Curcumin-Based Nanoparticles: Advancements and Challenges in Tumor Therapy
Abstract
:1. Introduction
2. Curcumin’s Mechanism of Action in Cancer Therapy
2.1. Reulation of Inflammation and Immune Modulation
2.2. Effects on Cancer Stem Cells
2.3. Induction of Apoptosis and Cell Cycle Arrest
2.4. Inhibition of Angiogenesis and Metastasis
3. Challenges of Curcumin in Cancer Therapy
3.1. Poor Bioavailability
3.2. Rapid Metabolism and Elimination
3.3. Dosing and Administration Challenges
3.4. Interactions with Other Medications
3.5. Stability and Degradation
4. Nanotechnology for Curcumin Delivery
4.1. Types of Curcumin-Based Nanoparticles
4.1.1. Organic NPs
- Liposomes
- 2.
- Dendrimers
- 3.
- Polymeric NPs
- 4.
- Micelles
- 5.
- Emulsions and Nanogels
- 6.
- Exosomes
4.1.2. Inorganic NPs
- Gold NPs
- 2.
- Silica NPs
- 3.
- Iron Oxide NPs
- 4.
- Quantum Dots
4.1.3. Carbon-Based NPs
- 5.
- Fullerenes
- 6.
- Graphene and graphene oxide
- 7.
- Carbon nanotubes
4.2. Mechanisms of CNPs in Tumor Therapy
4.2.1. Enhanced Bioavailability and Prolonged Circulation
4.2.2. Targeted Delivery and Tumor Accumulation
4.2.3. Induction of Apoptosis and Inhibition of Proliferation
4.2.4. Overcoming Multidrug Resistance
4.2.5. Reduced Systemic Toxicity
4.2.6. Synergistic Effects with Other Therapies
5. Preclinical Studies of CNPs
5.1. Liver Cancer
5.2. Bladder Cancer
5.3. Melanoma
5.4. Colorectal Cancer
5.5. Ovarian Cancer
5.6. Breast Cancer
5.7. Prostate Cancer
5.8. Brain Cancer
5.9. Pancreatic Cancer
5.10. Cervical Cancer
5.11. Oral Cancer
5.12. Bone Cancer
5.13. Esophageal Cancer
5.14. Stomach Cancer
6. Clinical Studies of CNPs
7. Challenges in the Development and Clinical Application of Curcumin-Loaded Nanoparticles
7.1. Toxicity Concerns
7.2. Stability Issues
7.3. Manufacturing and Scalability
7.4. Biodistribution and Clearance
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Siegel, R.L.; Giaquinto, A.N.; Jemal, A. Cancer statistics, 2024. CA A Cancer J. Clin. 2024, 74, 12–49. [Google Scholar] [CrossRef] [PubMed]
- Huang, M.; Lu, J.J.; Ding, J. Natural Products in Cancer Therapy: Past, Present and Future. Nat. Prod. Bioprospect. 2021, 11, 5–13. [Google Scholar] [CrossRef] [PubMed]
- Tomeh, M.A.; Hadianamrei, R.; Zhao, X. A Review of Curcumin and Its Derivatives as Anticancer Agents. Int. J. Mol. Sci. 2019, 20, 1033. [Google Scholar] [CrossRef]
- Jakubczyk, K.; Drużga, A.; Katarzyna, J.; Skonieczna-Żydecka, K. Antioxidant Potential of Curcumin—A Meta-Analysis of Randomized Clinical Trials. Antioxidants 2020, 9, 1092. [Google Scholar] [CrossRef]
- Kurien, B.T.; Singh, A.; Matsumoto, H.; Scofield, R.H. Improving the solubility and pharmacological efficacy of curcumin by heat treatment. Assay Drug Dev. Technol. 2007, 5, 567–576. [Google Scholar] [CrossRef]
- Hassanzadeh, K.; Buccarello, L.; Dragotto, J.; Mohammadi, A.; Corbo, M.; Feligioni, M. Obstacles against the Marketing of Curcumin as a Drug. Int. J. Mol. Sci. 2020, 21, 6619. [Google Scholar] [CrossRef]
- Wang, K.; Qiu, F. Curcuminoid metabolism and its contribution to the pharmacological effects. Curr. Drug Metab. 2013, 14, 791–806. [Google Scholar] [CrossRef]
- Sohn, S.I.; Priya, A.; Balasubramaniam, B.; Muthuramalingam, P.; Sivasankar, C.; Selvaraj, A.; Valliammai, A.; Jothi, R.; Pandian, S. Biomedical Applications and Bioavailability of Curcumin-An Updated Overview. Pharmaceutics 2021, 13, 2102. [Google Scholar] [CrossRef]
- Mishima, E.; Anzai, N.; Miyazaki, M.; Abe, T. Uric Acid Elevation by Favipiravir, an Antiviral Drug. Tohoku J. Exp. Med. 2020, 251, 87–90. [Google Scholar] [CrossRef]
- Bertoncini-Silva, C.; Vlad, A.; Ricciarelli, R.; Giacomo Fassini, P.; Suen, V.M.M.; Zingg, J.M. Enhancing the Bioavailability and Bioactivity of Curcumin for Disease Prevention and Treatment. Antioxidants 2024, 13, 331. [Google Scholar] [CrossRef]
- Wahnou, H.; Liagre, B.; Sol, V.; El Attar, H.; Attar, R.; Oudghiri, M.; Duval, R.E.; Limami, Y. Polyphenol-Based Nanoparticles: A Promising Frontier for Enhanced Colorectal Cancer Treatment. Cancers 2023, 15, 3826. [Google Scholar] [CrossRef] [PubMed]
- Limami, Y.; Leger, D.Y.; Liagre, B.; Pécout, N.; Viana, M. Ibuprofen-loaded calcium phosphate granules: A new bone substitute for local relieving symptoms of osteoarthritis. Eur. J. Pharm. Sci. 2021, 158, 105679. [Google Scholar] [CrossRef] [PubMed]
- Hafez Ghoran, S.; Calcaterra, A.; Abbasi, M.; Taktaz, F.; Nieselt, K.; Babaei, E. Curcumin-Based Nanoformulations: A Promising Adjuvant towards Cancer Treatment. Molecules 2022, 27, 5236. [Google Scholar] [CrossRef] [PubMed]
- Ismail, B.; Fagnere, C.; Limami, Y.; Ghezali, L.; Pouget, C.; Fidanzi, C.; Ouk, C.; Gueye, R.; Beneytout, J.-L.; Duroux, J.-L.; et al. 2′-Hydroxy-4-methylsulfonylchalcone enhances TRAIL-induced apoptosis in prostate cancer cells. Anti-Cancer Drugs 2015, 26, 74–84. [Google Scholar] [CrossRef]
- El Kebbaj, R.; Bouchab, H.; Tahri-Joutey, M.; Rabbaa, S.; Limami, Y.; Nasser, B.; Egbujor, M.C.; Tucci, P.; Andreoletti, P.; Saso, L.; et al. The Potential Role of Major Argan Oil Compounds as Nrf2 Regulators and Their Antioxidant Effects. Antioxidants 2024, 13, 344. [Google Scholar] [CrossRef]
- Tahri-Joutey, M.; Saih, F.-E.; El Kebbaj, R.; Gondcaille, C.; Vamecq, J.; Latruffe, N.; Lizard, G.; Savary, S.; Nasser, B.; Cherkaoui-Malki, M.; et al. Protective Effect of Nopal Cactus (Opuntia ficus-indica) Seed Oil against Short-Term Lipopolysaccharides-Induced Inflammation and Peroxisomal Functions Dysregulation in Mouse Brain and Liver. Int. J. Mol. Sci. 2022, 23, 11849. [Google Scholar] [CrossRef]
- Wahnou, H.; Hmimid, F.; Errami, A.; Nait Irahal, I.; Limami, Y.; Oudghiri, M. Integrating ADMET, enrichment analysis, and molecular docking approach to elucidate the mechanism of Artemisia herba alba for the treatment of inflammatory bowel disease-associated arthritis. J. Toxicol. Environ. Health Part A 2024, 87, 836–854. [Google Scholar] [CrossRef]
- Olivera, A.; Moore, T.W.; Hu, F.; Brown, A.P.; Sun, A.; Liotta, D.C.; Snyder, J.P.; Yoon, Y.; Shim, H.; Marcus, A.I.; et al. Inhibition of the NF-κB signaling pathway by the curcumin analog, 3,5-Bis(2-pyridinylmethylidene)-4-piperidone (EF31): Anti-inflammatory and anti-cancer properties. Int. Immunopharmacol. 2012, 12, 368–377. [Google Scholar] [CrossRef]
- Taniguchi, K.; Karin, M. NF-κB, inflammation, immunity and cancer: Coming of age. Nat. Rev. Immunol. 2018, 18, 309–324. [Google Scholar] [CrossRef]
- Allegra, A.; Mirabile, G.; Ettari, R.; Pioggia, G.; Gangemi, S. The Impact of Curcumin on Immune Response: An Immunomodulatory Strategy to Treat Sepsis. Int. J. Mol. Sci. 2022, 23, 14710. [Google Scholar] [CrossRef]
- Skyvalidas, D.; Mavropoulos, A.; Tsiogkas, S.; Dardiotis, E.; Liaskos, C.; Mamuris, Z.; Roussaki-Schulze, A.; Sakkas, L.I.; Zafiriou, E.; Bogdanos, D.P. Curcumin mediates attenuation of pro-inflammatory interferon γ and interleukin 17 cytokine responses in psoriatic disease, strengthening its role as a dietary immunosuppressant. Nutr. Res. 2020, 75, 95–108. [Google Scholar] [CrossRef] [PubMed]
- Kim, G.Y.; Kim, K.H.; Lee, S.H.; Yoon, M.S.; Lee, H.J.; Moon, D.O.; Lee, C.M.; Ahn, S.C.; Park, Y.C.; Park, Y.M. Curcumin inhibits immunostimulatory function of dendritic cells: MAPKs and translocation of NF-kappa B as potential targets. J. Immunol. 2005, 174, 8116–8124. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.; Pestell, T.G.; Lisanti, M.P.; Pestell, R.G. Cancer stem cells. Int. J. Biochem. Cell Biol. 2012, 44, 2144–2151. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Jiang, S.; Zhou, L.; Yu, F.; Ding, H.; Li, P.; Zhou, M.; Wang, K. Potential Mechanisms of Action of Curcumin for Cancer Prevention: Focus on Cellular Signaling Pathways and miRNAs. Int. J. Biol. Sci. 2019, 15, 1200–1214. [Google Scholar] [CrossRef]
- Chgari, O.; Wahnou, H.; Ndayambaje, M.; Moukhfi, F.; Benkhnigue, O.; Marnissi, F.; Limami, Y.; Oudghiri, M. Orbea variegata (L.) Haw in skin carcinogenesis: Insights from an in vivo male Swiss mouse model study. J. Toxicol. Environ. Health Part A 2024, 87, 630–645. [Google Scholar] [CrossRef]
- Zhang, Z.; Chen, H.; Xu, C.; Song, L.; Huang, L.; Lai, Y.; Wang, Y.; Chen, H.; Gu, D.; Ren, L. Curcumin inhibits tumor epithelial-mesenchymal transition by downregulating the Wnt signaling pathway and upregulating NKD2 expression in colon cancer cells. Oncol. Rep. 2016, 35, 2615–2623. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, J.; Ma, D.; Zhang, L.; Si, M.; Yin, H.; Li, J. Curcumin inhibits proliferation and invasion of osteosarcoma cells through inactivation of Notch-1 signaling. FEBS J. 2012, 279, 2247–2259. [Google Scholar] [CrossRef]
- Alexandrow, M.G.; Song, L.J.; Altiok, S.; Gray, J.; Haura, E.B.; Kumar, N.B. Curcumin: A novel Stat3 pathway inhibitor for chemoprevention of lung cancer. Eur. J. Cancer Prev. Off. J. Eur. Cancer Prev. Organ. (ECP) 2012, 21, 407–412. [Google Scholar] [CrossRef]
- Karunagaran, D.; Rashmi, R.; Kumar, T.R. Induction of apoptosis by curcumin and its implications for cancer therapy. Curr. Cancer Drug Targets 2005, 5, 117–129. [Google Scholar] [CrossRef]
- Wang, J.B.; Qi, L.L.; Zheng, S.D.; Wu, T.X. Curcumin induces apoptosis through the mitochondria-mediated apoptotic pathway in HT-29 cells. J. Zhejiang Univ. Sci. B 2009, 10, 93–102. [Google Scholar] [CrossRef]
- Sathyabhama, M.; Priya Dharshini, L.C.; Karthikeyan, A.; Kalaiselvi, S.; Min, T. The Credible Role of Curcumin in Oxidative Stress-Mediated Mitochondrial Dysfunction in Mammals. Biomolecules 2022, 12, 1405. [Google Scholar] [CrossRef] [PubMed]
- Hu, A.; Huang, J.J.; Zhang, J.F.; Dai, W.J.; Li, R.L.; Lu, Z.Y.; Duan, J.L.; Li, J.P.; Chen, X.P.; Fan, J.P.; et al. Curcumin induces G2/M cell cycle arrest and apoptosis of head and neck squamous cell carcinoma in vitro and in vivo through ATM/Chk2/p53-dependent pathway. Oncotarget 2017, 8, 50747–50760. [Google Scholar] [CrossRef] [PubMed]
