Excited-State Proton Transfer for Biomarker Detection
Abstract
:1. Introduction
1.1. Principles and Mechanism of ESPT and ESIPT
1.2. Concept of Dual Emission
1.3. ESIPT Reaction in Schiff Bases
2. Principle of Biosensing
2.1. Different Types of Sensing
2.1.1. ESIPT-Based Schiff-Bases in Heavy Metal Detection
2.1.2. ESIPT-Based Schiff-Bases in Biomolecule Sensing
2.1.3. ESIPT-Based Schiff-Bases in Imaging or Diagnosis
3. Conclusions
4. Future Direction
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Levine, I.N. Physical Chemistry; Tata McGraw Hill: New Delhi, India, 1995. [Google Scholar]
- Simons, J.P. Photochemistry and Spectroscopy; Wiley Interscience: New York, NY, USA, 1971. [Google Scholar]
- Rohatgi-Mukherjee, K.K. Fundamentals of Photochemistry; Wiley Eastern: New Delhi, India, 1992. [Google Scholar]
- Banwell, C.N.; McCash, E.M. Fundamentals of Molecular Spectroscopy; Tata McGraw Hill: New York, NY, USA, 1995. [Google Scholar]
- Li, S.; He, J.; Xu, Q.-H. Aggregation of metal-nanoparticle-induced fluorescence enhancement and its application in sensing. ACS Omega 2020, 5, 41–48. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.W.; Chen, L.L.; Xu, C.Y.; Li, Z.; Zhang, H.Y.; Zhang, X.B.; Tan, W.H. Recent progresses in small-molecule enzymatic fluorescent probes for cancer imaging. Chem. Soc. Rev. 2018, 47, 7140–7180. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.Y.; Ishigaki, Y.; Hu, Y.X.; Sugimoto, K.; Zeng, W.H.; Harimoto, T.; Sun, Y.D.; He, J.; Suzuki, T.; Jiang, X.Q.; et al. H2S-activatable near-infrared afterglow luminescent probes for sensitive molecular imaging in vivo. Nat. Commun. 2020, 11, 446–459. [Google Scholar] [CrossRef]
- Wu, L.L.; Huang, J.G.; Pu, K.Y.; James, T.D. Dual-locked spectroscopic probes for sensing and therapy. Nat. Rev. Chem. 2021, 5, 406–421. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, T.; Dasgupta, S.; Bhattacharyya, A.; Zangrando, E.; Escudero, D.; Das, D. A macrocyclic tetranuclear Zn II complex as a receptor for selective dual fluorescence sensing of F− and AcO−: Effect of a macrocyclic ligand. New J. Chem. 2019, 43, 13152–13161. [Google Scholar] [CrossRef]
- İnal, E.K. A Fluorescent Chemosensor Based on Schiff Base for the Determination of Zn2+, Cd2+and Hg2. J. Fluores. 2020, 30, 891–900. [Google Scholar] [CrossRef]
- Sadia, M.; Khan, M.J.; Naz, R.; Zahoor, M.; Khan, E.; Ullah, R.; Bari, A. Schiff-Based Fluorescent-ON Sensor L Synthesis and Its Application for Selective Determination of Cerium in Aqueous Media. J. Sensors 2020, 2020, 2192584. [Google Scholar] [CrossRef]
- Trudel, G.; Shahin, N.; Ramsay, T.; Laneuville, O.; Louati, H. Hemolysis contributes to anemia during long-duration space flight. Nat. Med. 2022, 28, 59–62. [Google Scholar] [CrossRef]
- Sempionatto, J.R.; Lin, M.Y.; Yin, L.; de la Paz, E.; Pei, K.; Sonsa-Ard, T.; Silva, A.N.D.; Khorshed, A.A.; Zhang, F.Y.; Tostado, N.; et al. An epidermal patch for the simultaneous monitoring of haemodynamic and metabolic biomarkers. Nat. Biomed. Eng. 2021, 5, 737–748. [Google Scholar] [CrossRef]
- Karimi-Maleh, H.; Orooji, Y.; Karimi, F.; Alizadeh, M.; Baghayeri, M.; Rouhi, J.; Tajik, S.; Beitollahi, H.D.; Agarwal, S.; Gupta, V.K.; et al. A critical review on the use of potentiometric based biosensors for biomarkers detection. Biosens. Bioelectron. 2021, 184, 113252–113267. [Google Scholar] [CrossRef]
- Mataga, N.; Kubota, T. Molecular Interactions and Electronic Spectra; Marcel Dekker: New York, NY, USA, 1970. [Google Scholar]
- Bell, R.P. The Proton in Chemistry, 2nd ed.; Chapman and Hall: London, UK, 1973. [Google Scholar]
- Hoopes, C.R.; Garcia, F.J.; Sarkar, A.M.; Kuehl, N.J.; Barkan, D.T.; Collins, N.L.; Meister, G.E.; Bramhall, T.R.; Hsu, C.H.; Jones, M.D.; et al. Donor-Acceptor Pyridinium Salts for Photoinduced Electron-Transfer-Driven Modification of Tryptophan in Peptides, Proteins, and Proteomes Using Visible Light. J. Am. Chem. Soc. 2022, 144, 6227–6236. [Google Scholar] [CrossRef] [PubMed]
- Yin, H.Q.; Yin, X.B. Metal-Organic Frameworks with Multiple Luminescence Emissions: Designs and Applications. Acc. Chem. Res. 2020, 53, 485–495. [Google Scholar] [CrossRef]
- Wu, L.L.; Liu, J.H.; Li, P.; Tang, B.; James, T.D. Two-photon small-molecule fluorescence-based agents for sensing, imaging, and therapy within biological systems. Chem. Soc. Rev. 2021, 50, 702–734. [Google Scholar] [CrossRef] [PubMed]
- Ochi, J.; Tanaka, K.; Chujo, Y. Recent Progress in the Development of Solid-State Luminescent o-Carboranes with Stimuli Responsivity. Angew. Chem. Int. Ed. 2020, 59, 9841–9855. [Google Scholar] [CrossRef] [PubMed]
