Inferring Tripartite Associations of Vector-Borne Plant Pathogens Using a Next-Generation Sequencing Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Leafhopper Samples, DNA Extraction, qPCR, and Anchored Hybrid Enrichment Sequencing
2.2. Phytoplasma and Plant DNA Detection and Characterization
2.3. Insect–Plant Cophylogenetic Analysis
3. Results
3.1. Inferring the Host Plants of Potential Leafhopper Vectors Using AHE Data
3.1.1. Variation in Sequence Recovery Among Loci
3.1.2. Influence of Sequence Count on Identified Diet Breadth
3.2. Tripartite Vector–Plant–Phytoplasma Associations
3.2.1. Africa
3.2.2. North America
3.2.3. North and East Asia
3.2.4. Europe and the Middle East
3.2.5. Southeast Asia and Oceania
3.2.6. South America
3.3. Coevolutionary Testing in Deltocephalinae
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Weintraub, P.G.; Trivellone, V.; Krüger, K. The Biology and Ecology of Leafhopper Transmission of Phytoplasmas. In Phytoplasmas: Plant Pathogenic Bacteria—II; Bertaccini, A., Weintraub, P.G., Rao, G.P., Mori, N., Eds.; Springer: Singapore, 2019; pp. 27–51. ISBN 9789811328312. [Google Scholar]
- Brooks, D.R.; Hoberg, E.P.; Boeger, W.A.; Trivellone, V. Emerging Infectious Disease: An Underappreciated Area of Strategic Concern for Food Security. Transbounding Emerg. Dis. 2022, 69, 254–267. [Google Scholar] [CrossRef] [PubMed]
- Trivellone, V.; Dietrich, C.H. Evolutionary Diversification in Insect Vector–Phytoplasma–Plant Associations. Ann. Entomol. Soc. Am. 2021, 114, 137–150. [Google Scholar] [CrossRef]
- Sushko, G.G. Succession Changes in Diversity and Assemblages Composition of Planthoppers and Leafhoppers in Natural Ancient Peat Bogs in Belarus. Biodivers. Conserv. 2016, 25, 2947–2963. [Google Scholar] [CrossRef]
- Novotný, V.; Novotny, V. Relationships between Life Histories of Leafhoppers (Auchenorrhyncha—Hemiptera) and Their Host Plants (Juncaceae, Cyperaceae, Poaceae). Oikos 1995, 73, 33. [Google Scholar] [CrossRef]
- Bennett, G.M.; Moran, N.A. Small, Smaller, Smallest: The Origins and Evolution of Ancient Dual Symbioses in a Phloem-Feeding Insect. Genome Biol. Evol. 2013, 5, 1675–1688. [Google Scholar] [CrossRef]
- Cao, Y.; Dietrich, C.H.; Zahniser, J.N.; Dmitriev, D.A. Dense Sampling of Taxa and Characters Improves Phylogenetic Resolution among Deltocephaline Leafhoppers (Hemiptera: Cicadellidae: Deltocephalinae). Syst. Entomol. 2022, 47, 430–444. [Google Scholar] [CrossRef]
- Thompson, J.N. Rapid Evolution as an Ecological Process. Trends Ecol. Evol. 1998, 13, 329–332. [Google Scholar] [CrossRef]
- Friesen, M.L.; Porter, S.S.; Stark, S.C.; Von Wettberg, E.J.; Sachs, J.L.; Martinez-Romero, E. Microbially Mediated Plant Functional Traits. Annu. Rev. Ecol. Evol. Syst. 2011, 42, 23–46. [Google Scholar] [CrossRef]
- Mescher, M.C. Manipulation of Plant Phenotypes by Insects and Insect-Borne Pathogens. In Host Manipulation by Parasites; Hughes, D.P., Brodeur, J., Thomas, F., Eds.; Oxford University Press: Oxford, UK, 2012; pp. 73–92. ISBN 978-0-19-964223-6. [Google Scholar]
- Ángeles-López, Y.I.; Rivera-Bustamante, R.; Heil, M. Fatal Attraction of Non-vector Impairs Fitness of Manipulating Plant Virus. J. Ecol. 2018, 106, 391–400. [Google Scholar] [CrossRef]
- Holmes, J.C.; Bethel, W.M. Modification of Intermediate Host Behavior by Parasites. In Behavioral Aspects of Parasite Transmission; Academic Press: London, UK, 1972; pp. 123–149. [Google Scholar]
- Agosta, S.J.; Klemens, J.A. Ecological Fitting by Phenotypically Flexible Genotypes: Implications for Species Associations, Community Assembly and Evolution. Ecol. Lett. 2008, 11, 1123–1134. [Google Scholar] [CrossRef]