- Molinari, M. Cell cycle checkpoints and their inactivation in human cancer. Cell Prolif. 2000, 33, 261–274. [Google Scholar] [CrossRef] [PubMed]
- Sa, G.; Das, T. Anti cancer effects of curcumin: Cycle of life and death. Cell Div. 2008, 3, 14. [Google Scholar] [CrossRef]
- Talib, W.H.; Al-Hadid, S.A.; Ali, M.B.W.; Al-Yasari, I.H.; Ali, M.R.A. Role of curcumin in regulating p53 in breast cancer: An overview of the mechanism of action. Breast Cancer 2018, 10, 207–217. [Google Scholar] [CrossRef]
- Tahergorabi, Z.; Khazaei, M. A review on angiogenesis and its assays. Iran. J. Basic Med. Sci. 2012, 15, 1110–1126. [Google Scholar]
- Binion, D.G.; Otterson, M.F.; Rafiee, P. Curcumin inhibits VEGF-mediated angiogenesis in human intestinal microvascular endothelial cells through COX-2 and MAPK inhibition. Gut 2008, 57, 1509–1517. [Google Scholar] [CrossRef]
- Goel, H.L.; Mercurio, A.M. VEGF targets the tumour cell. Nat. Rev. Cancer 2013, 13, 871–882. [Google Scholar] [CrossRef]
- Bahrami, A.; Atkin, S.L.; Majeed, M.; Sahebkar, A. Effects of curcumin on hypoxia-inducible factor as a new therapeutic target. Pharmacol. Res. 2018, 137, 159–169. [Google Scholar] [CrossRef]
- Bachmeier, B.E.; Killian, P.H.; Melchart, D. The Role of Curcumin in Prevention and Management of Metastatic Disease. Int. J. Mol. Sci. 2018, 19, 1716. [Google Scholar] [CrossRef]
- Bahrami, A.; Majeed, M.; Sahebkar, A. Curcumin: A potent agent to reverse epithelial-to-mesenchymal transition. Cell. Oncol. 2019, 42, 405–421. [Google Scholar] [CrossRef] [PubMed]
- Ribatti, D.; Tamma, R.; Annese, T. Epithelial-Mesenchymal Transition in Cancer: A Historical Overview. Transl. Oncol. 2020, 13, 100773. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.Y.; Wang, X.; Wang, X.J.; Zheng, B.Z.; Wang, Y.; Wang, X.; Liang, B. Curcumin inhibits the growth via Wnt/β-catenin pathway in non-small-cell lung cancer cells. Eur. Rev. Med. Pharmacol. Sci. 2018, 22, 7492–7499. [Google Scholar] [CrossRef] [PubMed]
- Anand, P.; Kunnumakkara, A.B.; Newman, R.A.; Aggarwal, B.B. Bioavailability of curcumin: Problems and promises. Mol. Pharm. 2007, 4, 807–818. [Google Scholar] [CrossRef] [PubMed]
- Pandey, A.; Chaturvedi, M.; Mishra, S.; Kumar, P.; Somvanshi, P.; Chaturvedi, R. Reductive metabolites of curcumin and their therapeutic effects. Heliyon 2020, 6, e05469. [Google Scholar] [CrossRef]
- Vareed, S.K.; Kakarala, M.; Ruffin, M.T.; Crowell, J.A.; Normolle, D.P.; Djuric, Z.; Brenner, D.E. Pharmacokinetics of curcumin conjugate metabolites in healthy human subjects. Cancer Epidemiol. Biomark. Prev. A Publ. Am. Assoc. Cancer Res. Cosponsored Am. Soc. Prev. Oncol. 2008, 17, 1411–1417. [Google Scholar] [CrossRef]
- Ireson, C.; Orr, S.; Jones, D.J.; Verschoyle, R.; Lim, C.K.; Luo, J.L.; Howells, L.; Plummer, S.; Jukes, R.; Williams, M.; et al. Characterization of metabolites of the chemopreventive agent curcumin in human and rat hepatocytes and in the rat in vivo, and evaluation of their ability to inhibit phorbol ester-induced prostaglandin E2 production. Cancer Res. 2001, 61, 1058–1064. [Google Scholar]
- Panknin, T.M.; Howe, C.L.; Hauer, M.; Bucchireddigari, B.; Rossi, A.M.; Funk, J.L. Curcumin Supplementation and Human Disease: A Scoping Review of Clinical Trials. Int. J. Mol. Sci. 2023, 24, 4476. [Google Scholar] [CrossRef]
- Burgos-Morón, E.; Calderón-Montaño, J.M.; Salvador, J.; Robles, A.; López-Lázaro, M. The dark side of curcumin. Int. J. Cancer 2010, 126, 1771–1775. [Google Scholar] [CrossRef]
- Yoshino, M.; Haneda, M.; Naruse, M.; Htay, H.H.; Tsubouchi, R.; Qiao, S.L.; Li, W.H.; Murakami, K.; Yokochi, T. Prooxidant activity of curcumin: Copper-dependent formation of 8-hydroxy-2′-deoxyguanosine in DNA and induction of apoptotic cell death. Toxicol Vitr. 2004, 18, 783–789. [Google Scholar] [CrossRef]
- Chainani-Wu, N. Safety and anti-inflammatory activity of curcumin: A component of tumeric (Curcuma longa). J. Altern. Complement. Med. 2003, 9, 161–168. [Google Scholar] [CrossRef] [PubMed]
- Bahramsoltani, R.; Rahimi, R.; Farzaei, M.H. Pharmacokinetic interactions of curcuminoids with conventional drugs: A review. J. Ethnopharmacol. 2017, 209, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Volak, L.P.; Ghirmai, S.; Cashman, J.R.; Court, M.H. Curcuminoids inhibit multiple human cytochromes P450, UDP-glucuronosyltransferase, and sulfotransferase enzymes, whereas piperine is a relatively selective CYP3A4 inhibitor. Drug Metab. Dispos. Biol. Fate Chem. 2008, 36, 1594–1605. [Google Scholar] [CrossRef] [PubMed]
- Liu, A.C.; Zhao, L.X.; Lou, H.X. Curcumin alters the pharmacokinetics of warfarin and clopidogrel in Wistar rats but has no effect on anticoagulation or antiplatelet aggregation. Planta Medica 2013, 79, 971–977. [Google Scholar] [CrossRef]
- Ashrafizadeh, M.; Zarrabi, A.; Hashemi, F.; Zabolian, A.; Saleki, H.; Bagherian, M.; Azami, N.; Bejandi, A.K.; Hushmandi, K.; Ang, H.L.; et al. Polychemotherapy with Curcumin and Doxorubicin via Biological Nanoplatforms: Enhancing Antitumor Activity. Pharmaceutics 2020, 12, 1084. [Google Scholar] [CrossRef]
- Saghatelyan, T.; Tananyan, A.; Janoyan, N.; Tadevosyan, A.; Petrosyan, H.; Hovhannisyan, A.; Hayrapetyan, L.; Arustamyan, M.; Arnhold, J.; Rotmann, A.R.; et al. Efficacy and safety of curcumin in combination with paclitaxel in patients with advanced, metastatic breast cancer: A comparative, randomized, double-blind, placebo-controlled clinical trial. Phytomed. Int. J. Phytother. Phytopharm. 2020, 70, 153218. [Google Scholar] [CrossRef]
- Lopes-Rodrigues, V.; Sousa, E.; Vasconcelos, M.H. Curcumin as a Modulator of P-Glycoprotein in Cancer: Challenges and Perspectives. Pharmaceuticals 2016, 9, 71. [Google Scholar] [CrossRef]
- Karthika, C.; Sureshkumar, R.; Zehravi, M.; Akter, R.; Ali, F.; Ramproshad, S.; Mondal, B.; Tagde, P.; Ahmed, Z.; Khan, F.S.; et al. Multidrug Resistance of Cancer Cells and the Vital Role of P-Glycoprotein. Life 2022, 12, 897. [Google Scholar] [CrossRef]
- Hou, X.-L.; Takahashi, K.; Tanaka, K.; Tougou, K.; Qiu, F.; Komatsu, K.; Takahashi, K.; Azuma, J. Curcuma drugs and curcumin regulate the expression and function of P-gp in Caco-2 cells in completely opposite ways. Int. J. Pharm. 2008, 358, 224–229. [Google Scholar] [CrossRef]
- Schneider, C.; Gordon, O.N.; Edwards, R.L.; Luis, P.B. Degradation of Curcumin: From Mechanism to Biological Implications. J. Agric. Food Chem. 2015, 63, 7606–7614. [Google Scholar] [CrossRef]
- Shen, L.; Ji, H.-F. The pharmacology of curcumin: Is it the degradation products? Trends Mol. Med. 2012, 18, 138–144. [Google Scholar] [CrossRef] [PubMed]
- Mondal, S.; Ghosh, S.; Moulik, S.P. Stability of curcumin in different solvent and solution media: UV–visible and steady-state fluorescence spectral study. J. Photochem. Photobiol. B Biol. 2016, 158, 212–218. [Google Scholar] [CrossRef] [PubMed]
- Peram, M.R.; Jalalpure, S.S.; Palkar, M.B.; Diwan, P.V. Stability studies of pure and mixture form of curcuminoids by reverse phase-HPLC method under various experimental stress conditions. Food Sci. Biotechnol. 2017, 26, 591–602. [Google Scholar] [CrossRef] [PubMed]
- Koh, Y.-C.; Hsu, H.-W.; Ho, P.-Y.; Hsu, K.-Y.; Lin, W.-S.; Nagabhushanam, K.; Ho, C.-T.; Pan, M.-H. Structural Variances in Curcumin Degradants: Impact on Obesity in Mice. J. Agric. Food Chem. 2024, 72, 14786–14798. [Google Scholar] [CrossRef]
- Kim, Y.J.; Kim, B.-K.; Lee, M.H. Improving curcumin retention in oil-in-water emulsions coated by chitosan and their disperse stability exposed to thermal treatments. J. Food Eng. 2022, 319, 110918. [Google Scholar] [CrossRef]
- Zhou, S.; Li, J.; Yu, J.; Wang, Y.; Liu, H.; Lin, G.; He, Z.; Wang, Y. Unique flower-like Cur-metal complexes loaded liposomes for primary and metastatic breast cancer therapy. Mater. Sci. Eng. C 2021, 121, 111835. [Google Scholar] [CrossRef]
- Kianamiri, S.; Dinari, A.; Sadeghizadeh, M.; Rezaei, M.; Daraei, B.; Bahsoun, N.E.; Nomani, A. Mitochondria-Targeted Polyamidoamine Dendrimer-Curcumin Construct for Hepatocellular Cancer Treatment. Mol. Pharm. 2020, 17, 4483–4498. [Google Scholar] [CrossRef]
- Chen, Y.; Lu, Y.; Lee, R.J.; Xiang, G. Nano Encapsulated Curcumin: And Its Potential for Biomedical Applications. Int. J. Nanomed. 2020, 15, 3099–3120. [Google Scholar] [CrossRef]
- El-Say, K.M.; El-Sawy, H.S. Polymeric nanoparticles: Promising platform for drug delivery. Int. J. Pharm. 2017, 528, 675–691. [Google Scholar] [CrossRef]
- Farhoudi, L.; Kesharwani, P.; Majeed, M.; Johnston, T.P.; Sahebkar, A. Polymeric nanomicelles of curcumin: Potential applications in cancer. Int. J. Pharm. 2022, 617, 121622. [Google Scholar] [CrossRef]
- Hassaniazad, M.; Inchehsablagh, B.R.; Kamali, H.; Tousi, A.; Eftekhar, E.; Jaafari, M.R.; Fathalipour, M.; Nikoofal-Sahlabadi, S.; Gouklani, H.; Alizade, H.; et al. The clinical effect of Nano micelles containing curcumin as a therapeutic supplement in patients with COVID-19 and the immune responses balance changes following treatment: A structured summary of a study protocol for a randomised controlled trial. Trials 2020, 21, 876. [Google Scholar] [CrossRef] [PubMed]
- Bose, A.; Roy Burman, D.; Sikdar, B.; Patra, P. Nanomicelles: Types, properties and applications in drug delivery. IET Nanobiotechnol. 2021, 15, 19–27. [Google Scholar] [CrossRef] [PubMed]
- Javed, B.; Zhao, X.; Cui, D.; Curtin, J.; Tian, F. Enhanced anticancer response of curcumin-and piperine-loaded lignin-gp (NIPAM-co-DMAEMA) gold nanogels against U-251 MG glioblastoma multiforme. Biomedicines 2021, 9, 1516. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, A.; Akhtar, J.; Ahmad, M.; Islam, A.; Badruddeen; Khan, M.I.; Siddiqui, S.; Srivastava, A. Curcumin Nanogel Preparations: A Promising Alternative for Psoriasis Treatment. Curr. Drug Metab. 2024, 25, 179–187. [Google Scholar] [CrossRef]