- Bose, D.; Sil, A.; Chakraborty, P.; Dasgupta, S.; Mukhopadhyay, J.; Mukhopadhyay, M. DFT Analyses of arsylsemicarbazone group as functional compound for application as excellent fluorescent probes and medicament: Study on virtual screening through molecular docking. Chem. Pap. 2024, 78, 6069–6082. [Google Scholar] [CrossRef]
- Kundu, P.; Chattopadhyay, N. Coexistence of ground and excited state intramolecular proton transfer of the Schiff base 2-((E)-(naphthalene-3-ylimino)-methyl)phenol: A combined experimental and computational study. J. Photochem. Photobiol. A Chem. 2023, 435, 114296. [Google Scholar] [CrossRef]
- Sil, A.; Mukhopadhyay, M.; Bose, D. Understanding the Excited State Intramolecular Proton Transfer Phenomena of 2-Hydroxy-3-Naphthaldehyde Thiosemicarbazone. Macromol. Symp. 2023, 407, 2100375. [Google Scholar] [CrossRef]
- Chou, P.T. The Host/Guest Type of Excited-State Proton Transfer; a General Review. J. Chin. Chem. Soc. 2001, 48, 651–682. [Google Scholar] [CrossRef]
- Curchod, B.F.E.; Martinez, T.J. Ab Initio Nonadiabatic Quantum Molecular Dynamics. Chem. Rev. 2018, 118, 3305–3336. [Google Scholar] [CrossRef]
- Joshi, H.C.; Antonov, L. Excited-State Intramolecular Proton Transfer: A Short Introductory Review. Molecules 2021, 26, 1475. [Google Scholar] [CrossRef]
- Tolbert, L.M.; Solntsev, K.M. Excited-State Proton Transfer: From Constrained Systems to “Super” Photoacids to Superfast Proton Transfer. Acc. Chem. Res. 2002, 35, 19–27. [Google Scholar] [CrossRef] [PubMed]
- Lan, Z.G.; Frutos, L.M.; Sobolewski, A.L.; Domcke, W. Photochemistry of hydrogen-bonded aromatic pairs: Quantum dynamical calculations for the pyrrole–pyridine complex. Proc. Natl. Acad. Sci. USA 2008, 105, 12707–12712. [Google Scholar] [CrossRef] [PubMed]
- Kotani, R.; Yokoyama, S.; Nobusue, S.; Yamaguchi, S.; Osuka, A.; Yabu, H.; Saito, S. Bridging pico-to-nanonewtons with a ratiometric force probe for monitoring nanoscale polymer physics before damage. Nat. Commun. 2022, 13, 303–311. [Google Scholar] [CrossRef]
- Huang, C.; Liang, C.; Sadhukhan, T.; Banerjee, S.; Fan, Z.X.; Li, T.X.; Zhu, Z.L.; Zhang, P.Y.; Raghavachari, K.; Huang, H.Y. In-vitro and In-vivo Photocatalytic Cancer Therapy with Biocompatible Iridium(III) Photocatalysts. Angew. Chem. Int. Ed. 2021, 60, 9474–9479. [Google Scholar] [CrossRef]
- Matsuki, K.; Pu, J.; Takenobu, T. Recent Progress on Light-Emitting Electrochemical Cells with Nonpolymeric Materials. Adv. Funct. Mater. 2020, 30, 1908641. [Google Scholar] [CrossRef]
- Shimizu, M.; Hiyama, T. Organic Fluorophores Exhibiting Highly Efficient Photoluminescence in the Solid State. Chem. Asian J. 2010, 5, 1516–1531. [Google Scholar] [CrossRef] [PubMed]
- Healey, R.D.; Saied, E.M.; Cong, X.J.; Karsai, G.; Gabellier, L.; Saint-Paul, J.; Del Nero, E.; Jeannot, S.; Drapeau, M.; Fontanel, S.; et al. Discovery and Mechanism of Action of Small Molecule Inhibitors of Ceramidases. Angew. Chem. Int. Ed. 2022, 61, e202109967. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharyya, K. Photophysical processes in organized assemblies. Proc. Indian Natl. Sci. Acad. 2000, 66, 199. [Google Scholar]
- Duster, A.W.; Lin, H. Tracking Proton Transfer through Titratable Amino Acid Side Chains in Adaptive QM/MM Simulations. J. Chem. Theory Comput. 2019, 15, 5794–5809. [Google Scholar] [CrossRef]
- Duarte, F.; Vöhringer-Martinez, E.; Toro-Labbé, A. Insights on the mechanism of proton transfer reactions in amino acids. Phys. Chem. Chem. Phys. 2011, 13, 7773–7782. [Google Scholar] [CrossRef]
- Ireland, J.F.; Wyatt, P.A.H. Acid-Base Properties of Electronically Excited States of Organic Molecules. Adv. Phys. Org. Chem. 1976, 12, 131–160. [Google Scholar]
- Shizuka, H. Excited-state proton-transfer reactions and proton-induced quenching of aromatic compounds. Acc. Chem. Res. 1985, 18, 141–147. [Google Scholar] [CrossRef]
- Arnaut, L.G.; Formosinho, S.J. Excited-state proton transfer reactions I. Fundamentals and intermolecular reactions. J. Photochem. Photobiol. A 1993, 75, 1–20. [Google Scholar] [CrossRef]
- Hong, D.-L.; Luo, Y.-H.; He, X.-T.; Zheng, Z.-Y.; Su, S.; Wang, J.-Y.; Wang, C.; Chen, C.; Sun, B.-W. Unraveling the Mechanisms of the Excited-State Intermolecular Proton Transfer (ESPT) for a D-π-A Molecular Architecture. Chem. Eur. J. 2019, 25, 8805–8812. [Google Scholar] [CrossRef]
- Bose, D.; Jana, B.; Datta, S.; Chattopadhyay, N. Excited state intramolecular proton transfer of 2-hydroxy-1-naphthaldehyde semicarbazone: A combined fluorometric and quantum chemical study. J. Photochem. Photobiol. A Chem. 2011, 222, 220–227. [Google Scholar] [CrossRef]
- Bose, D.; Chattopadhyay, N. Intramolecular proton transfer of 2-hydroxy-1-naphthaldehyde semicarbazone and thiosemicarbazone in ground and lowest excited singlet states: A comparative experimental and computational study. Ind. J. Chem. A. 2014, 53A, 17–26. [Google Scholar]