- Frost, K.E.; Esker, P.D.; Van Haren, R.; Kotolski, L.; Groves, R.L. Factors Influencing Aster Leafhopper (Hemiptera: Cicadellidae) Abundance and Aster Yellows Phytoplasma Infectivity in Wisconsin Carrot Fields. Environ. Entomol. 2013, 42, 477–490. [Google Scholar] [CrossRef] [PubMed]
- Jakovljević, M.; Jović, J.; Krstić, O.; Mitrović, M.; Marinković, S.; Toševski, I.; Cvrković, T. Diversity of Phytoplasmas Identified in the Polyphagous Leafhopper Euscelis incisus (Cicadellidae, Deltocephalinae) in Serbia: Pathogen Inventory, Epidemiological Significance and Vectoring Potential. Eur. J. Plant Pathol. 2020, 156, 201–221. [Google Scholar] [CrossRef]
- Van Dijck, T.; Klerkx, H.; Thijs, S.; Rineau, F.; Van Mechelen, C.; Artois, T. Sedum as Host Plants for Caterpillars? Introducing Gut Content Metabarcoding to Green Roof Research. Urban Ecosyst. 2023, 26, 955–965. [Google Scholar] [CrossRef]
- Zhang, X.; Shi, Z.; Zhang, S.; Zhang, P.; Wilson, J.; Shih, C.; Li, J.; Li, X.; Yu, G.; Zhang, A. Plant–Herbivorous Insect Networks: Who Is Eating What Revealed by Long Barcodes Using High-throughput Sequencing and Trinity Assembly. Insect Sci. 2021, 28, 127–143. [Google Scholar] [CrossRef]
- García-Robledo, C.; Erickson, D.L.; Staines, C.L.; Erwin, T.L.; Kress, W.J. Tropical Plant–Herbivore Networks: Reconstructing Species Interactions Using DNA Barcodes. PLoS ONE 2013, 8, e52967. [Google Scholar] [CrossRef]
- Cao, Y.; Dietrich, C.H. Identification of Potential Host Plants of Sap-Sucking Insects (Hemiptera: Cicadellidae) Using Anchored Hybrid By-Catch Data. Insects 2021, 12, 964. [Google Scholar] [CrossRef]
- Inaba, J.; Shao, J.; Trivellone, V.; Zhao, Y.; Dietrich, C.H.; Bottner-Parker, K.D.; Ivanauskas, A.; Wei, W. Guilt by Association: DNA Barcoding-Based Identification of Potential Plant Hosts of Phytoplasmas from Their Insect Carriers. Phytopathology 2023, 113, 413–422. [Google Scholar] [CrossRef]
- Avanesyan, A.; Illahi, N.; Lamp, W.O. Detecting Ingested Host Plant DNA in Potato Leafhopper (Hemiptera: Cicadellidae): Potential Use of Molecular Markers for Gut Content Analysis. J. Econ. Entomol. 2021, 114, 472–475. [Google Scholar] [CrossRef]
- Avanesyan, A.; Sutton, H.; Lamp, W.O. Choosing an Effective PCR-Based Approach for Diet Analysis of Insect Herbivores: A Systematic Review. J. Econ. Entomol. 2021, 114, 1035–1046. [Google Scholar] [CrossRef]
- Trivellone, V.; Cao, Y.; Dietrich, C.H. Comparison of Traditional and Next-Generation Approaches for Uncovering Phytoplasma Diversity, with Discovery of New Groups, Subgroups and Potential Vectors. Biology 2022, 11, 977. [Google Scholar] [CrossRef]
- Angelini, E.; Luca Bianchi, G.; Filippin, L.; Morassutti, C.; Borgo, M. A New TaqMan Method for the Identification of Phytoplasmas Associated with Grapevine Yellows by Real-Time PCR Assay. J. Microbiol. Methods 2007, 68, 613–622. [Google Scholar] [CrossRef] [PubMed]
- Lemmon, A.R.; Emme, S.A.; Lemmon, E.M. Anchored Hybrid Enrichment for Massively High-Throughput Phylogenomics. Syst. Biol. 2012, 61, 727–744. [Google Scholar] [CrossRef] [PubMed]
- Trivellone, V.; Cao, Y.; Dietrich, C.H. Multilocus Next-Generation Sequencing of Leafhopper-Associated Phytoplasmas Highlights Gaps in Knowledge for Some Phytoplasma Lineages and Genetic Loci. Phytopathogenic Mollicutes 2023, 13, 115–116. [Google Scholar] [CrossRef]
- Little, D.P. A DNA Mini-barcode for Land Plants. Mol. Ecol. Resour. 2014, 14, 437–446. [Google Scholar] [CrossRef]
- Camacho, C.; Coulouris, G.; Avagyan, V.; Ma, N.; Papadopoulos, J.; Bealer, K.; Madden, T.L. BLAST+: Architecture and Applications. BMC Bioinform. 2009, 10, 421. [Google Scholar] [CrossRef]
- Louca, S.; Doebeli, M. Efficient Comparative Phylogenetics on Large Trees. Bioinformatics 2018, 34, 1053–1055. [Google Scholar] [CrossRef]