- Kalluri, R.; LeBleu, V.S. The biology, function, and biomedical applications of exosomes. Science 2020, 367, eaau6977. [Google Scholar] [CrossRef]
- Koh, H.B.; Kim, H.J.; Kang, S.W.; Yoo, T.H. Exosome-Based Drug Delivery: Translation from Bench to Clinic. Pharmaceutics 2023, 15, 2042. [Google Scholar] [CrossRef]
- Kalani, A.; Chaturvedi, P.; Kamat, P.K.; Maldonado, C.; Bauer, P.; Joshua, I.G.; Tyagi, S.C.; Tyagi, N. Curcumin-loaded embryonic stem cell exosomes restored neurovascular unit following ischemia-reperfusion injury. Int. J. Biochem. Cell Biol. 2016, 79, 360–369. [Google Scholar] [CrossRef]
- Al-Bataineh, Q.M.; Telfah, A.D.; Tavares, C.J.; Hergenröder, R. Surface plasmon coupling between wide-field SPR microscopy and gold nanoparticles. Sci. Rep. 2023, 13, 22405. [Google Scholar] [CrossRef]
- Dey, S.; Sherly, M.C.D.; Rekha, M.R.; Sreenivasan, K. Alginate stabilized gold nanoparticle as multidrug carrier: Evaluation of cellular interactions and hemolytic potential. Carbohydr. Polym. 2016, 136, 71–80. [Google Scholar] [CrossRef]
- Sun, X.; Wang, N.; Yang, L.-Y.; Ouyang, X.-K.; Huang, F. Folic Acid and PEI Modified Mesoporous Silica for Targeted Delivery of Curcumin. Pharmaceutics 2019, 11, 430. [Google Scholar] [CrossRef]
- Gangwar, R.K.; Tomar, G.B.; Dhumale, V.A.; Zinjarde, S.; Sharma, R.B.; Datar, S. Curcumin Conjugated Silica Nanoparticles for Improving Bioavailability and Its Anticancer Applications. J. Agric. Food Chem. 2013, 61, 9632–9637. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Hou, S. Recent progress in the effect of magnetic iron oxide nanoparticles on cells and extracellular vesicles. Cell Death Discov. 2023, 9, 195. [Google Scholar] [CrossRef] [PubMed]
- Darwesh, R.; Elbialy, N.S. Iron oxide nanoparticles conjugated curcumin to promote high therapeutic efficacy of curcumin against hepatocellular carcinoma. Inorg. Chem. Commun. 2021, 126, 108482. [Google Scholar] [CrossRef]
- Sanmartín-Matalobos, J.; Bermejo-Barrera, P.; Aboal-Somoza, M.; Fondo, M.; García-Deibe, A.M.; Corredoira-Vázquez, J.; Alves-Iglesias, Y. Semiconductor Quantum Dots as Target Analytes: Properties, Surface Chemistry and Detection. Nanomaterials 2022, 12, 2501. [Google Scholar] [CrossRef]
- Serag, E.; Helal, M.; El Nemr, A. Curcumin Loaded onto Folic acid Carbon dots as a Potent drug Delivery System for Antibacterial and Anticancer Applications. J. Clust. Sci. 2024, 35, 519–532. [Google Scholar] [CrossRef]
- De, D.; Das, C.K.; Mandal, D.; Mandal, M.; Pawar, N.; Chandra, A.; Gupta, A.N. Curcumin Complexed with Graphene Derivative for Breast Cancer Therapy. ACS Appl. Bio Mater. 2020, 3, 6284–6296. [Google Scholar] [CrossRef]
- Demir, E. Therapeutic effect of curcumin and C60 fullerene against hyperglycemia-mediated tissue damage in diabetic rat lungs. J. Bioenerg. Biomembr. 2021, 53, 25–38. [Google Scholar] [CrossRef]
- Mohammadi, A.; Hosseini, M.S.; Bagheri, F.; Safari, H.; Shadfar, Y.; Sharafi, A.; Rezaeejam, H.; Aghaei, A.; Danafar, H. Synthesis of curcumin loaded single walled carbon nanotubes: Characterization and anticancer effects in vitro. Results Chem. 2024, 7, 101370. [Google Scholar] [CrossRef]
- Holmannova, D.; Borsky, P.; Svadlakova, T.; Borska, L.; Fiala, Z. Carbon Nanoparticles and Their Biomedical Applications. Appl. Sci. 2022, 12, 7865. [Google Scholar] [CrossRef]
- Castro, E.; Cerón, M.R.; Garcia, A.H.; Kim, Q.; Etcheverry-Berríos, A.; Morel, M.J.; Díaz-Torres, R.; Qian, W.; Martinez, Z.; Mendez, L.; et al. A new family of fullerene derivatives: Fullerene-curcumin conjugates for biological and photovoltaic applications. RSC Adv. 2018, 8, 41692–41698. [Google Scholar] [CrossRef]
- Singh, S.; Hasan, M.R.; Sharma, P.; Narang, J. Graphene nanomaterials: The wondering material from synthesis to applications. Sens. Int. 2022, 3, 100190. [Google Scholar] [CrossRef]
- Gharehkhani, A.; Hajjami, M. Magnetic curcumin–copper graphene oxide as facile and recyclable heterogeneous nanocatalyst for preparation of polyhydroquinolines and sulfoxides. Sci. Rep. 2024, 14, 16937. [Google Scholar] [CrossRef] [PubMed]
- Kargar, B.; Fazeli, M.; Sobhani, Z.; Hosseinzadeh, S.; Solhjoo, A.; Akbarizadeh, A.R. Exploration of the photothermal role of curcumin-loaded targeted carbon nanotubes as a potential therapy for melanoma cancer. Sci. Rep. 2024, 14, 10117. [Google Scholar] [CrossRef]
- Gera, M.; Sharma, N.; Ghosh, M.; Huynh, D.L.; Lee, S.J.; Min, T.; Kwon, T.; Jeong, D.K. Nanoformulations of curcumin: An emerging paradigm for improved remedial application. Oncotarget 2017, 8, 66680–66698. [Google Scholar] [CrossRef]
- Kim, C.Y.; Bordenave, N.; Ferruzzi, M.G.; Safavy, A.; Kim, K.H. Modification of curcumin with polyethylene glycol enhances the delivery of curcumin in preadipocytes and its antiadipogenic property. J. Agric. Food Chem. 2011, 59, 1012–1019. [Google Scholar] [CrossRef]
- Chopra, H.; Dey, P.S.; Das, D.; Bhattacharya, T.; Shah, M.; Mubin, S.; Maishu, S.P.; Akter, R.; Rahman, M.H.; Karthika, C.; et al. Curcumin Nanoparticles as Promising Therapeutic Agents for Drug Targets. Molecules 2021, 26, 4998. [Google Scholar] [CrossRef]
- Miao, L.; Huang, L. Exploring the tumor microenvironment with nanoparticles. Cancer Treat. Res. 2015, 166, 193–226. [Google Scholar] [CrossRef]
- Bajracharya, R.; Song, J.G.; Patil, B.R.; Lee, S.H.; Noh, H.M.; Kim, D.H.; Kim, G.L.; Seo, S.H.; Park, J.W.; Jeong, S.H.; et al. Functional ligands for improving anticancer drug therapy: Current status and applications to drug delivery systems. Drug Deliv. 2022, 29, 1959–1970. [Google Scholar] [CrossRef]
- Bellotti, E.; Cascone, M.G.; Barbani, N.; Rossin, D.; Rastaldo, R.; Giachino, C.; Cristallini, C. Targeting Cancer Cells Overexpressing Folate Receptors with New Terpolymer-Based Nanocapsules: Toward a Novel Targeted DNA Delivery System for Cancer Therapy. Biomedicines 2021, 9, 1275. [Google Scholar] [CrossRef]
- Harakeh, S.; Saber, S.H.; Al-Raddadi, R.; Alamri, T.; Al-Jaouni, S.; Qari, M.; Qari, Y.; Haque, S.; Zawawi, A.; Ali, S.S.; et al. Novel curcumin nanoformulation induces apoptosis, and reduces migration and angiogenesis in liver cancer cells. Artif. Cells Nanomed. Biotechnol. 2023, 51, 361–370. [Google Scholar] [CrossRef]
- Zoi, V.; Kyritsis, A.P.; Galani, V.; Lazari, D.; Sioka, C.; Voulgaris, S.; Alexiou, G.A. The Role of Curcumin in Cancer: A Focus on the PI3K/Akt Pathway. Cancers 2024, 16, 1554. [Google Scholar] [CrossRef] [PubMed]
- Wei, X.-Q.; Zhu, J.-F.; Wang, X.-B.; Ba, K. Improving the Stability of Liposomal Curcumin by Adjusting the Inner Aqueous Chamber pH of Liposomes. ACS Omega 2020, 5, 1120–1126. [Google Scholar] [CrossRef] [PubMed]
- Afshari, H.; Noori, S.; Nourbakhsh, M.; Daraei, A.; Azami Movahed, M.; Zarghi, A. A novel imidazo[1,2-a]pyridine derivative and its co-administration with curcumin exert anti-inflammatory effects by modulating the STAT3/NF-κB/iNOS/COX-2 signaling pathway in breast and ovarian cancer cell lines. BioImpacts BI 2024, 14, 27618. [Google Scholar] [CrossRef] [PubMed]
- Emran, T.B.; Shahriar, A.; Mahmud, A.R.; Rahman, T.; Abir, M.H.; Siddiquee, M.F.; Ahmed, H.; Rahman, N.; Nainu, F.; Wahyudin, E.; et al. Multidrug Resistance in Cancer: Understanding Molecular Mechanisms, Immunoprevention and Therapeutic Approaches. Front. Oncol. 2022, 12, 891652. [Google Scholar] [CrossRef]
- Callaghan, R.; Luk, F.; Bebawy, M. Inhibition of the multidrug resistance P-glycoprotein: Time for a change of strategy? Drug Metab. Dispos. Biol. Fate Chem. 2014, 42, 623–631. [Google Scholar] [CrossRef]
- Fathy Abd-Ellatef, G.-E.; Gazzano, E.; Chirio, D.; Ragab Hamed, A.; Belisario, D.C.; Zuddas, C.; Peira, E.; Rolando, B.; Kopecka, J.; Assem Said Marie, M.; et al. Curcumin-Loaded Solid Lipid Nanoparticles Bypass P-Glycoprotein Mediated Doxorubicin Resistance in Triple Negative Breast Cancer Cells. Pharmaceutics 2020, 12, 96. [Google Scholar] [CrossRef]
- Chen, P.; Huang, H.P.; Wang, Y.; Jin, J.; Long, W.G.; Chen, K.; Zhao, X.H.; Chen, C.G.; Li, J. Curcumin overcome primary gefitinib resistance in non-small-cell lung cancer cells through inducing autophagy-related cell death. J. Exp. Clin. Cancer Res. CR 2019, 38, 254. [Google Scholar] [CrossRef]
- Zhou, Q.; Fu, Z. In vitro and in vivo Study of a Novel Liposome-Mediated Dual Drug Delivery for Synergistic Lung Cancer Therapy via Oral Administration. OncoTargets Ther. 2020, 13, 12695–12703. [Google Scholar] [CrossRef]
- Nurgali, K.; Jagoe, R.T.; Abalo, R. Editorial: Adverse Effects of Cancer Chemotherapy: Anything New to Improve Tolerance and Reduce Sequelae? Front. Pharmacol. 2018, 9, 245. [Google Scholar] [CrossRef]
- Huang, M.; Zhai, B.T.; Fan, Y.; Sun, J.; Shi, Y.J.; Zhang, X.F.; Zou, J.B.; Wang, J.W.; Guo, D.Y. Targeted Drug Delivery Systems for Curcumin in Breast Cancer Therapy. Int. J. Nanomed. 2023, 18, 4275–4311. [Google Scholar] [CrossRef]
- Chen, J.; Dai, W.T.; He, Z.M.; Gao, L.; Huang, X.; Gong, J.M.; Xing, H.Y.; Chen, W.D. Fabrication and Evaluation of Curcumin-loaded Nanoparticles Based on Solid Lipid as a New Type of Colloidal Drug Delivery System. Indian J. Pharm. Sci. 2013, 75, 178–184. [Google Scholar] [PubMed]
- Prithviraj, T. Enhancing cancer therapy with curcumin: A versatile natural compound with multiple benefits. Nat. Prod. Res. 2024, 1–3. [Google Scholar] [CrossRef]
- Farghadani, R.; Naidu, R. Curcumin as an Enhancer of Therapeutic Efficiency of Chemotherapy Drugs in Breast Cancer. Int. J. Mol. Sci. 2022, 23, 2144. [Google Scholar] [CrossRef] [PubMed]
- Zoi, V.; Galani, V.; Tsekeris, P.; Kyritsis, A.P.; Alexiou, G.A. Radiosensitization and Radioprotection by Curcumin in Glioblastoma and Other Cancers. Biomedicines 2022, 10, 312. [Google Scholar] [CrossRef]