- Gu, H.; Wang, W.; Wu, W.; Yang, M.; Liu, Y.; Jiao, Y.; Wang, F.; Wang, F.; Chen, X. Excited-state intramolecular proton transfer (ESIPT)-based fluorescent probes for biomarker detection: Design, mechanism, and application. Chem. Commun. 2023, 59, 2056–2071. [Google Scholar] [CrossRef]
- Stoerkler, T.; Pariat, T.; Laurent, A.D.; Jacquemin, D.; Ulrich, G.; Massue, J. Excited-State Intramolecular Proton Transfer Dyes with Dual-State Emission Properties: Concept, Examples and Applications. Molecules 2022, 27, 2443. [Google Scholar] [CrossRef]
- Padalkar, V.S.; Seki, S. Excited-state intramolecular proton-transfer (ESIPT)-inspired solid state emitters. Chem. Soc. Rev. 2016, 45, 169–202. [Google Scholar] [CrossRef]
- Weber, K. Uber die enge beslehung der fluorescenzausloschung zur hemmungphotochemischer reaktionen. Z. Phys. Chem. 1931, 15, 18–44. [Google Scholar]
- Förster, T. Fluoreszenzspektrum und wasserstoffionenkonzentration. Naturwissenschaften 1949, 36, 186–187. [Google Scholar]
- Förster, T. Electrolytic Dissociation of Excited Molecules. Z. Electrochem. 1950, 54, 531–535. [Google Scholar]
- Weller, A. Fluorescence shifts of naphthols. Z. Electrochem. 1952, 56, 662–668. [Google Scholar]
- Weller, A. Innermolekularer protonenübergang im angeregten zustand. Z. Electrochem. 1956, 60, 1144–1147. [Google Scholar] [CrossRef]
- Weller, A.Z. Protolytische Reaktionen des angeregten Acridins. Electrochem 1957, 61, 956. [Google Scholar] [CrossRef]
- Weller, A. Über die Fluoresrenz der Salizylsäure and verwandter Verbindungen. Naturwissenchaften 1955, 42, 175. [Google Scholar] [CrossRef]
- Kasha, M. Proton-transfer spectroscopy. Perturbation of the tautomerization potential. J. Chem. Soc. Faraday Trans. II 1986, 82, 2379–2392. [Google Scholar] [CrossRef]
- Heldt, J.; Gormin, D.; Kasha, M. A comparative picosecond spectroscopic study of the competitive triple fluorescence of aminosalicylates and benzanilides. Chem. Phys. 1989, 136, 321–334. [Google Scholar] [CrossRef]
- Formosinho, S.J.; Arnaut, L.G. Excited-state proton transfer reactions II. Intramolecular reactions. J. Photochem. Photobiol. A 1993, 75, 21–48. [Google Scholar] [CrossRef]
- Van der Zwan, G. Dynamics of Ground- and Excited-State Intramolecular Proton Transfer Reactions. In Tautomerism; Antonov, L., Ed.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2013; pp. 213–251. [Google Scholar]
- Gayathri, P.; Pannipara, M.; Al-Sehemi, A.G.; Anthony, S.P. Recent advances in excited state intramolecular proton transfer mechanism-based solid state fluorescent materials and stimuli-responsive fluorescence switching. CrystEngComm 2021, 23, 3771–3789. [Google Scholar] [CrossRef]
- Ren, Y.; Fan, D.; Ying, H.; Li, X. Rational design of the benzothiazole-based fluorescent scaffold for tunable emission. Tetrahedron Lett. 2019, 60, 1060–1065. [Google Scholar] [CrossRef]
- Stoerkler, T.; Frath, D.; Jacquemin, D.; Massue, J.; Ulrich, G. Dual-State Emissive π-Extended Salicylaldehyde Fluorophores: Synthesis, Photophysical Properties and First-Principal Calculations. Eur. J. Org. Chem. 2021, 2021, 3726–3736. [Google Scholar] [CrossRef]
- Xu, H.; Chen, W.; Ju, L.; Lu, H. A purine based fluorescent chemosensor for the selective and sole detection of Al3+ and its practical applications in test strips and bio-imaging. Spectrochim. Acta Mol. Biomol. 2021, 247, 119074. [Google Scholar] [CrossRef]
- Shang, C.; Wang, L.; Cao, Y.; Yu, X.; Li, Y.; Sun, C.; Cui, J. Is it possible to switch ESIPT-channel of hydroxyanthraquinones with the strategy of modifying electronic groups? J. Mol. Liq. 2022, 347, 118343. [Google Scholar] [CrossRef]
- Zeng, Z.L.; Liew, S.S.; Wei, X.; Pu, K.Y. Hemicyanine-Based Near-Infrared Activatable Probes for Imaging and Diagnosis of Diseases. Angew. Chem. Int. Ed. 2021, 60, 26454–26475. [Google Scholar] [CrossRef]
- Zheng, H.-W.; Kang, Y.; Wu, M.; Liang, Q.-F.; Zheng, J.-Q.; Zheng, X.-J.; Jin, L.-P. ESIPT-AIE active Schiff base based on 2-(2′-hydroxyphenyl)benzothiazole applied as multi-functional fluorescent chemosensors. Dalton. Trans. 2021, 50, 3916–3922. [Google Scholar] [CrossRef]
- Kaur, I.; Shivani; Kaur, P.; Singh, K. 2-(2′-Hydroxyphenyl)benzothiazole derivatives: Emission and color tuning. Dyes Pigm. 2020, 176, 108198. [Google Scholar] [CrossRef]
- Belmonte-Vazquez, J.L.; Amador-Sanchez, Y.A.; Rodriguez-Cortes, L.A.; Rodriguez-Molina, B. Dual-State Emission (DSE) in Organic Fluorophores: Design and Applications. Chem. Mater. 2021, 33, 7160. [Google Scholar] [CrossRef]
- Jankowska, J.; Sobolewski, A.L. Modern Theoretical Approaches to Modeling the Excited-State Intramolecular Proton Transfer: An Overview. Molecules 2021, 26, 5140. [Google Scholar] [CrossRef]