- Smith, S.A.; Brown, J.W. Constructing a Broadly Inclusive Seed Plant Phylogeny. Am. J. Bot. 2018, 105, 302–314. [Google Scholar] [CrossRef]
- Zanne, A.E.; Tank, D.C.; Cornwell, W.K.; Eastman, J.M.; Smith, S.A.; FitzJohn, R.G.; McGlinn, D.J.; O’Meara, B.C.; Moles, A.T.; Reich, P.B.; et al. Three Keys to the Radiation of Angiosperms into Freezing Environments. Nature 2014, 506, 89–92. [Google Scholar] [CrossRef]
- Jin, Y.; Qian, H.V. PhyloMaker2: An Updated and Enlarged R Package That Can Generate Very Large Phylogenies for Vascular Plants. Plant Divers. 2022, 44, 335–339. [Google Scholar] [CrossRef]
- Jin, Y.; Qian, H.V. PhyloMaker: An R Package That Can Generate Very Large Phylogenies for Vascular Plants. Ecography 2019, 42, 1353–1359. [Google Scholar] [CrossRef]
- Paradis, E.; Schliep, K. Ape 5.0: An Environment for Modern Phylogenetics and Evolutionary Analyses in R. Bioinformatics 2019, 35, 526–528. [Google Scholar] [CrossRef] [PubMed]
- Balbuena, J.A.; Pérez-Escobar, Ó.A.; Llopis-Belenguer, C.; Blasco-Costa, I. Random Tanglegram Partitions (Random TaPas): An Alexandrian Approach to the Cophylogenetic Gordian Knot. Syst. Biol. 2020, 69, 1212–1230. [Google Scholar] [CrossRef] [PubMed]
- Llaberia-Robledillo, M.; Lucas-Lledó, J.I.; Pérez-Escobar, O.A.; Krasnov, B.R.; Balbuena, J.A. Rtapas: An R Package to Assess Cophylogenetic Signal between Two Evolutionary Histories. Syst. Biol. 2023, 72, 946–954. [Google Scholar] [CrossRef] [PubMed]
- Yao, H.; Song, J.; Liu, C.; Luo, K.; Han, J.; Li, Y.; Pang, X.; Xu, H.; Zhu, Y.; Xiao, P.; et al. Use of ITS2 Region as the Universal DNA Barcode for Plants and Animals. PLoS ONE 2010, 5, e13102. [Google Scholar] [CrossRef]
- Newmaster, S.G.; Fazekas, A.J.; Ragupathy, S. DNA Barcoding in Land Plants: Evaluation of rbcL in a Multigene Tiered Approach. Can. J. Bot. 2006, 84, 335–341. [Google Scholar] [CrossRef]
- Stiller, M. Revision of Vilargus Theron (Hemiptera: Cicadellidae: Deltocephalinae) from South Africa. Zootaxa 2010, 2674, 1–25. [Google Scholar] [CrossRef]
- Gonella, E.; Benelli, G.; Arricau-Bouvery, N.; Bosco, D.; Duso, C.; Dietrich, C.H.; Galetto, L.; Rizzoli, A.; Jović, J.; Mazzoni, V.; et al. Scaphoideus titanus Up-to-the-Minute: Biology, Ecology, and Role as a Vector. Entomol. Gen. 2024, 44, 481–496. [Google Scholar] [CrossRef]
- Serena, R.; Antonella, P.; Vera, D.; Ernesto, R.; Cristina, M.; Tessitori, M. Transmission of ‘Candidatus Phytoplasma Asteris’ (16SrI) by Osbornellus horvathi (Matsumura 1908) Co-Infected with “Ca. Phytoplasma Phoenicium” (16SrIX). Phytoparasitica 2016, 44, 491–500. [Google Scholar] [CrossRef]
- Picciau, L.; Orrù, B.; Mandrioli, M.; Gonella, E.; Alma, A. Ability of Euscelidius variegatus to Transmit Flavescence Dorée Phytoplasma with a Short Latency Period. Insects 2020, 11, 603. [Google Scholar] [CrossRef]
- Jensen, D.D. Comparative Transmission of Western X-Disease Virus by Colladonus montanus, C. geminatus, and a New Leafhopper Vector, Euscelidius variegatus. J. Econ. Entomol. 1969, 62, 1147–1150. [Google Scholar] [CrossRef]
- Palermo, S.; Arzone, A.; Bosco, D. Vector-pathogen-host Plant Relationships of Chrysanthemum Yellows (CY) Phytoplasma and the Vector Leafhoppers Macrosteles quadripunctulatus and Euscelidius variegatus. Entomol. Exp. Appl. 2001, 99, 347–354. [Google Scholar] [CrossRef]
- Weintraub, P.G.; Orenstein, S. Potential Leafhopper Vectors of Phytoplasma in Carrots. Int. J. Trop. Insect Sci. 2004, 24, 228–235. [Google Scholar] [CrossRef]
- Fletcher, M.J. Tribe Macrostelini Kirkaldy, 1906. Available online: https://biodiversity.org.au/afd/taxa/Macrostelini (accessed on 13 December 2024).
