, J.; Kim, J.K.; Kim, H.; Kim, Y.J.; Park, Y.J.; Kim, S.J.; Kim, C.; Park, S.U. Transcriptome Analysis and Metabolic Profiling of Green and Red Kale (Brassica oleracea var. acephala) Seedlings. Food Chem. 2018, 241, 7–13. [Google Scholar] [CrossRef]
- Favela-González, K.M.; Hernández-Almanza, A.Y.; De la Fuente-Salcido, N.M. The Value of Bioactive Compounds of Cruciferous Vegetables (Brassica) as Antimicrobials and Antioxidants: A Review. J. Food Biochem. 2020, 44, e13414. [Google Scholar] [CrossRef] [PubMed]
- Ayaz, F.A.; Hayırlıoglu-Ayaz, S.; Alpay-Karaoglu, S.; Grúz, J.; Valentová, K.; Ulrichová, J.; Strnad, M. Phenolic Acid Contents of Kale (Brassica oleraceae L. var. acephala DC.) Extracts and Their Antioxidant and Antibacterial Activities. Food Chem. 2008, 107, 19–25. [Google Scholar] [CrossRef]
- Ramirez, D.; Abellán-Victorio, A.; Beretta, V.; Camargo, A.; Moreno, D.A. Functional Ingredients From Brassicaceae Species: Overview and Perspectives. Int. J. Mol. Sci. 2020, 21, 1998. [Google Scholar] [CrossRef] [PubMed]
- Biegańska-Marecik, R.; Radziejewska-Kubzdela, E.; Marecik, R. Characterization of Phenolics, Glucosinolates and Antioxidant Activity of Beverages Based on Apple Juice with Addition of Frozen and Freeze-Dried Curly Kale Leaves (Brassica oleracea L. var. acephala L.). Food Chem. 2017, 230, 271–280. [Google Scholar] [CrossRef] [PubMed]
Independent Variables | Levels | ||||
---|---|---|---|---|---|
−1.68 | −1 | 0 | 1 | +1.68 | |
X1 Ethanol concentrations (%) | 60 | 68 | 80 | 92 | 100 |
X2 Temperature (°C) | 20 | 32 | 50 | 68 | 80 |
X3 Extraction duration (min) | 30 | 85 | 165 | 245 | 300 |
Run Order | Ethanol Concentration (%) | Temperature (°C) | Extraction Time (min) | TCC (μg Carotenoid/g DW) |
---|---|---|---|---|
1 | 80 (0) | 50 (0) | 165 (0) | 420.8 |
2 | 80 (0) | 50 (0) | 165 (0) | 363.6 |
3 | 80 (0) | 50 (0) | 165 (0) | 337.9 |
4 | 100 (+1.68) | 50 (0) | 165 (0) | 444.7 |
5 | 80 (0) | 50 (0) | 165 (0) | 376.3 |
6 | 80 (0) | 50 (0) | 165 (0) | 405.7 |
7 | 68.1 (−1) | 32.2 (−1) | 245.3 (+1) | 235.1 |
8 | 68.1 (−1) | 67.8 (+1) | 84.7 (−1) | 178.3 |
9 | 60 (−1.68) | 50 (0) | 165 (0) | 46.80 |
10 | 68.1 (−1) | 67.8 (+1) | 245.3 (+1) | 153.0 |
11 | 91.9 (+1) | 67.8 (+1) | 245.3 (+1) | 185.1 |
12 | 80 (0) | 80 (+1.68) | 165 (0) | 259.0 |
13 | 80 (0) | 50 (0) | 30 (−1.68) | 395.6 |
14 | 80 (0) | 20 (−1.68) | 165 (0) | 254.8 |
15 | 68.1 (−1) | 32.2 (−1) | 84.7 (−1) | 205.6 |
16 | 80 (0) | 50 (0) | 300 (+1.68) | 191.3 |
17 | 91.9 (+1) | 32.2 (−1) | 245.3 (+1) | 445.3 |
18 | 91.9 (+1) | 32.2 (−1) | 84.7 (−1) | 403.0 |
19 | 91.9 (+1) | 67.8 (+1) | 84.7 (−1) | 448.5 |
20 | 80 (0) | 50 (0) | 165 (0) | 380.3 |
Source of Variation | p-Value |
---|---|
Constant | 0.000 |
% EtOH (X1) | 0.000 |
Temp (X2) | 0.126 |
Time (X3) | 0.015 |
% EtOH * % EtOH | 0.010 |
Temp * Temp | 0.017 |
Time * Time | 0.084 |
% EtOH * Temp (X1X2) | 0.485 |
% EtOH * Time (X1X3) | 0.152 |
Temp * Time (X2X3) | 0.033 |
Lack of Fit | 0.050 |
R-Square | 90.18% |
Adjusted R2 | 81.33% |
Extraction Run | Recovery | |