- Stasyuk, A.J.; Cywinski, P.J.; Gryko, D.T. Excited-state intramolecular proton transfer in 2′-(2′-hydroxyphenyl)imidazo[1,2-a]pyridines. J. Photochem. Photobiol. C 2016, 28, 116–137. [Google Scholar] [CrossRef]
- Massue, J.; Jacquemin, D.; Ulrich, G. Molecular Engineering of Excited-state Intramolecular Proton Transfer (ESIPT) Dual and Triple Emitters. Chem. Lett. 2018, 47, 1083. [Google Scholar] [CrossRef]
- Mishra, H.; Maheshwary, S.; Tripathi, H.B.; Satyamurthy, N. An experimental and theoretical investigation of the photophysics of 1-hydroxy-2-naphthoic acid. J. Phys. Chem. A 2005, 109, 2746–2754. [Google Scholar] [CrossRef]
- Singh, R.B.; Mahanta, S.; Kar, S.; Guchhait, N. Photophysical properties of 1-hydroxy-2-naphthaldehyde: A combined fluorescence spectroscopy and quantum chemical calculations. Chem. Phys. 2007, 331, 373–384. [Google Scholar] [CrossRef]
- Durko-Maciag, M.; Ulrich, G.; Jacquemin, D.; Mysliwiec, J.; Massue, J. Solid-state emitters presenting a modular excited-state proton transfer (ESIPT) process: Recent advances in dual-state emission and lasing applications. Phys. Chem. Chem. Phys. 2023, 25, 15085. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Dahal, D.; Abeywickrama, C.S.; Pang, Y. Progress in Tuning Emission of the Excited-State Intramolecular Proton Transfer (ESIPT)-Based Fluorescent Probes. ACS Omega 2021, 6, 6547–6553. [Google Scholar] [CrossRef] [PubMed]
- Kim, C.H.; Park, J.; Seo, J.; Park, S.Y.; Joo, T. Excited State Intramolecular Proton Transfer and Charge Transfer Dynamics of a 2-(2’-Hydroxyphenyl) Benzoxazole Derivative in Solution. J. Phys. Chem. A 2010, 114, 5618–5629. [Google Scholar] [CrossRef]
- Wang, J.; Baumann, H.; Bi, X.; Shriver, L.P.; Zhang, Z.; Pang, Y. Efficient Synthesis of NIR Emitting Bis[2-(2’-Hydroxylphenyl)- Benzoxazole] Derivative and Its Potential for Imaging Applications. Bioorg. Chem. 2020, 96, 103585. [Google Scholar] [CrossRef]
- Chen, Z.; Zhong, X.; Qu, W.; Shi, T.; Liu, H.; He, H.; Zhang, X.; Wang, S. A Highly Selective HBT-Based “Turn-on” Fluorescent Probe for Hydrazine Detection and Its Application. Tetrahedron Lett. 2017, 58, 2596–2601. [Google Scholar] [CrossRef]
- Shang, C.; Sun, C. Substituent effects on photophysical properties of ESIPT-based fluorophores bearing the 4-diethylaminosalicylaldehyde core. J. Mol. Liq. 2022, 367, 120477. [Google Scholar] [CrossRef]
- Zhang, S.; Mu, X.; Li, L.; Yan, L.; Wu, X.; Lei, C. Rationally designed small molecular photoswitches based on the ESIPT mechanism of salicylaldehyde hydrazone derivatives. Opt. Mater. 2021, 122, 111780. [Google Scholar] [CrossRef]
- Moraes, E.S.; Duarte, L.G.T.A.; Germino, J.C.; Atvars, T.D.Z. Near Attack Conformation as Strategy for ESIPT Modulation for White-Light Generation. J. Phys. Chem C 2020, 124, 22406–22415. [Google Scholar] [CrossRef]
- Marenco, M.J.C.; Fowley, C.; Hyland, B.W.; Hamilton, G.R.C.; Riaño, D.G.; Callan, J.F. A new use for an old molecule: N-phenyl-2-(2-hydroxynaphthalen-1-ylmethylene) hydrazine carbothioamide as a ratiometric ‘Off–On’ fluorescent probe for iron. Tetrrahedron Lett. 2012, 53, 670–673. [Google Scholar] [CrossRef]
- Wang, D.F.; Ke, Y.C.; Guo, H.X.; Chen, J.; Weng, W. A novel highly selective colorimetric sensor for aluminum (III) ion using Schiff base derivative. Spectrochim. Acta Part A Mol. Biomol. Spectro. 2014, 122, 268–272. [Google Scholar] [CrossRef] [PubMed]
- Dessingou, J.; Joseph, R.; Rao, C.P. A direct fluorescence-on chemo-sensor for selective recognition of Zn(II) by a lower rim 1,3-di-derivative of calix[4]arene possessing bis {N-(2-hydroxynaphthyl-1-methylimine)} pendants. Tetrahedron Lett. 2005, 46, 7967–7971. [Google Scholar] [CrossRef]
- Ding, W.H.; Cao, W.; Zheng, X.J.; Ding, W.J.; Qiao, J.P.; Jin, L.P. A tetrazole-based fluorescence “turn-on” sensor for Al(III) and Zn(II) ions and its application in bioimaging. Dalton Trans. 2014, 43, 6429–6435. [Google Scholar] [CrossRef]
- Karak, D.; Lohar, S.; Banerjee, A.; Sahana, A.; Hauli, I.; Mukhopadhyay, S.K.; Matalobos, J.; Das, D. Interaction of soft donor sites with a hard metal ion: Crystallographically characterized blue emitting fluorescent probe for Al(III) with cell staining studies. RSC Adv. 2012, 2, 12447–12454. [Google Scholar] [CrossRef]
- Jayabharathi, J.; Thanikachalam, V.; Ramanathan, P. Phenanthrimidazole as a fluorescent sensor with logic gate operations. Spectrochim. Acta Part A Mol. Biomol. Spectro. 2015, 150, 886–891. [Google Scholar] [CrossRef]
- Singh, D.P.; Singh, V.P. A dihydrazone based fluorescent probe for selective determination of Al3+ ions. J. Lumin. 2014, 155, 7–14. [Google Scholar] [CrossRef]