- Hegde, M.; Kumar, A.; Girisa, S.; Aswani, B.S.; Vishwa, R.; Sethi, G.; Kunnumakkara, A.B. Nanoformulations of curcumin: An alliance for effective cancer therapeutics. Food Biosci. 2023, 56, 103095. [Google Scholar] [CrossRef]
- Hanafy, N.A.N.; Leporatti, S.; El-Kemary, M. Mucoadhesive curcumin crosslinked carboxy methyl cellulose might increase inhibitory efficiency for liver cancer treatment. Mater. Sci. Eng. C Mater. Biol. Appl. 2020, 116, 111119. [Google Scholar] [CrossRef]
- Wang, K.; Guo, C.; Zou, S.; Yu, Y.; Fan, X.; Wang, B.; Liu, M.; Fang, L.; Chen, D. Synthesis, characterization and in vitro/in vivo evaluation of novel reduction-sensitive hybrid nano-echinus-like nanomedicine. Artif. Cells Nanomed. Biotechnol. 2018, 46, 659–667. [Google Scholar] [CrossRef]
- Arvapalli, D.M.; Sheardy, A.T.; Allado, K.; Chevva, H.; Yin, Z.; Wei, J. Design of Curcumin Loaded Carbon Nanodots Delivery System: Enhanced Bioavailability, Release Kinetics, and Anticancer Activity. ACS Appl. Bio Mater. 2020, 3, 8776–8785. [Google Scholar] [CrossRef]
- Liu, X.; Wu, Z.; Guo, C.; Guo, H.; Su, Y.; Chen, Q.; Sun, C.; Liu, Q.; Chen, D.; Mu, H. Hypoxia responsive nano-drug delivery system based on angelica polysaccharide for liver cancer therapy. Drug Deliv. 2022, 29, 138–148. [Google Scholar] [CrossRef]
- Luan, J.; Wu, K.; Li, C.; Liu, J.; Ni, X.; Xiao, M.; Xu, Y.; Kuang, Y.; Jiang, F. pH-Sensitive drug delivery system based on hydrophobic modified konjac glucomannan. Carbohydr. Polym. 2017, 171, 9–17. [Google Scholar] [CrossRef]
- Cheng, Y.; Zhao, P.; Wu, S.; Yang, T.; Chen, Y.; Zhang, X.; He, C.; Zheng, C.; Li, K.; Ma, X.; et al. Cisplatin and curcumin co-loaded nano-liposomes for the treatment of hepatocellular carcinoma. Int. J. Pharm. 2018, 545, 261–273. [Google Scholar] [CrossRef] [PubMed]
- Tahmasebi Mirgani, M.; Sadeghizadeh, M.; Najafi, F.; Mowla, S.J. Dendrosomal curcumin induced apoptosis by suppression of pluripotency genes in 5637 bladder cancer cells. Pathobiol. Res. 2013, 16, 23–39. [Google Scholar]
- Liu, M.; Chang, Y.; Yang, J.; You, Y.; He, R.; Chen, T.; Zhou, C. Functionalized halloysite nanotube by chitosan grafting for drug delivery of curcumin to achieve enhanced anticancer efficacy. J. Mater. Chem. B 2016, 4, 2253–2263. [Google Scholar] [CrossRef] [PubMed]
- Xing, T.; Wang, Z.; Hao, X.; Mu, J.; Wang, B. Copper Nanoparticles Green-Formulated by Curcuma longa Extract Induce Apoptosis via P53 and STAT3 Signaling Pathways in Bladder Carcinoma Cell. Biol. Trace Elem. Res. 2024. [Google Scholar] [CrossRef]
- Tavakoli, F.; Jahanban-Esfahlan, R.; Seidi, K.; Jabbari, M.; Behzadi, R.; Pilehvar-Soltanahmadi, Y.; Zarghami, N. Effects of nano-encapsulated curcumin-chrysin on telomerase, MMPs and TIMPs gene expression in mouse B16F10 melanoma tumour model. Artif. Cells Nanomed. Biotechnol. 2018, 46, 75–86. [Google Scholar] [CrossRef]
- Alvi, S.B.; Appidi, T.; Deepak, B.P.; Rajalakshmi, P.S.; Minhas, G.; Singh, S.P.; Begum, A.; Bantal, V.; Srivastava, R.; Khan, N. The “nano to micro” transition of hydrophobic curcumin crystals leading to in situ adjuvant depots for Au-liposome nanoparticle mediated enhanced photothermal therapy. Biomater. Sci. 2019, 7, 3866–3875. [Google Scholar] [CrossRef]
- Xi, Y.; Ge, J.; Wang, M.; Chen, M.; Niu, W.; Cheng, W.; Xue, Y.; Lin, C.; Lei, B. Bioactive anti-inflammatory, antibacterial, antioxidative silicon-based nanofibrous dressing enables cutaneous tumor photothermo-chemo therapy and infection-induced wound healing. ACS Nano 2020, 14, 2904–2916. [Google Scholar] [CrossRef]
- Somu, P.; Paul, S. Supramolecular nanoassembly of lysozyme and α-lactalbumin (apo α-LA) exhibits selective cytotoxicity and enhanced bioavailability of curcumin to cancer cells. Colloids Surf. B Biointerfaces 2019, 178, 297–306. [Google Scholar] [CrossRef]
- Zhang, J.; Li, S.; An, F.-F.; Liu, J.; Jin, S.; Zhang, J.-C.; Wang, P.C.; Zhang, X.; Lee, C.-S.; Liang, X.-J. Self-carried curcumin nanoparticles for in vitro and in vivo cancer therapy with real-time monitoring of drug release. Nanoscale 2015, 7, 13503–13510. [Google Scholar] [CrossRef]
- Xie, M.; Fan, D.; Zhao, Z.; Li, Z.; Li, G.; Chen, Y.; He, X.; Chen, A.; Li, J.; Lin, X. Nano-curcumin prepared via supercritical: Improved anti-bacterial, anti-oxidant and anti-cancer efficacy. Int. J. Pharm. 2015, 496, 732–740. [Google Scholar] [CrossRef]
- Ntoutoume, G.M.A.N.; Granet, R.; Mbakidi, J.P.; Brégier, F.; Léger, D.Y.; Fidanzi-Dugas, C.; Lequart, V.; Joly, N.; Liagre, B.; Chaleix, V. Development of curcumin–cyclodextrin/cellulose nanocrystals complexes: New anticancer drug delivery systems. Bioorg. Med. Chem. Lett. 2016, 26, 941–945. [Google Scholar] [CrossRef] [PubMed]
- Barbinta-Patrascu, M.E.; Badea, N.; Pirvu, C.; Bacalum, M.; Ungureanu, C.; Nadejde, P.L.; Ion, C.; Rau, I. Multifunctional soft hybrid bio-platforms based on nano-silver and natural compounds. Mater. Sci. Eng. C 2016, 69, 922–932. [Google Scholar] [CrossRef]
- Dash, T.K.; Konkimalla, V.S.B. Selection and optimization of nano-formulation of P-glycoprotein inhibitor for reversal of doxorubicin resistance in COLO205 cells. J. Pharm. Pharmacol. 2017, 69, 834–843. [Google Scholar] [CrossRef] [PubMed]
- Tefas, L.R.; Sylvester, B.; Tomuta, I.; Sesarman, A.; Licarete, E.; Banciu, M.; Porfire, A. Development of antiproliferative long-circulating liposomes co-encapsulating doxorubicin and curcumin, through the use of a quality-by-design approach. Drug Des. Dev. Ther. 2017, 11, 1605–1621. [Google Scholar] [CrossRef] [PubMed]
- Anirudhan, T.S.; Nair, A.S.; Bino, S.J. Nanoparticle assisted solvent selective transdermal combination therapy of curcumin and 5-flurouracil for efficient cancer treatment. Carbohydr. Polym. 2017, 173, 131–142. [Google Scholar] [CrossRef]
- Lotfi-Attari, J.; Pilehvar-Soltanahmadi, Y.; Dadashpour, M.; Alipour, S.; Farajzadeh, R.; Javidfar, S.; Zarghami, N. Co-delivery of curcumin and chrysin by polymeric nanoparticles inhibit synergistically growth and hTERT gene expression in human colorectal cancer cells. Nutr. Cancer 2017, 69, 1290–1299. [Google Scholar] [CrossRef]
- Bagheri, R.; Sanaat, Z.; Zarghami, N. Synergistic effect of free and nano-encapsulated chrysin-curcumin on inhibition of hTERT gene expression in SW480 colorectal cancer cell line. Drug Res. 2018, 68, 335–343. [Google Scholar] [CrossRef]
- Sesarman, A.; Tefas, L.; Sylvester, B.; Licarete, E.; Rauca, V.; Luput, L.; Patras, L.; Banciu, M.; Porfire, A. Anti-angiogenic and anti-inflammatory effects of long-circulating liposomes co-encapsulating curcumin and doxorubicin on C26 murine colon cancer cells. Pharmacol. Rep. 2018, 70, 331–339. [Google Scholar] [CrossRef]
- Al-Ani, L.A.; Yehye, W.A.; Kadir, F.A.; Hashim, N.M.; AlSaadi, M.A.; Julkapli, N.M.; Hsiao, V.K.S. Hybrid nanocomposite curcumin-capped gold nanoparticle-reduced graphene oxide: Anti-oxidant potency and selective cancer cytotoxicity. PLoS ONE 2019, 14, e0216725. [Google Scholar] [CrossRef]
- Reimondez-Troitiño, S.; González-Aramundiz, J.V.; Ruiz-Bañobre, J.; López-López, R.; Alonso, M.J.; Csaba, N.; de la Fuente, M. Versatile protamine nanocapsules to restore miR-145 levels and interfere tumor growth in colorectal cancer cells. Eur. J. Pharm. Biopharm. 2019, 142, 449–459. [Google Scholar] [CrossRef]
- Chen, Y.; Chen, C.; Zhang, X.; He, C.; Zhao, P.; Li, M.; Fan, T.; Yan, R.; Lu, Y.; Lee, R.J.; et al. Platinum complexes of curcumin delivered by dual-responsive polymeric nanoparticles improve chemotherapeutic efficacy based on the enhanced anti-metastasis activity and reduce side effects. Acta Pharm. Sin. B 2020, 10, 1106–1121. [Google Scholar] [CrossRef] [PubMed]
- Almutairi, F.M.; El Rabey, H.A.; Tayel, A.A.; Alalawy, A.I.; Al-Duais, M.A.; Sakran, M.I.; Zidan, N.S. Augmented anticancer activity of curcumin loaded fungal chitosan nanoparticles. Int. J. Biol. Macromol. 2020, 155, 861–867. [Google Scholar] [CrossRef] [PubMed]
- Xiao, H.; Guo, Y.; Liu, H.; Liu, Y.; Wang, Y.; Li, C.; Císař, J.; Škoda, D.; Kuřitka, I.; Guo, L. Structure-based design of charge-conversional drug self-delivery systems for better targeted cancer therapy. Biomaterials 2020, 232, 119701. [Google Scholar] [CrossRef] [PubMed]
- Ochoa-Sanchez, A.; Sahare, P.; Pathak, S.; Banerjee, A.; Estevez, M.; Duttaroy, A.K.; Luna-Bárcenas, G.; Paul, S. Evaluation of the synergistic effects of curcumin-resveratrol co-loaded biogenic silica on colorectal cancer cells. Front. Pharmacol. 2024, 15, 1341773. [Google Scholar] [CrossRef]
- Abtahi, N.A.; Naghib, S.M.; Haghiralsadat, F.; Akbari Edgahi, M.; Askari, E. A comparative study on biopharmaceutical function of curcumin and miR-34a by multistimuli-responsive nanoniosome carrier: In-vitro and in-vivo. Front. Mol. Biosci. 2022, 9, 1043277. [Google Scholar] [CrossRef]
- Ghaderi, S.; Babaei, E.; Hussen, B.M.; Mahdavi, M.; Azeez, H.J. Gemini curcumin suppresses proliferation of ovarian cancer OVCAR-3 cells via induction of apoptosis. Anti-Cancer Agents Med. Chem. (Former. Curr. Med. Chem.-Anti-Cancer Agents) 2021, 21, 775–781. [Google Scholar] [CrossRef]
- Mancarella, S.; Greco, V.; Baldassarre, F.; Vergara, D.; Maffia, M.; Leporatti, S. Polymer-coated magnetic nanoparticles for curcumin delivery to cancer cells. Macromol. Biosci. 2015, 15, 1365–1374. [Google Scholar] [CrossRef]
- Fang, X.-B.; Zhang, J.-M.; Xie, X.; Liu, D.; He, C.-W.; Wan, J.-B.; Chen, M.-W. pH-sensitive micelles based on acid-labile pluronic F68–curcumin conjugates for improved tumor intracellular drug delivery. Int. J. Pharm. 2016, 502, 28–37. [Google Scholar] [CrossRef]
- Steuber, N.; Vo, K.; Wadhwa, R.; Birch, J.; Iacoban, P.; Chavez, P.; Elbayoumi, T.A. Tocotrienol nanoemulsion platform of curcumin elicit elevated apoptosis and augmentation of anticancer efficacy against breast and ovarian carcinomas. Int. J. Mol. Sci. 2016, 17, 1792. [Google Scholar] [CrossRef]