- Trivellone, V.; Wei, W.; Filippin, L.; Dietrich, C.H. Screening Potential Insect Vectors in a Museum Biorepository Reveals Undiscovered Diversity of Plant Pathogens in Natural Areas. Ecol. Evol. 2021, 11, 6493–6503. [Google Scholar] [CrossRef]
- Wei, W.; Trivellone, V.; Dietrich, C.H.; Zhao, Y.; Bottner-Parker, K.D.; Ivanauskas, A. Identification of Phytoplasmas Representing Multiple New Genetic Lineages from Phloem-Feeding Leafhoppers Highlights the Diversity of Phytoplasmas and Their Potential Vectors. Pathogens 2021, 10, 352. [Google Scholar] [CrossRef]
- Forbes, A.A.; Devine, S.N.; Hippee, A.C.; Tvedte, E.S.; Ward, A.K.G.; Widmayer, H.A.; Wilson, C.J. Revisiting the Particular Role of Host Shifts in Initiating Insect Speciation. Evolution 2017, 71, 1126–1137. [Google Scholar] [CrossRef]
- Ramos, A.; Esteves, M.B.; Cortés, M.T.B.; Lopes, J.R.S. Maize Bushy Stunt Phytoplasma Favors Its Spread by Changing Host Preference of the Insect Vector. Insects 2020, 11, 600. [Google Scholar] [CrossRef]
- Orlovskis, Z.; Hogenhout, S.A. A Bacterial Parasite Effector Mediates Insect Vector Attraction in Host Plants Independently of Developmental Changes. Front. Plant Sci. 2016, 7, 1–9. [Google Scholar] [CrossRef]
- Chmurova, L.; Webb, M.D. On the Dimorphic African Leafhopper Conlopa bredoni Evans with Discussion on Its Tribal Placement (Hemiptera: Auchenorrhyncha: Cicadellidae: Ulopinae). Entomol. Am. 2017, 122, 461–466. [Google Scholar] [CrossRef]
- Nault, L.R. Maize Bushy Stunt and Corn Stunt: A Comparison of Disease Symptoms, Pathogen Host Ranges, and Vectors. Phytopathology 1980, 70, 659. [Google Scholar] [CrossRef]
- Gugerli, P.; Besse, S.; Colombi, L.; Ramel, M.-E.; Rigotti, S.; Cazelles, O. First Outbreak of Flavescence Doree (FD) in Swiss Vineyards. In Proceedings of the 15th Meeting of the International Council for the Study of Virus and Virus-like Diseases of the Grapevine (ICVG), Stellenbosch, South Africa, 3–7 April 2006. [Google Scholar]
- Trivellone, V.; Filippin, L.; Narduzzi-Wicht, B.; Angelini, E. A Regional-Scale Survey to Define the Known and Potential Vectors of Grapevine Yellow Phytoplasmas in Vineyards South of Swiss Alps. Eur. J. Plant Pathol. 2016, 145, 915–927. [Google Scholar] [CrossRef]
- Casati, P.; Jermini, M.; Quaglino, F.; Corbani, G.; Schaerer, S.; Passera, A.; Bianco, P.A.; Rigamonti, I.E. New Insights on Flavescence Dorée Phytoplasma Ecology in the Vineyard Agro-ecosystem in Southern Switzerland. Ann. Appl. Biol. 2017, 171, 37–51. [Google Scholar] [CrossRef]
- Madhupriya; Rao, G.P.; Khurana, S.M.P. Rice Yellow Dwarf Phytoplasma (16Sr XI-B Subgroup) Infecting Jasminum sambac in India. Phytoparasitica 2015, 43, 77–80. [Google Scholar] [CrossRef]
- Obura, E.; Midega, C.A.O.; Masiga, D.; Pickett, J.A.; Hassan, M.; Koji, S.; Khan, Z.R. Recilia banda Kramer (Hemiptera: Cicadellidae), a Vector of Napier Stunt Phytoplasma in Kenya. Naturwissenschaften 2009, 96, 1169–1176. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, C.M.D.; Frizzas, M.R. Eight Decades of Dalbulus maidis (DeLong & Wolcott) (Hemiptera, Cicadellidae) in Brazil: What We Know and What We Need to Know. Neotrop. Entomol. 2022, 51, 1–17. [Google Scholar] [CrossRef] [PubMed]