- Goswami, S.; Das, A.K.; Aich, K.; Manna, A. Competitive intra- and inter-molecular proton transfer in hydroxynaphthyl benzothiazole: Selective ratiometric sensing of acetate. Tetrahedron Lett. 2013, 54, 4215–4220. [Google Scholar] [CrossRef]
- Nguyen, Q.T.; Thi, P.N.P.; Bui, Q.D.; Nguyen, V.T. Synthesis, Spectral Characterization, and Biological Activities of Some Metal Complexes Bearing an Unsymmetrical Salen-Type Ligand, (Z)-1-(((2-((E)-(2-Hydroxy-6-methoxybenzylidene)amino)phenyl)amino) methylene) Naphthalen-2(1H)-one. Heteroat. Chem. 2023. [Google Scholar] [CrossRef]
- Qi, J.; Luo, Y.; Zhou, Q.; Su, G.; Zhang, X.; Nie, X.; Lv, M.; Li, W. Synthesis, structure and anticancer studies of Cu(Ⅱ) and Ni(Ⅱ) complexes based on 2-hydroxy-1-naphthaldehyde-4-aminoantipyrine Schiff-base. J. Mol. Struct. 2022, 1255, 132458. [Google Scholar] [CrossRef]
- Nagesh, G.Y.; Mruthyunjayaswamy, B.H.M. Synthesis, characterization and biological relevance of some metal (II) complexes with oxygen, nitrogen and oxygen (ONO) donor Schiff base ligand derived from thiazole and 2-hydroxy-1-naphthaldehyde. J. Mol. Struct. 2015, 1085, 198–206. [Google Scholar] [CrossRef]
- Thibi, K.; Abbs Fen Reji, T.F.; Robert, H.M. Synthesis, spectroscopic investigation and quantum chemical computation of 2-(2-arylamino-4-aminothiazol-5-oyl) naphthalene derivatives. J. Cryst. Growth 2022, 583, 126553. [Google Scholar] [CrossRef]
- Cammann, K. Biosensors based on ion-selective electrodes. Fresen Z Anal. Chem. 1977, 287, 1–9. [Google Scholar] [CrossRef]
- Thevenot, D.R.; Toth, K.; Durst, R.A.; Wilson, G.S. Electrochemical biosensors: Recommended definitions and classification. Pure Appl. Chem. 1999, 71, 2333–2348. [Google Scholar] [CrossRef]
- Bhalla, N.; Jolly, P.; Formisano, N.; Estrela, P. Introduction to biosensors. Essays Biochem. 2016, 60, 1–8. [Google Scholar]
- Vigneshvar, S.; Sudhakumari, C.C.; Senthilkumaran, B.; Prakash, H. Recent Advances in Biosensor Technology for Potential Applications—An Overview. Fron. Bioengg. Biotechnol. 2016, 4, 11. [Google Scholar] [CrossRef]
- Chakraborty, A.; Bardhan, S.; Das, S.; Ray Chowdhury, B. Development of biosensors for application in industrial biotechnology. In Metagenomics to Bioremediation; Academic Press: Cambridge, MA, USA, 2023; pp. 737–753. [Google Scholar]
- Ranade, S.S.; Woo, S.H.; Dubin, A.E.; Moshourab, R.A.; Wetzel, C.; Petrus, M.; Mathur, J.; Bégay, V.; Coste, B.; Mainquist, J.; et al. Piezo2 is the major transducer of mechanical forces for touch sensation in mice. Nature 2014, 516, 121–125. [Google Scholar] [CrossRef] [PubMed]
- Cao, E.; Liao, M.; Cheng, Y.; Julius, D. TRPV1 structures in distinct conformations reveal activation mechanisms. Nature 2013, 504, 113–118. [Google Scholar] [CrossRef]
- Nawrot, W.; Drzozga, K.; Baluta, S.; Cabaj, J.; Malecha, K. A Fluorescent Biosensors for Detection Vital Body Fluids’ Agents. Sensors 2018, 18, 2357. [Google Scholar] [CrossRef]
- Gaviria-Arroyave, M.I.; Cano, J.B.; Peñuela, G.A. Nanomaterial-based fluorescent biosensors for monitoring environmental pollutants: A critical review. Talanta Open 2020, 2, 100006. [Google Scholar] [CrossRef]
- Akshath, U.S.; Vinayaka, A.C.; Thakur, M.S. Quantum dots as nano plug-in for efficient NADH resonance energy routing. Biosens. Bioelectron. 2012, 38, 411–415. [Google Scholar] [CrossRef] [PubMed]
- Nejadmansouri, M.; Majdinasab, M.; Nunes, G.S.; Marty, J.L. An Overview of Optical and Electrochemical Sensors and Biosensors for Analysis of Antioxidants in Food during the Last 5 Years. Sensors 2021, 21, 1176. [Google Scholar] [CrossRef] [PubMed]
- Kowalczyk, A.; Zarychta, J.; Lejman, M.; Zawitkowska, J. Electrochemical and Optical Sensors for the Detection of Chemical Carcinogens Causing Leukemia. Sensors 2023, 23, 3369. [Google Scholar] [CrossRef]
- Pour, S.R.S.; Calabria, D.; Emamiamin, A.; Lazzarini, E.; Pace, A.; Guardigli, M.; Zangheri, M.; Mirasoli, M. Electrochemical vs. Optical Biosensors for Point-of-Care Applications: A Critical Review. Chemosensors 2023, 11, 546. [Google Scholar] [CrossRef]
- Zhao, J.; Li, C.; Wei, S.; Lü, C.; Zou, L.-W. A multifunctional fluorescent probe based on Schiff base with AIE and ESIPT characteristics for effective detections of Pb2+, Ag+ and Fe3+. Spectrochim. Acta Part A Mol. Biomol. Spect. 2023, 300, 122904. [Google Scholar] [CrossRef]
- Hadi, H.; Louis, H.; Jafari, K.; Gber, T.E.; Onwuabusim, N.A. Molecular Simulation of the Effect of Electron Donor/Acceptor Groups on Fluvoxamine/Serotonin Interactions as a Strategy for COVID-19 Mitigation. Chem. Select. 2023, 8, e202302980. [Google Scholar] [CrossRef]