---|---|---|
TCC (μg/g) | % | |
1 | 392 | 71.4 |
2 | 99.4 | 18.1 |
3 | 35.4 | 6.46 |
4 | 21.8 | 3.98 |
Extraction Methods | Solvent | Assay | ||||
---|---|---|---|---|---|---|
Type | Concentration | TCC (μg Carotenoid/g DW) | TPC (mg GAE/g DW) | FRAP (μmole TE/g DW) | DPPH (IC50 mg/mL) | |
Optimized UAE | Ethanol | 100% | 392 ±1.8 ab | 10.5 ± 1.4 c | 13.9 ± 1.5 b | 2.04 ± 0.3 a |
WSB | Ethanol | 100% | 345 ±16.4 bc | 9.0 ± 0.9 c | 11.8 ± 0.7 b | 2.29 ± 0.4 a |
MAE | Ethanol | 80% | 354 ± 7.6 abc | 34.1 ± 3.3 a | 34.2 ± 10.3 b | 0.68 ± 0.05 c |
UAE | Canola oil | 100% | 128 ± 1.7 d | 1.75 ± 0.09 d | 8.25 ± 4.8 b | 1.15 ± 0.06 bc |
MAE | Canola oil | 100% | 129 ± 1.5 d | 6.03 ± 0.07 cd | 14.8 ± 2.8 b | 0.98 ± 0.05 bc |
UAE | NADES (DL-menthol: Lactic Acid) | 8:1 mol HBA/mol HBD | 425 ± 48.2 a | 19.4 ± 2.9 b | 102 ± 37.0 a | NA * |
Soxhlet Extraction | Hexane: Acetone: Ethanol | 2:1:1 v/v/v | 292 ± 53.08 c | 3.46 ± 1.8 d | 2.9 ± 1.7 b | 1.4 ± 0.05 b |
Bioactive Compounds (μg/g DW) | Different Extraction Methods | |||
---|---|---|---|---|
Ultrasound-Assisted Extraction | Microwave-Assisted Extraction | Water-Shaking Bath | Soxhlet Extraction | |
Ethanol | Ethanol | Ethanol | Hexane–Acetone–Ethanol | |
Lutein | 879 ± 125 b | 1229 ± 369 b | 843 ± 130 b | 2323 ± 220 a |
β-carotene | 947 ± 95.7 a | 492 ± 63 b | 1009 ± 186 a | 964 ± 45.5 a |
Total carotenoid content | 1829 ± 221 | 1721 ± 431 | 1853 ± 317 | 3287 ± 265 |
Kaempferol | 2.83 ± 1.06 a | 2.79 ± 0.59 a | 1.70 ± 0.33 a | 2.70 ± 0.3 a |
Total quercetin | 73.2 ± 13.8 b | 267 ± 21.3 a | 68.3 ± 1.95 b | 87.4 ± 10.2 b |
Total flavonoid content | 76.1 ± 14.9 | 270 ± 21.9 | 70 ± 2.3 | 90.1 ± 10.5 |
Chlorogenic acid | 84.4 ± 20 b | 536 ± 18.1a | 74.6 ± 2.2 b | 101 ± 7.8 b |
Ferulic acid | 92.2 ± 2.9 c | 146 ± 11.8 b | 93.4 ± 0.3 c | 234 ± 12.1 a |
Total phenolic content | 177 ± 22.1 | 682 ± 29.9 | 168 ± 2.5 | 336 ± 19.9 |
Total phytochemicals | 2082 | 2673 | 2091 | 3713 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Valisakkagari, H.; Rupasinghe, H.P.V. Application of Response Surface Methodology for the Extraction of Phytochemicals from Upcycled Kale (Brassica oleracea var. acephala). Nutraceuticals 2025, 5, 2. https://doi.org/10.3390/nutraceuticals5010002
Valisakkagari H, Rupasinghe HPV. Application of Response Surface Methodology for the Extraction of Phytochemicals from Upcycled Kale (Brassica oleracea var. acephala). Nutraceuticals. 2025; 5(1):2. https://doi.org/10.3390/nutraceuticals5010002
Chicago/Turabian StyleValisakkagari, Harichandana, and H. P. Vasantha Rupasinghe. 2025. "Application of Response Surface Methodology for the Extraction of Phytochemicals from Upcycled Kale (Brassica oleracea var. acephala)" Nutraceuticals 5, no. 1: 2. https://doi.org/10.3390/nutraceuticals5010002
APA StyleValisakkagari, H., & Rupasinghe, H. P. V. (2025). Application of Response Surface Methodology for the Extraction of Phytochemicals from Upcycled Kale (Brassica oleracea var. acephala). Nutraceuticals, 5(1), 2. https://doi.org/10.3390/nutraceuticals5010002