- Liu, Z.; Zhu, Y.-Y.; Li, Z.-Y.; Ning, S.-Q. Evaluation of the efficacy of paclitaxel with curcumin combination in ovarian cancer cells. Oncol. Lett. 2016, 12, 3944–3948. [Google Scholar] [CrossRef]
- Liu, S.; Zhou, S.; Wang, B.; Jia, Z. Effects of curcumin nanoparticles on the proliferation and migration of human ovarian cancer cells assessed through the NF-κB/PRL-3 signaling pathway. Int. Immunopharmacol. 2024, 141, 112964. [Google Scholar] [CrossRef] [PubMed]
- Sandhiutami, N.M.D.; Arozal, W.; Louisa, M.; Rahmat, D.; Wuyung, P.E. Curcumin nanoparticle enhances the anticancer effect of cisplatin by inhibiting PI3K/AKT and JAK/STAT3 pathway in rat ovarian carcinoma induced by DMBA. Front. Pharmacol. 2021, 11, 603235. [Google Scholar] [CrossRef] [PubMed]
- Shiri, S.; Alizadeh, A.M.; Baradaran, B.; Farhanghi, B.; Shanehbandi, D.; Khodayari, S.; Khodayari, H.; Tavassoli, A. Dendrosomal curcumin suppresses metastatic breast cancer in mice by changing m1/m2 macrophage balance in the tumor microenvironment. Asian Pac. J. Cancer Prev. 2015, 16, 3917–3922. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Ma, W.; Tu, P. Synergistically improved anti-tumor efficacy by co-delivery doxorubicin and curcumin polymeric micelles. Macromol. Biosci. 2015, 15, 1252–1261. [Google Scholar] [CrossRef] [PubMed]
- Sarika, P.R.; James, N.R.; Kumar, P.R.A.; Raj, D.K.; Kumary, T.V. Gum arabic-curcumin conjugate micelles with enhanced loading for curcumin delivery to hepatocarcinoma cells. Carbohydr. Polym. 2015, 134, 167–174. [Google Scholar] [CrossRef]
- Cai, X.; Liu, M.; Zhang, C.; Sun, D.; Zhai, G. pH-responsive copolymers based on pluronic P123-poly (β-amino ester): Synthesis, characterization and application of copolymer micelles. Colloids Surf. B Biointerfaces 2016, 142, 114–122. [Google Scholar] [CrossRef]
- Fatima, M.T.; Chanchal, A.; Yavvari, P.S.; Bhagat, S.D.; Gujrati, M.; Mishra, R.K.; Srivastava, A. Cell permeating nano-complexes of amphiphilic polyelectrolytes enhance solubility, stability, and anti-cancer efficacy of curcumin. Biomacromolecules 2016, 17, 2375–2383. [Google Scholar] [CrossRef]
- Muthoosamy, K.; Abubakar, I.B.; Bai, R.G.; Loh, H.-S.; Manickam, S. Exceedingly higher co-loading of curcumin and paclitaxel onto polymer-functionalized reduced graphene oxide for highly potent synergistic anticancer treatment. Sci. Rep. 2016, 6, 32808. [Google Scholar] [CrossRef]
- Baghbani, F.; Chegeni, M.; Moztarzadeh, F.; Hadian-Ghazvini, S.; Raz, M. Novel ultrasound-responsive chitosan/perfluorohexane nanodroplets for image-guided smart delivery of an anticancer agent: Curcumin. Mater. Sci. Eng. C 2017, 74, 186–193. [Google Scholar] [CrossRef]
- Baek, J.-S.; Cho, C.-W. A multifunctional lipid nanoparticle for co-delivery of paclitaxel and curcumin for targeted delivery and enhanced cytotoxicity in multidrug resistant breast cancer cells. Oncotarget 2017, 8, 30369. [Google Scholar] [CrossRef]
- Farajzadeh, R.; Pilehvar-Soltanahmadi, Y.; Dadashpour, M.; Javidfar, S.; Lotfi-Attari, J.; Sadeghzadeh, H.; Shafiei-Irannejad, V.; Zarghami, N. Nano-encapsulated metformin-curcumin in PLGA/PEG inhibits synergistically growth and hTERT gene expression in human breast cancer cells. Artif. Cells Nanomed. Biotechnol. 2018, 46, 917–925. [Google Scholar] [CrossRef] [PubMed]
- Danafar, H.; Sharafi, A.; Askarlou, S.; Manjili, H.K. Preparation and characterization of PEGylated iron oxide-gold nanoparticles for delivery of sulforaphane and curcumin. Drug Res. 2017, 67, 698–704. [Google Scholar] [CrossRef] [PubMed]
- Dong, X.; Zou, S.; Guo, C.; Wang, K.; Zhao, F.; Fan, H.; Yin, J.; Chen, D. Multifunctional redox-responsive and CD44 receptor targeting polymer-drug nanomedicine based curcumin and alendronate: Synthesis, characterization and in vitro evaluation. Artif. Cells Nanomed. Biotechnol. 2018, 46, 168–177. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Wang, B.; Guo, C.; Hou, X.; Cheng, Z.; Chen, D. Novel multifunctional triple folic acid, biotin and CD44 targeting pH-sensitive nano-actiniaes for breast cancer combinational therapy. Drug Deliv. 2019, 26, 1002–1016. [Google Scholar] [CrossRef]
- Borah, A.; Pillai, S.C.; Rochani, A.K.; Palaninathan, V.; Nakajima, Y.; Maekawa, T.; Kumar, D.S. GANT61 and curcumin-loaded PLGA nanoparticles for GLI1 and PI3K/Akt-mediated inhibition in breast adenocarcinoma. Nanotechnology 2020, 31, 185102. [Google Scholar] [CrossRef]
- Yan, J.; Wang, Y.; Zhang, X.; Liu, S.; Tian, C.; Wang, H. Targeted nanomedicine for prostate cancer therapy: Docetaxel and curcumin co-encapsulated lipid–polymer hybrid nanoparticles for the enhanced anti-tumor activity in vitro and in vivo. Drug Deliv. 2016, 23, 1757–1762. [Google Scholar] [CrossRef]
- Adahoun, M.a.A.; Al-Akhras, M.-A.H.; Jaafar, M.S.; Bououdina, M. Enhanced anti-cancer and antimicrobial activities of curcumin nanoparticles. Artif. Cells Nanomed. Biotechnol. 2017, 45, 98–107. [Google Scholar] [CrossRef]
- Caldas, B.S.; Nunes, C.S.; Panice, M.R.; Scariot, D.B.; Nakamura, C.V.; Muniz, E.C. Manufacturing micro/nano chitosan/chondroitin sulfate curcumin-loaded hydrogel in ionic liquid: A new biomaterial effective against cancer cells. Int. J. Biol. Macromol. 2021, 180, 88–96. [Google Scholar] [CrossRef]
- Chen, J.; Xue, F.; Du, W.; Yu, H.; Yang, Z.; Du, Q.; Chen, H. An endogenous H2S-activated nanoplatform for triple synergistic therapy of colorectal cancer. Nano Lett. 2022, 22, 6156–6165. [Google Scholar] [CrossRef]
- Kalashnikova, I.; Mazar, J.; Neal, C.J.; Rosado, A.L.; Das, S.; Westmoreland, T.J.; Seal, S. Nanoparticle delivery of curcumin induces cellular hypoxia and ROS-mediated apoptosis via modulation of Bcl-2/Bax in human neuroblastoma. Nanoscale 2017, 9, 10375–10387. [Google Scholar] [CrossRef]
- Tian, C.; Asghar, S.; Xu, Y.; Chen, Z.; Zhang, M.; Huang, L.; Ye, J.; Ping, Q.; Xiao, Y. The effect of the molecular weight of hyaluronic acid on the physicochemical characterization of hyaluronic acid-curcumin conjugates and in vitro evaluation in glioma cells. Colloids Surf. B Biointerfaces 2018, 165, 45–55. [Google Scholar] [CrossRef] [PubMed]
- Hesari, A.; Rezaei, M.; Rezaei, M.; Dashtiahangar, M.; Fathi, M.; Rad, J.G.; Momeni, F.; Avan, A.; Ghasemi, F. Effect of curcumin on glioblastoma cells. J. Cell. Physiol. 2019, 234, 10281–10288. [Google Scholar] [CrossRef] [PubMed]
- Yadav, P.; Zhang, C.; Whittaker, A.K.; Kailasam, K.; Shanavas, A. Magnetic and photocatalytic curcumin bound carbon nitride nanohybrids for enhanced glioma cell death. ACS Biomater. Sci. Eng. 2019, 5, 6590–6601. [Google Scholar] [CrossRef]
- He, Y.; Wu, C.; Duan, J.; Miao, J.; Ren, H.; Liu, J. Anti-glioma effect with targeting therapy using folate modified nano-micelles delivery curcumin. J. Biomed. Nanotechnol. 2020, 16, 1–13. [Google Scholar] [CrossRef]
- Pham, P.T.T.; Le, X.T.; Kim, H.; Kim, H.K.; Lee, E.S.; Oh, K.T.; Choi, H.-G.; Youn, Y.S. Indocyanine green and curcumin co-loaded nano-fireball-like albumin nanoparticles based on near-infrared-induced hyperthermia for tumor ablation. Int. J. Nanomed. 2020, 15, 6469–6484. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, X.; Xu, T.; Xu, K.; Du, B.; Li, Y. Biodegradable reduction and pH dual-sensitive polymer micelles based on poly (2-ethyl-2-oxazoline) for efficient delivery of curcumin. RSC Adv. 2020, 10, 25435–25445. [Google Scholar] [CrossRef]
- Sharma, A.; Panwar, V.; Thomas, J.; Chopra, V.; Roy, H.S.; Ghosh, D. Actin-binding carbon dots selectively target glioblastoma cells while sparing normal cells. Colloids Surf. B Biointerfaces 2021, 200, 111572. [Google Scholar] [CrossRef]
- Hemmati, K.; Ahmadi Nasab, N.; Hesaraki, S.; Nezafati, N. In vitro evaluation of curcumin-loaded chitosan-coated hydroxyapatite nanocarriers as a potential system for effective treatment of cancer. J. Biomater. Sci. Polym. Ed. 2021, 32, 1267–1287. [Google Scholar] [CrossRef]
- Gallien, J.; Srinageshwar, B.; Gallo, K.; Holtgrefe, G.; Koneru, S.; Otero, P.S.; Bueno, C.A.; Mosher, J.; Roh, A.; Kohtz, D.S. Curcumin loaded dendrimers specifically reduce viability of glioblastoma cell lines. Molecules 2021, 26, 6050. [Google Scholar] [CrossRef]
- Chibh, S.; Katoch, V.; Singh, M.; Prakash, B.; Panda, J.J. Miniatured fluidics-mediated modular self-assembly of anticancer drug–amino acid composite microbowls for combined chemo-photodynamic therapy in glioma. ACS Biomater. Sci. Eng. 2021, 7, 5654–5665. [Google Scholar] [CrossRef]
- Wanjale, M.V.; Sunil Jaikumar, V.; Sivakumar, K.C.; Ann Paul, R.; James, J.; Kumar, G.S.V. Supramolecular hydrogel based post-surgical implant system for hydrophobic drug delivery against glioma recurrence. Int. J. Nanomed. 2022, 17, 2203–2224. [Google Scholar] [CrossRef] [PubMed]
- Sivakumar, B.; Aswathy, R.G.; Romero-Aburto, R.; Mitcham, T.; Mitchel, K.A.; Nagaoka, Y.; Bouchard, R.R.; Ajayan, P.M.; Maekawa, T.; Sakthikumar, D.N. Highly versatile SPION encapsulated PLGA nanoparticles as photothermal ablators of cancer cells and as multimodal imaging agents. Biomater. Sci. 2017, 5, 432–443. [Google Scholar] [CrossRef] [PubMed]
- Thakkar, A.; Desai, P.; Chenreddy, S.; Modi, J.; Thio, A.; Khamas, W.; Ann, D.; Wang, J.; Prabhu, S. Novel nano-drug combination therapeutic regimen demonstrates significant efficacy in the transgenic mouse model of pancreatic ductal adenocarcinoma. Am. J. Cancer Res. 2018, 8, 2005. [Google Scholar]
- Madamsetty, V.S.; Pal, K.; Keshavan, S.; Caulfield, T.R.; Dutta, S.K.; Wang, E.; Fadeel, B.; Mukhopadhyay, D. Development of multi-drug loaded PEGylated nanodiamonds to inhibit tumor growth and metastasis in genetically engineered mouse models of pancreatic cancer. Nanoscale 2019, 11, 22006–22018. [Google Scholar] [CrossRef]