- Feng, B.; Zhu, Y.; Wu, J.; Huang, X.; Song, R.; Huang, L.; Feng, X.; Zeng, W. Monitoring intracellular pH fluctuation with an excited-state intramolecular proton transfer-based ratiometric fluorescent sensor. Chin. Chem. Lett. 2021, 32, 3057–3060. [Google Scholar] [CrossRef]
- Wang, K.; Feng, B.; Wang, G.; Cui, J.; Yang, L.; Jiang, K.; Zhang, H. A specific esterase and pH logically regulate ESIPT: Different kinds of granulocyte sorting. Chem. Commun. 2022, 58, 2894–2897. [Google Scholar] [CrossRef]
- Li, K.; Feng, Q.; Niu, G.; Zhang, W.; Li, Y.; Kang, M.; Xu, K.; He, J.; Hou, H.; Tang, B.Z. Benzothiazole-Based AIEgen with Tunable Excited-State Intramolecular Proton Transfer and Restricted Intramolecular Rotation Processes for Highly Sensitive Physiological pH Sensing. ACS Sens. 2018, 3, 920–928. [Google Scholar] [CrossRef]
- Pan, Y.; Ban, L.; Li, J.; Liu, M.; Tang, L.; Yan, X. Cysteine recognition by a benzothiazole-derived fluorescent probe with “AIE+ESIPT” characteristics. Dyes Pigm. 2022, 203, 110305–1103012. [Google Scholar] [CrossRef]
- Ren, H.; Huo, F.; Zhang, Y.; Zhao, S.; Yin, C. An NIR ESIPT-based fluorescent probe with large stokes shift for specific detection of Cys and its bioimaging in cells and mice. Sens. Actuators B Chem. 2020, 319, 128248–128255. [Google Scholar] [CrossRef]
- Yang, W.; Zhao, X.; Zhang, J.; Zhou, Y.; Fan, S.; Sheng, H.; Cao, Y.; Hu, Y. Hydroxyphenylquinazolinone-based turn-on fluorescent probe for β-galactosidase activity detection and application in living cells. Dyes Pigm. 2018, 156, 100–107. [Google Scholar] [CrossRef]
- He, Y.; Yu, J.; Hu, X.; Huang, S.; Cai, L.; Yang, L.; Zhang, H.; Jiang, Y.; Jia, Y.; Sun, H. An activity-based fluorescent probe and its application for differentiating alkaline phosphatase activity in different cell lines. Chem. Commun. 2020, 56, 13323–13326. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Lv, T.; Qin, T.; Xu, Z.; Wang, L.; Liu, B. A DS2-specific flavonoid-based probe with a unique dual-emissive response to human serum albumin. Chem. Commun. 2020, 56, 11094–11097. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Yan, J.; Zhang, N.; Li, D.; Xiao, S.; Zheng, K. A ratiometric fluorescent probe for formaldehyde in aqueous solution, serum and air using aza-cope reaction. Sens. Actuators B Chem. 2018, 258, 156–162. [Google Scholar] [CrossRef]
- Aron, A.T.; Ramos-Torres, K.M.; Cotruvo, J.A.; Chang, C.J. Recognition- and Reactivity-Based Fluorescent Probes for Studying Transition Metal Signaling in Living Systems. Acc. Chem. Res. 2015, 48, 2434–2442. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.; Meng, X.; Fang, S.; Duan, H.; Wang, L.; Wang, Z. A highly selective colorimetric fluorescent probe for detection of Hg2+ and its application on test strips. RSC Adv. 2019, 9, 8529–8536. [Google Scholar] [CrossRef]
- Wu, Q.; Feng, L.; Chao, J.B.; Wang, Y.; Shuang, S. Ratiometric sensing of Zn2+ with a new benzothiazole-based fluorescent sensor and living cell imaging. Analyst 2021, 146, 4348–4356. [Google Scholar] [CrossRef]
- Kaur, R.; Kour, R.; Marok, S.S.; Kaur, S.; Singh, P. AIE+ESIPT Active Hydroxybenzothiazole for Intracellular Detection of Cu2+: Anticancer and Anticounterfeiting Applications. Molecules 2022, 27, 7678. [Google Scholar] [CrossRef]
- Lu, C.; Xu, J.; Song, Z.; Dai, Z. Advancements in ESIPT probe research over the past three years based on different fluorophores. Dye. Pigment. 2024, 224, 111994. [Google Scholar] [CrossRef]
- Cheng, X.; Huang, S.; Lei, Q.; Chen, F.; Zheng, F.; Zhong, S.; Huang, X.; Feng, B.; Feng, X.; Zeng, W. The exquisite integration of ESIPT, PET and AIE for constructing fluorescent probe for Hg(II) detection and poisoning. Chin. Chem. Lett. 2022, 33, 1861–1864. [Google Scholar] [CrossRef]
- Huang, Y.; Li, Y.; Li, Y.; Zhong, K.; Tang, L. An “AIE + ESIPT” mechanism-based benzothiazole-derived fluorescent probe for the detection of Hg2+ and its applications. New J. Chem. 2023, 47, 6916–6923. [Google Scholar] [CrossRef]
- Devasia, J.; Aishwarya, J.N.; Joy, F.; Nizam, A. ESIPT-AIE Active Schiff Base Fluorescent Organic Nanoparticles Based on 2-(2-(4-(4-bromo Phenyl) Thiazol-2-yl)Vinyl)Phenol (BTVP) Utilized as a Multi-Functional Fluorescent Probe. Adv. Opt. Mat. 2023, 11, 2300966. [Google Scholar] [CrossRef]
- Musikavanhu, B.; Liang, Y.; Xue, Z.; Feng, L.; Zhao, L. Strategies for Improving Selectivity and Sensitivity of Schiff Base Fluorescent Chemosensors for Toxic and Heavy Metals. Molecules 2023, 28, 6960. [Google Scholar] [CrossRef] [PubMed]
- Chaihan, K.; Semakul, N.; Promarak, V.; Bui, T.-T.; Kungwan, N.; Goubard, F. Tunable far-red fluorescence utilizing π-extension and substitution on the excited state intramolecular proton transfer (ESIPT) of naphthalene-based Schiff bases: A combined experimental and theoretical study. J. Photochem. Photobiol. A Chem. 2022, 431, 114047. [Google Scholar] [CrossRef]