ITS1 | ITS2 | matK | rbcL | trnH-psbA | |
---|---|---|---|---|---|
Total Recovered Sequences (=939) | 280 | 166 | 141 | 325 | 27 |
Average Sequence Length | 143.6 | 168.5 | 254.8 | 245.8 | 164.1 |
Complete Sequences (%) | 10.7 | 1.2 | 0.0 | 0.0 | 7.4 |
Samples with Sequences (%) | 70.7 | 66.7 | 57.3 | 84.0 | 24.0 |
Average Sequences Per Sample | 5.3 | 3.3 | 3.3 | 5.2 | 1.5 |
Median Sequences Per Sample | 3.0 | 2.0 | 2.0 | 3.0 | 1.0 |
Classification Supported to Genus Level (%) 1 | 58.2 | 60.2 | 45.4 | 29.2 | 48.1 |
Classification Supported to Family Level (%) 1 | 85.7 | 65.1 | 100.0 | 88.0 | 85.2 |
Classification Supported to Order Level (%) 1 | 93.6 | 86.7 | 100.0 | 95.7 | 88.9 |
Unique Supported Genera 1 | 39 | 42 | 29 | 37 | 10 |
Unique Supported Families 1 | 29 | 29 | 31 | 45 | 10 |
Unique Supported Orders 1 | 21 | 24 | 24 | 33 | 10 |
Total Unique Supported Results 1 | 52 | 51 | 49 | 81 | 13 |
Geographic Area|Country or Region 1 | Tribe | Species | Identified Plants (Order;Family;Genus) 2 | Phytoplasma (16Sr|Tuf|SecA|SecY|rpIV-rpsC|groEl) 3 |
---|---|---|---|---|
A | Eswatini | Ulopini | Conlopa bredoni | Commelinales;Commelinaceae;None Commelinales;Commelinaceae;Commelina Fabales;Fabaceae;None Poales;Poaceae;Aristida Poales;Poaceae;Oropetium Fabales;Fabaceae;Vigna Lamiales;Lamiaceae;None | -|oBa|oBa|-|-|- |
A | Madagascar | Scaphoideini | n.gen.MG5 n.sp.1 | Hypnales;None;None Hypnales;Neckeraceae;None | 16SrVI|-|-|-|-|- |
A | Republic of Congo | Scaphoideini | n.gen.ZA5 n.sp.1 | Vitales;Vitaceae;None | -|oBa|oBa|-|-|- |
A | Madagascar | Stenometopiini | n.gen. sp. | Cupressales;Taxaceae;Taxus Rosales;Ulmaceae;None Rosales;Ulmaceae;Ulmus Solanales;Solanaceae;None Solanales;Solanaceae;Capsicum Fabales;Fabaceae;Glycine | -|oBa|IV|-|-| algae |
A | South Africa | Bonaspeiini | Curvostylus chloridulus | Rosales;Moraceae;None Rosales;Moraceae;Morus | NA |
A | South Africa | Bonaspeiini | Coganus breviatus | Poales;Poaceae;None Poales;Poaceae;Saccharum Zingiberales;None;None Apiales;Apiaceae;None | 16SrXI|XI|XI|V/XI|XIV/XI |
A | South Africa | Paralimnini | Vilargus pumilicans | Poales;Poaceae;None | -|XI|VIII|na|-|XI |
A | South Africa | Paralimnini | Vilargus pumilicans | Asterales;Asteraceae;None Poales;Poaceae;None Malvales;Malvaceae;Gossypium | 16SrX|oBa|VIII|-|V|XI |
A | Zambia | Stenometopiini | Stirellus sp. | Poales;Poaceae;Cenchrus | NA |
A | Zambia | Scaphoideini | Scaphoidophyes n.sp. | Fabales;Fabaceae;Brachystegia Asterales;Asteraceae;None Fabales;Fabaceae;None Gentianales;Apocynaceae;None Laurales;Lauraceae;Cassytha Sapindales;Rutaceae;None Solanales;Solanaceae;Solanum Fabales;Fabaceae;Indigofera Liliales;Smilacaceae;Smilax Zingiberales;None;None Lamiales;Verbenaceae;None | 16SrXIV-E |-|-|-|-|- |