- Cheng, T.; Zhang, Z.; Shen, H.; Jian, Z.; Li, J.; Chen, Y.; Shen, Y.; Dai, X. Topically applicated curcumin/gelatin-blended nanofibrous mat inhibits pancreatic adenocarcinoma by increasing ROS production and endoplasmic reticulum stress mediated apoptosis. J. Nanobiotechnol. 2020, 18, 126. [Google Scholar] [CrossRef]
- Jadid, M.F.S.; Shademan, B.; Chavoshi, R.; Seyyedsani, N.; Aghaei, E.; Taheri, E.; Goleij, P.; Hajazimian, S.; Karamad, V.; Behroozi, J.; et al. Enhanced anticancer potency of hydroxytyrosol and curcumin by PLGA-PAA nano-encapsulation on PANC-1 pancreatic cancer cell line. Environ. Toxicol. 2021, 36, 1043–1051. [Google Scholar] [CrossRef]
- Maiti, D.; Saha, A.; Devi, P.S. Surface modified multifunctional ZnFe2O4 nanoparticles for hydrophobic and hydrophilic anti-cancer drug molecule loading. Phys. Chem. Chem. Phys. 2016, 18, 1439–1450. [Google Scholar] [CrossRef]
- Zaman, M.S.; Chauhan, N.; Yallapu, M.M.; Gara, R.K.; Maher, D.M.; Kumari, S.; Sikander, M.; Khan, S.; Zafar, N.; Jaggi, M. Curcumin nanoformulation for cervical cancer treatment. Sci. Rep. 2016, 6, 20051. [Google Scholar] [CrossRef]
- Aqil, F.; Munagala, R.; Jeyabalan, J.; Agrawal, A.K.; Gupta, R. Exosomes for the enhanced tissue bioavailability and efficacy of curcumin. AAPS J. 2017, 19, 1691–1702. [Google Scholar] [CrossRef]
- Thulasidasan, A.K.T.; Retnakumari, A.P.; Shankar, M.; Vijayakurup, V.; Anwar, S.; Thankachan, S.; Pillai, K.S.; Pillai, J.J.; Nandan, C.D.; Alex, V.V. Folic acid conjugation improves the bioavailability and chemosensitizing efficacy of curcumin-encapsulated PLGA-PEG nanoparticles towards paclitaxel chemotherapy. Oncotarget 2017, 8, 107374. [Google Scholar] [CrossRef]
- Muddineti, O.S.; Kumari, P.; Ghosh, B.; Biswas, S. Transferrin-modified vitamin-E/lipid based polymeric micelles for improved tumor targeting and anticancer effect of curcumin. Pharm. Res. 2018, 35, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Padmavathy, N.; Das Ghosh, L.; Meka, S.R.K.; Chatterjee, K. Synthesis of a block copolymer exhibiting cell-responsive phytochemical release for cancer therapy. ACS Appl. Mater. Interfaces 2018, 10, 21816–21824. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zheng, Y.; Lai, X.; Chu, Y.; Chen, Y. Biocompatible surface modification of nano-scale zeolitic imidazolate frameworks for enhanced drug delivery. RSC Adv. 2018, 8, 23623–23628. [Google Scholar] [CrossRef] [PubMed]
- Patwa, R.; Soundararajan, N.; Mulchandani, N.; Bhasney, S.M.; Shah, M.; Kumar, S.; Kumar, A.; Katiyar, V. Silk nano-discs: A natural material for cancer therapy. Biopolymers 2018, 109, e23231. [Google Scholar] [CrossRef]
- You, L.; Liu, X.; Fang, Z.; Xu, Q.; Zhang, Q. Synthesis of multifunctional Fe3O4@PLGA-PEG nano-niosomes as a targeting carrier for treatment of cervical cancer. Mater. Sci. Eng. C 2019, 94, 291–302. [Google Scholar] [CrossRef]
- Reddy, A.S.; Lakshmi, B.A.; Kim, S.; Kim, J. Synthesis and characterization of acetyl curcumin-loaded core/shell liposome nanoparticles via an electrospray process for drug delivery, and theranostic applications. Eur. J. Pharm. Biopharm. 2019, 142, 518–530. [Google Scholar] [CrossRef]
- Dai, Y.; Jiang, Z.; Li, J.; Wang, M.; Liu, C.; Qi, W.; Su, R.; He, Z. Co-assembly of curcumin and a cystine bridged peptide to construct tumor-responsive nano-micelles for efficient chemotherapy. J. Mater. Chem. B 2020, 8, 1944–1951. [Google Scholar] [CrossRef]
- Habib, S.M.; Maharjan, R.; Kanwal, T.; Althagafi, I.I.; Saifullah, S.; Ullah, S.; Simjee, S.U.; Shah, M.R. Synthesis of lactobionic acid based bola-amphiphiles and its application as nano-carrier for curcumin delivery to cancer cell cultures in-vitro. Int. J. Pharm. 2020, 590, 119897. [Google Scholar] [CrossRef]
- Kavya, K.V.; Vargheese, S.; Shukla, S.; Khan, I.; Dey, D.K.; Bajpai, V.K.; Thangavelu, K.; Vivek, R.; Kumar, R.T.R.; Han, Y.-K. A cationic amino acid polymer nanocarrier synthesized in supercritical CO2 for co-delivery of drug and gene to cervical cancer cells. Colloids Surf. B Biointerfaces 2022, 216, 112584. [Google Scholar] [CrossRef]
- Pavitra, E.; Lee, H.; Hwang, S.K.; Park, J.Y.; Han, Y.-K.; Raju, G.S.R.; Huh, Y.S. Evolution of highly biocompatible and thermally stable YVO4: Er3+/Yb3+ upconversion mesoporous hollow nanospheriods as drug carriers for therapeutic applications. Nanomaterials 2022, 12, 2520. [Google Scholar] [CrossRef]
- Srivastava, S.; Mohammad, S.; Gupta, S.; Mahdi, A.A.; Dixit, R.K.; Singh, V.; Samadi, F.M. Chemoprotective effect of nanocurcumin on 5-fluorouracil-induced-toxicity toward oral cancer treatment. Natl. J. Maxillofac. Surg. 2018, 9, 160–166. [Google Scholar] [CrossRef] [PubMed]
- Madeo, L.F.; Sarogni, P.; Cirillo, G.; Vittorio, O.; Voliani, V.; Curcio, M.; Shai-Hee, T.; Büchner, B.; Mertig, M.; Hampel, S. Curcumin and graphene oxide incorporated into alginate hydrogels as versatile devices for the local treatment of squamous cell carcinoma. Materials 2022, 15, 1648. [Google Scholar] [CrossRef] [PubMed]
- Fazli, B.; Irani, S.; Bardania, H.; Moosavi, M.-S.; Rohani, B. Prophylactic effect of topical (slow-release) and systemic curcumin nano-niosome antioxidant on oral cancer in rat. BMC Complement. Med. Ther. 2022, 22, 109. [Google Scholar] [CrossRef] [PubMed]
- Essawy, M.M.; Mohamed, M.M.; Raslan, H.S.; Rafik, S.T.; Awaad, A.K.; Ramadan, O.R. The theranostic potentialities of bioavailable nanocurcumin in oral cancer management. BMC Complement. Med. Ther. 2022, 22, 309. [Google Scholar] [CrossRef]
- Zhang, M.; Zhang, J.; Chen, J.; Zeng, Y.; Zhu, Z.; Wan, Y. Fabrication of curcumin-modified TiO2 nanoarrays via cyclodextrin based polymer functional coatings for osteosarcoma therapy. Adv. Healthc. Mater. 2019, 8, 1901031. [Google Scholar] [CrossRef]
- Zhang, M.; Zhang, J.; Ran, S.; Sun, W.; Zhu, Z. Polydopamine-assisted decoration of Se nanoparticles on curcumin-incorporated nanofiber matrices for localized synergistic tumor-wound therapy. Biomater. Sci. 2022, 10, 536–548. [Google Scholar] [CrossRef]
- Hosseini, S.; Chamani, J.; Rahimi, H.; Azmoodeh, N.; Ghasemi, F.; Hassan Abadi, P. An in vitro study on curcumin delivery by nano-micelles for esophageal squamous cell carcinoma (KYSE-30). Rep. Biochem. Mol. Biol. 2018, 6, 137–143. [Google Scholar]
- Xu, Y.; Zi, Y.; Lei, J.; Mo, X.; Shao, Z.; Wu, Y.; Tian, Y.; Li, D.; Mu, C. pH-Responsive nanoparticles based on cholesterol/imidazole modified oxidized-starch for targeted anticancer drug delivery. Carbohydr. Polym. 2020, 233, 115858. [Google Scholar] [CrossRef]
- Gao, Y.; Zhu, Y.; Xu, X.; Wang, F.; Shen, W.; Leng, X.; Zhao, J.; Liu, B.; Wang, Y.; Liu, P. Surface PEGylated cancer cell membrane-coated nanoparticles for codelivery of curcumin and doxorubicin for the treatment of multidrug resistant esophageal carcinoma. Front. Cell Dev. Biol. 2021, 9, 688070. [Google Scholar] [CrossRef]
- Dhivya, R.; Ranjani, J.; Bowen, P.K.; Rajendhran, J.; Mayandi, J.; Annaraj, J. Biocompatible curcumin loaded PMMA-PEG/ZnO nanocomposite induce apoptosis and cytotoxicity in human gastric cancer cells. Mater. Sci. Eng. C 2017, 80, 59–68. [Google Scholar] [CrossRef]
- Wu, Q.; Gao, H.; Vriesekoop, F.; Liu, Z.; He, J.; Liang, H. Calcium phosphate coated core-shell protein nanocarriers: Robust stability, controlled release and enhanced anticancer activity for curcumin delivery. Mater. Sci. Eng. C 2020, 115, 111094. [Google Scholar] [CrossRef] [PubMed]
- Alam, J.; Dilnawaz, F.; Sahoo, S.K.; Singh, D.V.; Mukhopadhyay, A.K.; Hussain, T.; Pati, S. Curcumin Encapsulated into Biocompatible Co-Polymer PLGA Nanoparticle Enhanced Anti-Gastric Cancer and Anti-Helicobacter Pylori Effect. Asian Pac. J. Cancer Prev. APJCP 2022, 23, 61–70. [Google Scholar] [CrossRef] [PubMed]
- Song, J.-W.; Liu, Y.-S.; Guo, Y.-R.; Zhong, W.-X.; Guo, Y.-P.; Guo, L. Nano–Liposomes Double Loaded with Curcumin and Tetrandrine: Preparation, Characterization, Hepatotoxicity and Anti–Tumor Effects. Int. J. Mol. Sci. 2022, 23, 6858. [Google Scholar] [CrossRef] [PubMed]
- Tagde, P.; Tagde, P.; Islam, F.; Tagde, S.; Shah, M.; Hussain, Z.D.; Rahman, M.H.; Najda, A.; Alanazi, I.S.; Germoush, M.O.; et al. The Multifaceted Role of Curcumin in Advanced Nanocurcumin Form in the Treatment and Management of Chronic Disorders. Molecules 2021, 26, 7109. [Google Scholar] [CrossRef] [PubMed]
- Sandoughdaran, S.; Razzaghdoust, A.; Tabibi, A.; Basiri, A.; Simforoosh, N.; Mofid, B. Randomized, Double-blind Pilot Study of Nanocurcumin in Bladder Cancer Patients Receiving Induction Chemotherapy. Urol. J. 2021, 18, 295–300. [Google Scholar]
- Saadipoor, A.; Razzaghdoust, A.; Simforoosh, N.; Mahdavi, A.; Bakhshandeh, M.; Moghadam, M.; Abdollahi, H.; Mofid, B. Randomized, double-blind, placebo-controlled phase II trial of nanocurcumin in prostate cancer patients undergoing radiotherapy. Phytother. Res. 2019, 33, 370–378. [Google Scholar] [CrossRef]
- Farhadi, M.; Bakhshandeh, M.; Shafiei, B.; Mahmoudzadeh, A.; Hosseinimehr, S.J. The Radioprotective Effects of Nano-Curcumin Against Genotoxicity Induced by Iodine-131 in Patients with Differentiated Thyroid Carcinoma (DTC) by Micronucleus Assay. Int. J. Cancer Manag. 2018, 11, e14193. [Google Scholar] [CrossRef]
- Talakesh, T.; Tabatabaee, N.; Atoof, F.; Aliasgharzadeh, A.; Sarvizade, M.; Farhood, B.; Najafi, M. Effect of Nano-Curcumin on Radiotherapy-Induced Skin Reaction in Breast Cancer Patients: A Randomized, Triple-Blind, Placebo-Controlled Trial. Curr. Radiopharm. 2022, 15, 332–340. [Google Scholar] [CrossRef]
- Limami, Y.; Pinon, A.; Wahnou, H.; Oudghiri, M.; Liagre, B.; Simon, A.; Duval, R.E. Ursolic Acid’s Alluring Journey: One Triterpenoid vs. Cancer Hallmarks. Molecules 2023, 28, 7897. [Google Scholar] [CrossRef]
- Dolati, S.; Babaloo, Z.; Ayromlou, H.; Ahmadi, M.; Rikhtegar, R.; Rostamzadeh, D.; Roshangar, L.; Nouri, M.; Mehdizadeh, A.; Younesi, V.; et al. Nanocurcumin improves regulatory T-cell frequency and function in patients with multiple sclerosis. J. Neuroimmunol. 2019, 327, 15–21. [Google Scholar] [CrossRef]