- Jadhao, M.; Meitei, O.R.; Joshi, R.; Kumar, H.; Das, C.; Ghosh, S.K. ESIPT reaction of potential bioactive heterocyclic Schiff base: Atomic visualization coupled with in vitro spectroscopy. J. Photochem. Photobiol. A Chem. 2016, 326, 41–49. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, C.; Pan, R.; Zhang, S.; Yao, S.; Tang, Y.; Zhu, W.; Wang, L.; Zhu, W.; Xu, Y.; et al. A ratiometric fluorescent probe for alkaline phosphatase with high sensitivity. Chin. Chem. Lett. 2020, 31, 125–128. [Google Scholar] [CrossRef]
- Kong, Q.; Wang, J.; Chen, Y.; Zheng, S.; Chen, X.; Wang, Y.; Wang, F. The visualized fluorescent probes based on benzothiazole used to detect esterase. Dyes Pigm. 2021, 191, 109349–109354. [Google Scholar] [CrossRef]
- Huang, X.; Lei, Q.; Huang, S.; Zeng, H.; Feng, B.; Zeng, Q.; Hu, Y.; Zeng, W. Construction of a novel asymmetric imidazole-cored AIE probe for ratiometric imaging of endogenous leucine aminopeptidase. Chem. Commun. 2021, 57, 6608–6611. [Google Scholar] [CrossRef]
- Lu, Z.; Fan, W.; Lu, Y.; Fan, C.; Zhao, H.; Guo, K.; Chua, W.; Lu, Y. A highly sensitive fluorescent probe for bioimaging zinc ion in living cells and zebrafish models. New J. Chem. 2018, 42, 12198–12204. [Google Scholar] [CrossRef]
- Patil, M.; Bothra, S.; Sahoo, S.K.; Rather, H.A.; Vasita, R.; Bendre, R.; Kuwar, A. Highly selective nicotinohydrazide based ‘turn-on’ chemosensor for the detection of bioactive zinc(II): Its biocompitability and bioimaging application in cancer cells. Sens. Actuators B 2018, 270, 200–206. [Google Scholar] [CrossRef]
- Ren, H.; Huo, F.; Wu, X.; Liu, X.; Yin, C. An ESIPT-induced NIR fluorescent probe to visualize mitochondrial sulfur dioxide during oxidative stress in vivo. Chem. Commun. 2021, 57, 655–658. [Google Scholar] [CrossRef]
- Meena, R.; Meena, P.; Kumari, A.; Sharma, N.; Fahmi, N. Schiff Bases and Their Metal Complexes: Synthesis, Structural Characteristics and Applications. In Schiff Base in Organic, Inorganic and Physical Chemistry; Akitsu, T., Ed.; IntechOpen: London, UK, 2023. [Google Scholar]
- Ejiah, F.N.; Rofiu, M.O.; Oloba-Whenu, O.A.; Fasina, T.M. Schiff bases as analytical tools: Synthesis, chemo-sensor, and computational studies of 2-aminophenol Schiff bases. Mat. Adv. 2023, 4, 2308–2321. [Google Scholar] [CrossRef]
- Dash, A.C.; Dash, B.; Panda, D. Hydrolysis of imines. 4. Micellar effects upon the spontaneous acid, base, and copper(II) ion induced hydrolysis of N-salicylidene-2-aminothiazole and N-salicylidene-2-aminopyridine. J. Org. Chem. 1985, 50, 2905–2910. [Google Scholar] [CrossRef]
- Dahal, D.; McDonald, L.; Bi, X.M.; Abeywickrama, C.; Gombedza, F.; Konopka, M.; Paruchuri, S.; Pang, Y. An NIR-emitting lysosome-targeting probe with large Stokes shift via coupling cyanine and excited-state intramolecular proton transfer. Chem. Commun. 2017, 53, 3697–3700. [Google Scholar] [CrossRef] [PubMed]
- Sahana, S.; Mishra, G.; Sivakumar, S.; Bharadwaj, P.K. A 2-(2′-hydroxyphenyl)benzothiazole (HBT)–quinoline conjugate: A highly specific fluorescent probe for Hg2+ based on ESIPT and its application in bioimaging. Dalton Trans. 2015, 44, 20139–20146. [Google Scholar] [CrossRef] [PubMed]
- Jos, S.; Suja, N.R. Chiral Schiff base ligands of salicylaldehyde: A versatile tool for medical applications and organic synthesis-A review. Inorg. Chim. Acta 2023, 547, 121323. [Google Scholar] [CrossRef]
- Jothi, D.; Munusamy, S.; Sawminathan, S.; Iyer, S.K. Highly sensitive naphthalimide based Schiff base for the fluorimetric detection of Fe3+. RSC Adv. 2021, 11, 11338–11346. [Google Scholar] [CrossRef]
- Kou, X.; Hu, C.; Pang, Z.; Zhang, X.; Wang, H.; Shen, R.; Yang, A. A coumarin-based multifunctional chemosensor for Cu2+/Al3+ as an AD theranostic agent: Synthesis, X-ray single crystal analysis and activity study. Anal. Chim. Acta 2023, 1279, 341818. [Google Scholar] [CrossRef]
- Côrte-Real, L.; Pósa, V.; Martins, M.; Colucas, R.; May, N.V.; Fontrodona, X.; Romero, I.; Mendes, F.; Reis, C.P.; Gaspar, M.M.; et al. Cu(II) and Zn(II) Complexes of New 8-Hydroxyquinoline Schiff Bases: Investigating Their Structure, Solution Speciation, and Anticancer Potential. Inorg. Chem. 2023, 62, 11466–11486. [Google Scholar] [CrossRef] [PubMed]
- Fonkui, T.Y.; Ikhile, M.I.; Njobeh, P.B.; Ndinteh, D.T. Benzimidazole Schiff base derivatives: Synthesis, characterization and antimicrobial activity. BMC Chem. 2019, 13, 127. [Google Scholar] [CrossRef] [PubMed]
- Uluçam, G.; Bagcı, U.; Yılmaz, A.S.; Yentürk, B. Schiff-base ligands containing phenanthroline terminals: Synthesis, characterization, biological activities and molecular docking study. Spectrochim. Acta A Mol. Biomol. Spectro. 2022, 279, 121429. [Google Scholar] [CrossRef] [PubMed]