A | Zambia | Selenocephalini | Abimwa sp. | Klebsormidiales;Klebsormidiaceae;Klebsormidium Hypnales;None;None Fabales;Fabaceae;Brachystegia | -|oBa|-|-|-|- |
EM | France | Fieberiellini | Synophropsis lauri | Caryophyllales;Caryophyllaceae;Silene Ginkgoales;Ginkgoaceae;Ginkgo Poales;Poaceae;None | NA |
EM | Israel | Opsiini | Neoaliturus argillaceus | Asterales;Asteraceae;Carthamus Caryophyllales;Polygonaceae;None Lamiales;Verbenaceae;Phyla | 16SrIX-J|oBa|V|IX|IX|XIV |
EM | Switzerland | Scaphoideini | Osbornellus auronitens | Asterales;Asteraceae;None Asterales;Asteraceae;Crepis Caryophyllales;Caryophyllaceae;None Caryophyllales;Caryophyllaceae;Silene Cornales;Cornaceae;Cornus Fabales;Fabaceae;None Fabales;Fabaceae;Medicago Fabales;Fabaceae;Trifolium Fagales;Betulaceae;None Fagales;Betulaceae;Corylus Rosales;Rhamnaceae;None Sapindales;Rutaceae;None Solanales;None;None Solanales;Solanaceae;Solanum Vitales;Vitaceae;None Vitales;Vitaceae;Vitis Commelinales;Commelinaceae;None Ericales;None;None | 16SrV-C|V-C/D|16SrV-C/D|16SrV-C/D|V|V-C/D |
EM | Switzerland | Cicadulini | Rhopalopyx elongata | Hypnales;None;None Ginkgoales;Ginkgoaceae;Ginkgo | 16SrVI-L|V-C/D|V|VI|VI|V |
EM | Switzerland | Athysanini | Euscelidius variegatus | Caryophyllales;Caryophyllaceae;None Fabales;Fabaceae;None Fabales;Fabaceae;Medicago Caryophyllales;Caryophyllaceae;Silene | 16SrI-F|I|I|I|I|I |
NA | Canada | Limotettigini | Limotettix urnura | Poales;Cyperaceae;None Poales;Cyperaceae;Eleocharis Poales;Poaceae;Poa | 16SrXI-G |V|XI|-|-|XI |
NA | Mexico | Phlepsiini | Texananus ovatus | Asterales;Asteraceae;None | NA |
NA | Mexico | Phlepsiini | Texananus [nymph] | Asterales;Asteraceae;None Asterales;Asteraceae;Ambrosia | NA |
NA | Mexico | Scaphytopiini | Scaphytopius aequus | Solanales;Solanaceae;None Caryophyllales;Caryophyllaceae;Silene | -|I|I|I|I|I |
NA | USA | Deltocephalini | Graminella sonora | Asterales;Asteraceae;None Asterales;Asteraceae;Xanthium Caryophyllales;Caryophyllaceae;None Caryophyllales;Caryophyllaceae;Drymaria Piperales;Piperaceae;Peperomia Poales;Poaceae;None Poales;Poaceae;Saccharum Rosales;Moraceae;None | -|I|I|I|I|I |
NA | USA | Chiasmini | Athysanella texana | Caryophyllales;Caryophyllaceae;Silene | NA |
NA | USA | Opsiini | Dixianus utahnus | Fabales;Fabaceae;None Poales;Poaceae;None Poales;Poaceae;Saccharum | -|-|algae|-|-|- |
NEA | Mainland China | Stenometopiini | Stirellus productus | Poales;Poaceae;None Fagales;Fagaceae;None | -|XI|XI|XI|XI|XI |
NEA | Mainland China | Chiasmini | Gurawa minorcephala | Asterales;Asteraceae;Youngia Caryophyllales;Caryophyllaceae;None Caryophyllales;Polygonaceae;None Hypnales;None;None Poales;Poaceae;None Pottiales;Pottiaceae;None Rosales;Rosaceae;Rubus Caryophyllales;Caryophyllaceae;Stellaria Ophioglossales;Ophioglossaceae;Botrychium | 16SrXI|XI|XI|XI|XI|XI |
NEA | Mainland China | Hecalini | Fangamanus tripunctatus | Malvales;Malvaceae;None Poales;Poaceae;None | -|oBa|oBa|-|-|- |
NEA | Mainland China | Paralimnini | Acharis n.sp. | Poales;Poaceae;None Vitales;Vitaceae;None Vitales;Vitaceae;Vitis | -|oBa|XI|-|-|- |