- Bi, J.; Mo, C.; Li, S.; Huang, M.; Lin, Y.; Yuan, P.; Liu, Z.; Jia, B.; Xu, S. Immunotoxicity of metal and metal oxide nanoparticles: From toxic mechanisms to metabolism and outcomes. Biomater. Sci. 2023, 11, 4151–4183. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.-L.; Lee, Y.-H.; Chou, C.-L.; Chang, Y.-S.; Liu, W.-C.; Chiu, H.-W. Oxidative stress and potential effects of metal nanoparticles: A review of biocompatibility and toxicity concerns. Environ. Pollut. 2024, 346, 123617. [Google Scholar] [CrossRef] [PubMed]
- Auclair, J.; Turcotte, P.; Gagnon, C.; Peyrot, C.; Wilkinson, K.J.; Gagné, F. The influence of surface coatings on the toxicity of silver nanoparticle in rainbow trout. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2019, 226, 108623. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Peng, S.; McClements, D.J.; Chen, L.; Lin, S.; Wang, W. Enhancing stability of curcumin-loaded casein nanoparticles by adding liposomal nanoparticles. LWT 2023, 189, 115405. [Google Scholar] [CrossRef]
- Shrestha, S.; Wang, B.; Dutta, P. Nanoparticle processing: Understanding and controlling aggregation. Adv. Colloid Interface Sci. 2020, 279, 102162. [Google Scholar] [CrossRef]
- Shakiba, S.; Shariati, S.; Wu, H.; Astete, C.E.; Cueto, R.; Fini, E.H.; Rodrigues, D.F.; Sabliov, C.M.; Louie, S.M. Distinguishing nanoparticle drug release mechanisms by asymmetric flow field–flow fractionation. J. Control. Release 2022, 352, 485–496. [Google Scholar] [CrossRef]
- Petrovic, S.; Bita, B.; Barbinta-Patrascu, M.-E. Nanoformulations in Pharmaceutical and Biomedical Applications: Green Perspectives. Int. J. Mol. Sci. 2024, 25, 5842. [Google Scholar] [CrossRef]
- Desai, N. Challenges in development of nanoparticle-based therapeutics. AAPS J 2012, 14, 282–295. [Google Scholar] [CrossRef]
- Moosivand, A.; Rajabzadeh Ghatari, A.; Rasekh, H.R. Supply Chain Challenges in Pharmaceutical Manufacturing Companies: Using Qualitative System Dynamics Methodology. Iran. J. Pharm. Res. IJPR 2019, 18, 1103–1116. [Google Scholar] [CrossRef]
- Kumar, M.; Kulkarni, P.; Liu, S.; Chemuturi, N.; Shah, D.K. Nanoparticle biodistribution coefficients: A quantitative approach for understanding the tissue distribution of nanoparticles. Adv. Drug Deliv. Rev. 2023, 194, 114708. [Google Scholar] [CrossRef]
- Blanco, E.; Shen, H.; Ferrari, M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat. Biotechnol. 2015, 33, 941–951. [Google Scholar] [CrossRef]
- Yang, Q.; Lai, S.K. Anti-PEG immunity: Emergence, characteristics, and unaddressed questions. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2015, 7, 655–677. [Google Scholar] [CrossRef]
Liver Cancer | ||||
---|---|---|---|---|
Nanoparticles | Dosage | Cell Lines | Observed Effects | References |
Mucoadhesive curcumin nanotherapy | 2.5–20 μM | HuH7, HepG2 | cell viability ↓, apoptosis ↑, necrosis ↑, cell proliferation ↓ | [117] |
Targeted dendrimeric curcumin | 5–50 mM 0.5 mg/25 g | HuH7, Hepa1-6 Hepa1-6 xenograft models | cell viability ↓, G2/M phase cell cycle arrest, ROS levels ↑, depletion of ATP and glutathione ↓, tumor growth ↓, survival rates ↑ | [67] |
Curcumin-loaded nanoechinus | 10 μg/mL | HepG2, HepG2-bearing mice | cytotoxicity ↑, tumor volume ↓, tumor weight ↓, cellular damage ↑ | [118] |
curcumin carbon nanodots | 0.1–3.2 mg/mL | HuH7 and HepG2 | apoptosis ↑, cell viability ↓ | [119] |
Fe3O4@curcumin-LDH/PDA | 6.125–200 μg/mL | HepG2 cells and HUVECs | cytotoxicity ↑, cell viability ↓, ferroptosis ↑ | [120] |
KGM-gAH8 micelles | 2–266 μg/mL | HepG2 cells | cytotoxicity ↑, cell viability ↓ | [86] |
cisplatin-curcumin coloaded liposomes + cisplatin | 9.8 mg/kg | HepG2 and H22 xenografts | Sp1 ↓, Bcl-2 ↓, ROS ↑, p53 ↑, caspase-3 ↑, Bax ↑ | [121] |
Bladder cancer | ||||
Nanoparticles | Dosage | Cell lines | Observed Effects | References |
Dendrosomes | 17.5 µM | 5637 | bioavailability ↑, apoptosis ↑, cell cycle arrest ↑, stemness markers (Oct4, SOX2, NANOG) ↓ | [122] |
HNTsg-CS NPs | 5.3 µM | EJ-1 | cell viability ↓, apoptosis ↑, cell cycle arrest ↑, controlled release ↑, curcumin stability ↑ | [123] |
Copper NPs | 290 µg/mL | TCCSUP | apoptosis ↑, Bax ↑, cleaved caspase-8 ↑, Bcl-2 ↓, STAT3 pathway ↓, colony formation ↓ | [124] |
Melanoma | ||||
Nanoparticles | Dosage | Cell lines | Observed Effects | References |
curcumin and chrysin-loaded NPs | 5–60 μM 30 mg/kg | B16F10, B16F10-bearing C57BL/6 mice | MMP-2 ↓, MMP-9↓, TERT↓, TIMP-1↑, TIMP-2↑, tumor growth↓ | [125] |
Au-Lipos Cur NP | 200 μg/mL | B16 cells B16 bearing mice | cell growth ↓, viability ↓, PTT sensitivity ↑, Hsp70 ↓, SLUG ↓, Mucin ↓, tumor growth ↓ | [126] |
PPCP nanofibrous matrix | Not specified | A375 cells A375 bearing mice | tumor growth ↓, cell viability↓, apoptosis ↑, Ki-67 ↓ | [127] |
SNLYZ-BLA-curcumin | 40–160 µg/mL | B16F10 cells | cell viability ↓, cytotoxicity ↑ | [128] |
Zn and Cu liposomes | 4.3 µM | B16F10 cells | cell viability ↓, proliferation ↓ | [66] |
Colorectal Cancer | ||||
Nanoparticles | Dosage | Cell lines | Observed Effects | References |
PEGylated curcumin NPs | 1–40 μM 10 mg/kg | CT26 cells CT26-bearing nude mice | cell viability ↓, cytotoxicity ↑, tumor volume ↓, tumor weight ↓ | [129] |
cyclodextrin/carboxymethylcellulose NPs | 0.01–100 μg/mL | HCT116 cells | cytotoxicity ↑, G2/M cell cycle arrest, apoptosis ↑ | [130] |
Cyclodextrin/carboxymethylcellulose NPs | 5–50 mM | HT29 cells | cell proliferation↓, viability ↓ | [131] |
Phyto/active gold-fluorescein/chitosan biohybrid | 2.5%–35% | HT29 cells | cell viability ↓, cytotoxicity ↑ | [132] |
Curcumin encapsulated in hydroxypropyl-β-cyclodextrin | 20–60 µM | COLO205 cells | DOX sensitivity ↑, cell viability ↓ | [133] |
Liposomes co-loaded with curcumin and doxorubicin | 0.45–41.85 mM | C26 cells | cell proliferation ↑ | [134] |
Curcumin + 5-fluorouracil (5-FU) delivery system | 1.5–25 μg/mL | HCT116 cells | cell viability ↓ | [135] |
Curcumin-loaded PLGA/PEG NPs | 12.05 μM (Caco-2) | Caco-2 cells | proliferation ↓, cytotoxicity ↑, hTERT expression ↓ | [136] |
Curcumin-loaded PLGA/PEG NPs | 3.5–60 μM | SW480 cells | cell proliferation ↓, cytotoxicity ↑ | [137] |
Liposomal curcumin + DOX | 20 μM | C26 cells | proliferation ↓, cytotoxicity ↑, cytokines and growth factors ↓ | [138] |
Curcumin-loaded nanocomposite | 62.5–1000 μg/mL | HT29, SW948 cells | cytotoxicity ↑ | [139] |
Curcumin-loaded protamine NPs | 2.8–4.5 μg/mL | SW480 cells | cell viability ↓, migration ↓, miR-145 ↑, IGF-1R ↓ | [140] |
Mesoporous silica NPs loaded with curcumin | 10–200 μg/mL | LS174T cells | cell viability ↓, cytotoxicity ↑ | [80] |
Curcumin-loaded NPs | 10–100 μg/mL | Caco-2 cells | viability ↓, cytotoxicity ↑ | [141] |
Curcumin-loaded NPs | 50 μM | HCT116 cells | viability ↓, apoptosis ↑ | [142] |
Solid iron-curcumin NPs | 0.028–3.6 mg/mL | HT-29 cells | cell viability ↓, tumor volume ↓ | [143] |
Cur-Res-BS | 100 to 1000 μg/mL | HCT116, Caco-2 | cell viability↓, anti-proliferative and pro-apoptotic effects ↑, modulation of cancer-related genes (Wnt-1, CTNNB1, TP53, Bax) | [144] |
Ovarian cancer | ||||
Nanoparticles | Dosage | Cell lines | Observed Effects | References |
Curcumin niosomes | 0.05–0.2 μg/mL 2.5 mg/kg | A2780s, A2780cp-1 BALB/c mice | cytotoxicity ↑, apoptosis ↑, NF-κB ↓, p53 ↑, tumor size ↓ | [145] |
Gemini-curcumin formulation | 100 µM | OVCAR-3 | cell proliferation ↓, apoptosis ↑, modulation of Bax/Bcl-2 | [146] |
Curcumin-loaded Fe3O4 NPs | 0.01 mg/mL | SKOV-3 | cell viability ↓, cancer cell growth ↓ | [147] |
F68-Cis–Cur formulation | 0.9375–30 μM | A2780 | cell viability ↓, apoptosis ↑, MMPo ↓ | [148] |
Curcuminδ-T3 nanoemulsion | 25 μM | OVCAR-8 | cell viability ↓, apoptosis ↑, caspase activation ↑, NF-κB ↓ | [149] |
Curcumin-loaded NPs | 10 μM | A2780, A2780/ADM | multidrug resistance ↓, P-gp expression ↓ | [150] |
PEG-PDLLA NPs | 1 mg/mL | A2780 | cell proliferation ↓, cell migration ↓, modulation of NF-κB/PRL-3 signaling pathway | [151] |
Curcumin NPs + Cisplatin | 20 and 40 μM | DMBA-induced ovarian cancer rat model | tumor volume ↓, increased apoptosis ↑, modulation of TGF-β, PI3K, IL-6, and JAK/STAT3 pathways | [152] |
Breast cancer | ||||
Nanoparticles | Dosage | Cell lines | Observed Effects | References |
Dendrosomal curcumin | 40 and 80 mg/kg | 4T1 mice | tumor incidence ↑ tumor volume↑, IL-10 ↓, STAT3 ↓, arginase I ↓, IL-12 ↑, STAT4 ↑ | [153] |
Polymeric micelles (curcumin + DOX) | 0.01–1 mg/mL | MCF-7, MCF-7/ADR, 4T1 | cell viability ↓, cytotoxicity apoptosis ↑, tumor growth ↓, tumor volume ↓ | [154] |
Gum arabic-curcumin micelles | 25–0.78 g/mL | MCF-7 | cell viability ↓, cytotoxicity ↑ | [155] |
MP@Alg–curcumin AuNPs | 42 µM | MCF-7 | cell viability ↓, cytotoxicity ↑ | [79] |
Curcumin-P123-PAE | 20–100 µg/mL | MCF-7 | cell viability ↓, cytotoxicity ↑ | [156] |
HNTs-g-CS NPs (curcumin loaded) | 5.3–192 μM | MCF-7 | cell viability ↓ | [123] |
PECs (curcumin loaded) | 50 µg/mL | MDA-MB-231 | cytotoxicity ↑, apoptosis ↑, cell cycle arrest at G0/G1 phase | [157] |
GP-Cur-Ptx | 1.450 μg/mL | MDA-MB-231 | apoptosis ↑, cytotoxicity ↓, ROS production ↑ | [125] |
Chitosan/perfluorohexane nanodroplets | 0.004–0.4 μg/mL | 4T1 | cell viability ↓, cytotoxicity ↑ | [158] |
FPCHN-30 (folate conjugated lipid NPs) | 5 nM | MCF-7/ADR | cytotoxicity ↑, P-gp expression ↓ | [159] |
Metformin-curcumin-PLGA/PEG NPs | 50 µM | T47D | cytotoxicity ↑, hTERT ↓ | [160] |
Curcumin encapsulated NPs | 15 µM | SK-BR-3 | apoptosis ↑, Bcl-2 ↓, MMP-9 ↓ | [161] |
ALN-oHA-S-S-curcumin | 1.25–40 μg/mL | MCF-7, MDA-MB-231 | cytotoxicity ↑ | [162] |
Icariin and curcumin-loaded micelles | 10 μg/mL (200 μL) 0.5 mg/mL | MCF-7 MCF-7 bearing mice | invasion ↓, tumor growth ↓ | [163] |