- Sokkar, P.; Babu, A.; Kolandaswamy, A.; Daison, F.A.; Ramachandran, M. Effect of Substituents on the Photodynamic Action of Anthraquinones: EPR, Computational and In Vitro Studies. Photochem. Photobiol. 2022, 98, 1426–1433. [Google Scholar] [CrossRef]
- Murmu, M.; Sengupta, S.; Pal, R.; Mandal, S.; Murmu, N.C.; Banerjee, P. Efficient tribological properties of azomethine-functionalized chitosan as a bio-lubricant additive in paraffin oil: Experimental and theoretical analysis. RSC Adv. 2020, 10, 33401–33416. [Google Scholar] [CrossRef]
- Lemilemu, F.; Bitew, M.; Demissie, T.B.; Eswaramoorthy, R.; Endale, M. Synthesis, antibacterial and antioxidant activities of Thiazole-based Schiff base derivatives: A combined experimental and computational study. BMC Chem. 2021, 15, 67. [Google Scholar] [CrossRef]
- Siddharam, N.; Rao, D.P.; Gautam, A.K.; Verma, A.; Gautam, Y. Schiff bases and their possible therapeutic applications: A review. Results Chem. 2025, 13, 101941. [Google Scholar]
Sl. No. | Name of the Schiff Base | Structure of the Schiff Base | Applications | Reference No. |
---|---|---|---|---|
1. | N-Phenyl-2-(2-hydroxynaphthalen-1-ylmethylene) hydrazine carbothioamide | Fluorescent sensor for the determination of Fe3+ | [79] | |
2. | 2-hydroxy-1-naphthaldehyde isonicotinoyl hydrazone | Colorimetric sensor for the determination of Al3+ | [80] | |
3. | bis-{N-(2-hydroxynaphthyl-1-methylimine)} carboxylate | Chemosensor for the determination of Zn2+ | [81] | |
4. | 1-[(1H-tetrazol-5-ylimino)methyl] naphthalen-2-ol | Fluorescent chemosensor for the determination of Zn2+ | [82] | |
5. | 1-((E)-(2-(2 (phenylthio) ethylthio) phenylimino) methyl)naphthalene -2-ol | Fluorescent sensor for the determination of Al3+ | [83] | |
6. | 1-(1-(p-tolyl)-1H-phenanthro [9,10-d]imidazol-2yl)naphthalen-2-ol | Chemosensor for the determination of Zn2+ and F− | [84] | |
7. | N,N′′-bis ((2-hydroxynaphthalen-1-yl) methylene) oxalohydrazide | Fluorescent sensor for the determination of Al3+ | [85] | |
8. | hydroxynaphthyl benzothiazole | Fluorescent sensor for the determination of OAc− | [86] | |
9. | (Z)-1-(((2-((E)-(2-Hydroxy-6-methoxybenzylidene)amino)phenyl)amino) methylene) Naphthalen-2(1H)-one | Fluorescent probe showing antibacterial properties | [87] | |
10. | 2-hydroxy-1-naphthaldehyde-4-aminoantipyrine | Fluorescent probe showing anticancer activity | [88] | |
11. | 2-((2-hydroxynaphthalen-1-yl)methylene)-N-(4-phenylthiazol-2-yl)hydrazinecarboxamide | Fluorescent probe having the property to cleave plasmid DNA | [89] | |
12. | 1-[(5-(3-nitrobenzyl)-1,3-thiazol-2-yl)diazenyl]naphthalene-2-ol | Fluorescent probe showing anticancer activity | [90] |
Name of the Biomarkers | Abbreviation | Disease Type | Structure of Schiff Bases | Reference No. |
---|---|---|---|---|
Acid and Base | pH | Cancer | [106,107,108] | |
Cysteine | Cys | Alzheimer’s disease | [109,110] | |
Phosphatase | ALP | Diabetes | [111,112] | |
Serum Albumin | HSA | Hypertension, Liver Cirrhosis | [113] | |
Formaldehyde | HCHO | Neurodegenerative diseases | [114] |
Types of Schiff Bases | Used In/As | Reference No. |
---|---|---|
2-(2′-Hydroxyphenyl)benzothiazole (HBT) based Schiff bases | Tracking CORM-3 in body fluids, living cells, and Zebrafish | [136] |
Salicylaldehyde-derived Schiff Bases | Binds to DNA possessing antimicrobial properties | [137] |
Naphthalimide Schiff Bases | Bioimaging of Fe3+ cells | [138] |
Coumarin-based Schiff Bases | Theranostic agents for diagnosis and therapy | [139] |
Hydroxyquinoline Schiff Bases | Anticancer activity | [140] |
Benzimidazole Schiff Bases | DNA binding and cleavage | [141] |
Phenanthroline Schiff Bases | Anticancer and antimicrobial activity | [142,143] |
Pyrene Schiff Bases | Antibacterial activity | [144] |
Thiazole-based Schiff Bases | Antioxidant activity | [145] |
Indole Schiff Bases | Antimicrobial activity | [146] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bose, D.; Girigoswami, A. Excited-State Proton Transfer for Biomarker Detection. Photochem 2025, 5, 2. https://doi.org/10.3390/photochem5010002
Bose D, Girigoswami A. Excited-State Proton Transfer for Biomarker Detection. Photochem. 2025; 5(1):2. https://doi.org/10.3390/photochem5010002
Chicago/Turabian StyleBose, Debosreeta, and Agnishwar Girigoswami. 2025. "Excited-State Proton Transfer for Biomarker Detection" Photochem 5, no. 1: 2. https://doi.org/10.3390/photochem5010002
APA StyleBose, D., & Girigoswami, A. (2025). Excited-State Proton Transfer for Biomarker Detection. Photochem, 5(1), 2. https://doi.org/10.3390/photochem5010002