NEA | Mainland China | Paralimnini | Acharis ussuriensis | Rosales;Cannabaceae;Celtis Asparagales;Amaryllidaceae;Allium Asparagales;Amaryllidaceae;None Pinales;Pinaceae;Pinus Sapindales;Rutaceae;Citrus Apiales;Apiaceae;None Fagales;Fagaceae;None Asparagales;None;None Asterales;Asteraceae;None Asterales;Asteraceae;Bidens Laurales;Lauraceae;None Poales;Poaceae;None Poales;Poaceae;Brachypodium Sapindales;Rutaceae;None Fabales;Fabaceae;Phaseolus | 16SrXIV|oBa|XI/I|V/XI|V|XIV/I |
NEA | Mainland China | Scaphoideini | Amimenus mojiensis | Dipsacales;None;None Poales;Poaceae;None Poales;Poaceae;Saccharum Sapindales;Simaroubaceae;Ailanthus Myrtales;Melastomataceae;Miconia | 16SrI-B|I|I|I|I|I |
NEA | Kyrgyzstan | Paralimnini | Phlebiastes tianshanica | Solanales;Solanaceae;Solanum Apiales;Apiaceae;None | NA |
NEA | Mongolia | Paralimnini | Adarrus n.sp. | Asterales;None;None Caryophyllales;Caryophyllaceae;None Vitales;Vitaceae;None Vitales;Vitaceae;Vitis Caryophyllales;Caryophyllaceae;Silene Sapindales;Rutaceae;None | -|oBa|-|-|-|IX |
NEA | Taiwan | Stenometopiini | Stirellus indrus | Poales;Poaceae;Avena Polypodiales;Pteridaceae;None Solanales;Solanaceae;Solanum Polypodiales;Pteridaceae;Hemionitis | -|oBa|-|-|-|- |
NEA | Taiwan | Drabescini | Dryadomorpha pallida | Ericales;Actinidiaceae;None Ericales;Actinidiaceae;Actinidia Rosales;Cannabaceae;Cannabis Caryophyllales;Caryophyllaceae;Silene | NA |
NEA | Taiwan | Opsiini | Alishania formosana | Fagales;Fagaceae;None Fagales;None;None | new group|XXI|IV|IV|IV|IV |
SA | Argentina | Deltocephalini | Bolarga nigriloba | Apiales;Apiaceae;None Asterales;Asteraceae;None Poales;Poaceae;None | 16SrXI-B|-|-|-|-|- |
SA | Brazil | Athysanini | Atanus n.sp.BR1 | Lamiales;Lamiaceae;Salvia | NA |
SA | Brazil | Pendarini | Chlorotettix sp. | Caryophyllales;Caryophyllaceae;Silene | -|oBa|-|-|-|- |
SA | Brazil | Deltocephalini | Cortona n.sp. | Pottiales;Pottiaceae;None | NA |
SA | Brazil | Macrostelini | Dalbulus maidis | Sapindales;Rutaceae;None Sapindales;Rutaceae;Citrus Zingiberales;Musaceae;Musa Polypodiales;Nephrolepidaceae;Nephrolepis | -|I|I|I|I|I |
SA | French Guiana | Chiasmodolini | Rotundicerus n.sp. | Caryophyllales;Caryophyllaceae;Silene Poales;Poaceae;None Poales;Poaceae;Saccharum Cupressales;Cupressaceae;None | 16SrIII|-|-|-|-|- |
SA | Peru | Chiasmini | Exitianus obscurinervis | Caryophyllales;Caryophyllaceae;Silene | 16SrIII|oBa|-|-|-|- |
SA | Peru | Bahitini | Taperinha adspera | Dipsacales;Adoxaceae;Sambucus Oxalidales;Cunoniaceae;None Oxalidales;Cunoniaceae;Opocunonia Myrtales;Myrtaceae;Syzygium | NA |
SEAO | Australia | Deltocephalini | Maiestas webbi | Poales;Poaceae;None Poales;Poaceae;Saccharum Vitales;Vitaceae;Vitis | NA |
SEAO | Australia | Macrostelini | Nesoclutha phryne | Poales;Poaceae;None Rosales;Ulmaceae;None Vitales;Vitaceae;None Vitales;Vitaceae;Vitis Caryophyllales;Caryophyllaceae;Silene Poales;Poaceae;Tripogonella Poales;Poaceae;Cenchrus | 16SrXIV|oBa|XI|na|-|XI |