GANT61-curcumin PLGA NPs | 0.1–1 mg/mL | MCF-7 | cell viability↓, migration ↓, BMI1, PI3K, and GLI1 pathways ↓ | [164] |
Prostate cancer | ||||
Nanoparticles | Dosage | Cell lines | Observed Effects | References |
DTX-Cur-Lipid Polymeric NPs (LPNs) | 3.62 mΜ 5–10 mg/kg | PC3 PC3-bearing mice | cell viability↓, increased cytotoxicity ↑, decreased tumor growth ↓ | [165] |
Curcumin-loaded CD/CNCx NPs | 5–50 μM | PC3, DU145 | cell proliferation ↓, cell viability ↓ | [131] |
Curcumin NPs | 50–600 μM | PC3 | cell viability↓, cytotoxicity ↑ | [166] |
Curcumin zinc liposomes | 0.8 μg/mL | RM-1 | cell viability↓ | [66] |
Curcumin copper liposomes | 1.6 μg/mL | RM-1 | cell viability↓ | [66] |
PEC-Curcumin | 1581 μg/mL | PC3 | cell viability↓ | [167] |
PEC-Tannic acid-Curcumin | 441.7 μg/mL | PC3 | cell viability↓ | [167] |
Curcumin-loaded Pep-V1 nano-vesicles | 7 μM | DU145 | cytotoxicity ↑ | [168] |
Curcumin-loaded Pep-V2 nano-vesicles | 13.3 mM | DU145 | cytotoxicity ↑ | [168] |
Brain cancer | ||||
Nanoparticles | Dosage | Cell lines | Observed Effects | References |
Alginate-curcumin gold nanoparticles (MP@Alg–Ccm AuNPs) | 21 and 42 μM | C6 glioma cells | cell viability ↓, cytotoxicity ↑ | [79] |
Ceria NPs coated with curcumin | 100 μM | IMR-32 and SMS-KAN neuroblastoma cells | cell viability ↓, apoptosis ↑, modulation of Bcl-2/Bax ratio, caspase-3/7 ↑, ROS ↑, HIF-1α ↑ | [169] |
Hyaluronic acid (HA)-s-s-curcumin NPs | 1–30 μg/mL | G422 glioma cells | cell viability ↓, cytotoxicity ↑ | [170] |
Curcumin nano-micelles | 0.31–80 mg/mL | U-373 glioblastoma cells | cell growth ↓ and invasion ↓, apoptosis ↑, NF-κB ↓, IκB ↓, cyclin D1 ↓, surviving ↓, axin ↓, E-cadherin ↓ | [171] |
Carbon nitride nanohybrid loaded with curcumin | 1–7.5 μM | C6 glioma cells | cell viability ↓, increased cytotoxicity ↑, ROS-mediated pathways ↑ | [172] |
MPEG-PLA and Fa-PEG-PLA curcumin NPs | 0.3–25 μg/mL | GL261 glioma cells | apoptosis ↓, cell growth ↓, cell viability ↓; tumor growth ↓, angiogenesis ↓ | [173] |
ICG/curcumin-loaded albumin NPs | 0.3–40 μg/mL 5 mg/kg | N2a neuroblastoma cells N2a xenograft-bearing mice | cell viability ↓, cytotoxicity ↓ and apoptosis ↑, tumor growth ↓ | [174] |
Curcumin-loaded micelles | 2.05 μg/mL | C6 glioma cells | cell viability ↓, intracellular curcumin release ↑, proliferation ↓ | [175] |
Curcumin carbon dots | 31.25–500 μg/mL | C6 glioma cells | cell viability ↓, inhibited migration, promoted apoptosis via ROS increase, disrupted actin filaments and tubulin | [176] |
Curcumin and chitosan-loaded nanocarriers | 5–30 μg/mL | U87 MG glioblastoma cells | cell viability ↓, apoptosis ↑ | [177] |
Curcumin encapsulated in dendrimers | 0.02–0.1 mg/mL | GL269, F98, and U87 glioma cells | cell viability ↓ | [178] |
DOX-curcumin-loaded amino acid-based microbowls | 2.5–20 μL | C6 glioma cells | cell viability ↓, cytotoxicity ↑, ROS-mediated mechanisms ↑ | [179] |
Curcumin and piperine-loaded lignin-grafted gold nanogels | 0.6–1000 μM | U-251 MG glioblastoma cells | cell viability ↓, cytotoxicity ↑, apoptosis ↑, caspase-3 activity ↑ | [73] |
Curcumin-loaded PCL-PEG co-polymers | 1 mM, 100–125 μL | U-251 glioblastoma cells | cytotoxicity ↑, apoptosis ↑, tumor growth ↓, Ki-67 expression ↑ | [180] |
Pancreatic cancer | ||||
Nanoparticles | Dosage | Cell lines | Observed Effects | References |
AS1411-conjugated curcumin-loaded superparamagnetic iron oxide nanoparticles (PLGA-SPIONS) | 10–500 μg/mL | Panc1, Mia-Pa-Ca-2 | cell viability ↓ | [181] |
Curcumin-conjugated solid lipid nanoparticles (curcumin c-SLNs) | 4.5–135 mg/kg | LSL-Kras G12D/+; Pdx-1 Cre/+ (PDAC model) | tumor incidence ↓ | [182] |
PEGylated irinotecan and curcumin-loaded nanodiamonds | 10–100 μg/mL; 15 mg/kg | AsPC-1, Panc1, KPC mice | cell viability ↓, cytotoxicity ↑, tumor growth ↓, Ki-67 expression ↓, cleaved caspase-3 ↑ | [183] |
Curcumin encapsulated in gelatin nanomaterials (Cur/gelatin NMs) | 0.6–2 mg/mL | T3M4, Mia-Pa-Ca-2, Panc1 | cell viability ↓, cytotoxicity ↑, apoptosis ↑, ER stress ↑, tumor growth ↓, p-STAT3 ↓, Bip expression ↓ | [184] |
PLGA-PPA hydroxytyrosol and curcumin nanoformulation | 10–320 μM | Panc1 | cell viability ↓, colony formation ↓, migration ↓; apoptosis ↑, nuclear fragmentation ↑, cell shrinkage↑, reduced MMP-2 ↓, MMP-9 ↓, Bcl-2 ↓, Bax ↑, caspase-9 ↑ | [185] |
Curcumin encapsulated in zinc and copper liposomes | 6.1 μg/mL | Panc1 | cell viability ↓, cytotoxicity ↑ | [66] |
Cervical cancer | ||||
Nanoparticles | Dosage | Cell lines | Observed Effects | References |
ZnFe2O4 curcumin NPs | 0.4–1 μg/mL | HeLa | cell viability ↓, cytotoxicity ↑ | [186] |
PLGA nano-curcumin | 2.5–25 μM | Caski, Siha Caski (orthotopic, NSG mice) | cell viability ↓, apoptosis ↑, G1/S arrest, BaP oncogenic effects ↓, migration ↓, clonogenic ↓, cell proliferation ↓, miR-21 ↓, IL-6 ↓, p-STAT3 ↓, p-STAT5 ↓, NF-κB ↓, p-PTEN ↓, nuclear β-catenin ↓, miR-214 ↑, PTEN ↑, tumor growth ↓, decreased Ki-67 ↓, E6 ↓, E7 ↓, miR-21 ↓, increased PTEN ↑ | [187] |
Curcumin-loaded HNTs-g-CS NPs | >64 μM | Caski | cell viability ↓ | [188] |
Exosomal E-curcumin | 12.5 μM 20 mg/kg | HeLa, Caski | tumor growth ↓ | [188] |
PLGA-PEG-curcumin conjugated to folic acid | 5 μM 25 mg/kg | HeLa HeLa (NOD-SCID mice) | cell viability ↓, cytotoxicity ↑, chemo sensitization ↑, NF-κB ↓, p-Akt ↓, p-p38 ↓, p-JNK ↓, p-ERK1/2 ↓, COX-2 ↓, Bcl-2 ↓, cyclin D1 ↓, XIAP ↓, c-IAP ↓, surviving ↓, tumor growth ↓, chemo sensitization ↑, NF-κB ↓, Cyclin D1 ↓, PCNA ↓, VEGF ↓ | [189] |
α-TOS/lipid-based copolymeric nanomicellar VPM | 3–50 μg/mL | HeLa | cell viability ↓, tumor growth ↓, cytotoxicity ↑ | [190] |
A- or S-polyactive curcumin system | 2.5–5 μg/mL | HeLa | cell viability ↓, increased cytotoxicity ↑, apoptosis ↑, ROS ↑ | [191] |
Curcumin@ZIF-8/hyaluronic acid | 12.5–100 μg/mL | HeLa | cell viability ↓, cytotoxicity ↑ | [192] |
ACPCSLNPs | 5–30 μM | HeLa | cell viability ↓, cytotoxicity ↑ | [193] |
HES-curcumin NPs | 10–100 μg/mL | HeLa | cell viability ↓, cytotoxicity ↑ | [141] |
Curcumin-CBP, Curcumin-LBP | 0.1–50 μg/mL 2.5 mg/kg | HeLa (BALB/c mice) | cell viability ↓, cytotoxicity ↑, apoptosis↑, tumor growth ↓, apoptosis ↑ | [194] |
Oral cancer | ||||
Nanoparticles | Dosage | Cell lines | Observed Effects | References |
Nano curcumin | 10–100 μg/mL | SCC090 | Reduced cell viability, cytotoxicity ↑, enhanced chemotherapeutic effectiveness ↑, Bax ↑, Bcl-2 ↓, apoptosis ↑ | [195] |
Curcumin graphene oxide nanosheets in alginate hydrogel | 2.5%, 5%, and 7.5% | SCC-25 | cell viability ↓, cytotoxicity↑ | [196] |
Curcumin-loaded niosomes | 4–32 μg/mL 4 mg/kg | KB Sprague Dawley rats 4NQO-induced oral cancer | cell viability↓, cytotoxicity ↑, precancerous changes ↓, dysplasia↓ | [143] |
Curcumin nanoparticles | 25–250 μg/mL | SCC4 | cell viability ↓, migration ↓, apoptosis ↑, antioxidant activity ↑ | [197] |
Bone cancer | ||||
Nanoparticles | Dosage | Cell lines | Observed Effects | References |
Curcumin-loaded PECs | 50 μM | U2OS | cell viability ↓, cytotoxicity ↑ | [157] |
SNLYZ-BLA-CUR | 30 and 120 μg/mL | MG63 | cell viability↓, cytotoxicity ↑ | [128] |
TiO2/pDA/β-CD/Curcumin | 0.2 to 1.6 mg/mL | MG63 | MMPo ↓, cytotoxicity ↑, cell shrinkage ↑, apoptosis ↑, lactate dehydrogenase activity ↑, ROS production ↑ | [198] |
PCL/curcumin/pDA@Se | nd * | MG63 UMR-106 cell-bearing mice | cell viability ↓, cell proliferation ↓, cell membrane integrity ↓, cytotoxicity ↑, F-actin condensation ↑, ROS levels↑, tumor cells ↓, tumor cell death ↓, wound healing ↑ | [199] |
Esophageal cancer | ||||
Nanoparticles | Dosage | Cell lines | Observed Effects | References |
Nano curcumin | 0.23 to 60 mg/mL | KYSE-30 | cell viability ↓, cytotoxicity ↑, cyclin D1 ↓ | [200] |
Curcumin-loaded PLGA NPs (Cur-PPLGA-N) | 1.25 to 125 μg/mL | ECa109 | cell viability ↓, enhanced cytotoxicity and apoptosis | [201] |
PEG-TE10@PLGA@DOX-curcumin nanoparticles (PMPNs) (PLGA)@curcumin + DOX | 0.31 to 10 μg/mL 5 mg/kg | TE10 TE10/DOX xenograft model | cell viability ↓ and colony formation ↓, cytotoxicity ↑, cytochrome c ↑, Bax ↑, cleaved caspase-3 levels ↑, tumor growth ↓, tumor volume ↓, survival rates ↑, apoptosis ↑, necrosis ↑ | [202] |
Stomach cancer | ||||
Nanoparticles | Dosage | Cell lines | Observed Effects | References |
Curcumin-loaded PMMA-PEG/ZnO nanocomposites | 0.0001–1 μg/mL | AGS | cell viability ↓, cytotoxicity ↑, apoptosis ↑, S-phase cell cycle arrest ↓ | [203] |
PMMA-AA/ZnO NPs | 0.0001–1 μg/mL | AGS | cell viability ↓, cytotoxicity ↑ | [203] |
Cur@NaCas@CaP | 1–5 μg/mL | MGC-803 | cell viability ↓, cytotoxicity ↑, antioxidant activity ↑ | [204] |
Curcumin-loaded PLGA NPs | 5–40 μM | AGS | cell proliferation ↓, apoptosis ↑ | [205] |
Curcumin-loaded liposomes | 0.78–12.5 μM | HGC-27 | cytotoxicity ↑ | [206] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wahnou, H.; El Kebbaj, R.; Liagre, B.; Sol, V.; Limami, Y.; Duval, R.E. Curcumin-Based Nanoparticles: Advancements and Challenges in Tumor Therapy. Pharmaceutics 2025, 17, 114. https://doi.org/10.3390/pharmaceutics17010114
Wahnou H, El Kebbaj R, Liagre B, Sol V, Limami Y, Duval RE. Curcumin-Based Nanoparticles: Advancements and Challenges in Tumor Therapy. Pharmaceutics. 2025; 17(1):114. https://doi.org/10.3390/pharmaceutics17010114
Chicago/Turabian StyleWahnou, Hicham, Riad El Kebbaj, Bertrand Liagre, Vincent Sol, Youness Limami, and Raphaël Emmanuel Duval. 2025. "Curcumin-Based Nanoparticles: Advancements and Challenges in Tumor Therapy" Pharmaceutics 17, no. 1: 114. https://doi.org/10.3390/pharmaceutics17010114
APA StyleWahnou, H., El Kebbaj, R., Liagre, B., Sol, V., Limami, Y., & Duval, R. E. (2025). Curcumin-Based Nanoparticles: Advancements and Challenges in Tumor Therapy. Pharmaceutics, 17(1), 114. https://doi.org/10.3390/pharmaceutics17010114