SEAO | Australia | Macrostelini | Nesoclutha phryne | Vitales;None;None Vitales;Vitaceae;None Vitales;Vitaceae;Vitis | NA |
SEAO | Australia | Scaphoideini | Diemoides n.sp.1 | Solanales;Solanaceae;None | 16SrXIV-D|-|oBa|-|-|- |
SEAO | Malaysia | Stegelytrini | Kunasia carina | Caryophyllales;Caryophyllaceae;Silene Myrtales;None;None Myrtales;Myrtaceae;None Myrtales;Myrtaceae;Syzygium Pottiales;Pottiaceae;None | NA |
SEAO | Malaysia | Opsiini | New Genus ML1 n.sp.1 | Malvales;Dipterocarpaceae;None Poales;Poaceae;None Poales;Poaceae;Saccharum Sapindales;Rutaceae;None Sapindales;Rutaceae;Citrus | -|oBa|-|-|-|- |
SEAO | Philippines | Scaphoideini | n.gen.PH2 n.sp.1 | Oxalidales;Cunoniaceae;Opocunonia Poales;Poaceae;None | 16SrXI|-|-|-|- |
SEAO | Philippines | Drabescini | n.gen.PH3 n.sp.1 | Caryophyllales;Caryophyllaceae;Silene | NA |
SEAO | Philippines | Megipocerini | Chunra n.sp.PH1 | Rosales;Moraceae;None Rosales;Moraceae;Morus Rosales;Rosaceae;Prunus Fabales;Fabaceae;Trifolium | 16SrXIV|-|-|-|-|- |
SEAO | Thailand | Paralimnini | Multiproductus | Poales;Poaceae;None Poales;Poaceae;Saccharum Vitales;Vitaceae;None Vitales;Vitaceae;Vitis | 16SrXIV-E|oBa|-|-|I|- |
SEAO | Thailand | Stegelytrini | n.gen.T1 n.sp.1 | Hypnales;None;None Hypnales;Neckeraceae;None Poales;Poaceae;None Hypnales;Neckeraceae;Thamnobryum Asterales;Asteraceae;Bidens | NA |
SEAO | Thailand | Scaphoideini | Scaphomonus n.sp.T1 | Hypnales;None;None Hypnales;Neckeraceae;None | 16SrV|-|-|V|-|- |
SEAO | Thailand | Opsiini | Paralampridius sinuatus | Caryophyllales;Caryophyllaceae;None Caryophyllales;Caryophyllaceae;Silene Poales;Poaceae;None Pottiales;Pottiaceae;None | -|-|-|-|I|- |
SEAO | Thailand | Opsiini | New Genus T3 n.sp.1 | Caryophyllales;Caryophyllaceae;None | NA |
SEAO| Fiji | Opsiini | Navaia filicola | Poales;Poaceae;None | -|I|-|-|-|- |
SEAO| Fiji | Macrostelini | Balclutha n.sp.FI1 | Hypnales;None;None Hypnales;Neckeraceae;None Hypnales;Neckeraceae;Thamnobryum Poales;Poaceae;None | -|oBa|-|-|-|- |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gabrys, A.M.; Dietrich, C.H.; Trivellone, V. Inferring Tripartite Associations of Vector-Borne Plant Pathogens Using a Next-Generation Sequencing Approach. Pathogens 2025, 14, 74. https://doi.org/10.3390/pathogens14010074
Gabrys AM, Dietrich CH, Trivellone V. Inferring Tripartite Associations of Vector-Borne Plant Pathogens Using a Next-Generation Sequencing Approach. Pathogens. 2025; 14(1):74. https://doi.org/10.3390/pathogens14010074
Chicago/Turabian StyleGabrys, Ava M., Christopher H. Dietrich, and Valeria Trivellone. 2025. "Inferring Tripartite Associations of Vector-Borne Plant Pathogens Using a Next-Generation Sequencing Approach" Pathogens 14, no. 1: 74. https://doi.org/10.3390/pathogens14010074
APA StyleGabrys, A. M., Dietrich, C. H., & Trivellone, V. (2025). Inferring Tripartite Associations of Vector-Borne Plant Pathogens Using a Next-Generation Sequencing Approach. Pathogens, 14(1), 74. https://doi.org/10.3390/pathogens14010074