Multifunctional Near-Infrared Luminescence Performance of Nd3+ Doped SrSnO3 Phosphor
Abstract
:1. Introduction
2. Experimental Section
2.1. Sample Preparation
2.2. Characterization
3. Results
3.1. Phase Structure and Morphology
3.2. Diffuse Reflection and Host Luminescence
3.3. Luminescence Performance of Nd3+ in SrSnO3
3.4. Persistent NIR Luminescence
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, Y.; Zhou, S.F.; Dong, G.P.; Peng, M.Y.; Wondraczek, L.; Qiu, J.R. Anti-Stokes fluorescent probe with incoherent excitation. Sci. Rep. 2014, 4, 4059. [Google Scholar] [CrossRef] [PubMed]
- Jin, Y.H.; Hu, Y.H.; Chen, L.; Fu, Y.R.; Mu, Z.F.; Wang, T.; Lin, J. Photoluminescence, reddish orange long persistent luminescence and photostimulated luminescence properties of praseodymium doped CdGeO3 phosphor. J. Alloys Compd. 2014, 616, 159–165. [Google Scholar] [CrossRef]
- Przybylska, D.; Jurga, N.; Ekner-Grzyb, A.; Stopikowska, N.; Grześkowiak, B.F.; Runowski, M.; Grzyb, T. Optical temperature sensing and bioimaging of aquatic invertebrates with Nd3+-sensitized core@shell nanoparticles. Adv. Opt. Mater. 2024, 12, 2401499. [Google Scholar] [CrossRef]
- Feng, Y.; Chen, H.D.; Ma, L.N.; Shao, B.Q.; Zhao, S.; Wang, Z.X.; You, H.P. Surfactant-free aqueous synthesis of novel Ba2GdF7:Yb3+,Er3+@PEG upconversion nanoparticles for in vivo trimodality imaging. ACS Appl. Mater. Interfaces 2017, 9, 15096–15102. [Google Scholar] [CrossRef]
- Cao, C.; Xue, M.; Zhu, X.J.; Yang, P.Y.; Feng, W.; Li, F.Y. Energy transfer highway in Nd3+-sensitized nanoparticles for efficient near-infrared bioimaging. ACS Appl. Mater. Interfaces 2017, 9, 18540–18548. [Google Scholar] [CrossRef]
- Zhang, Z.C.; Yang, Y.; Zhao, M.Y.; Lu, L.F.; Zhang, F.; Fan, Y. Tunable and enhanced NIR-II luminescence from heavily doped rare-earth nanoparticles for in vivo bioimaging. ACS Appl. Bio Mater. 2022, 5, 2935–2942. [Google Scholar] [CrossRef]
- Cao, C.; Li, G.S.; Xie, Y.; Hong, C.; Li, Y. Er3+ doped core-shell nanoparticles with large enhanced near-infrared luminescence for in vivo imaging. Inorg. Chem. Commun. 2021, 126, 108468. [Google Scholar] [CrossRef]
- Xiang, L.J.; Liu, G.; Kong, L.; Zhang, J.; Zhu, X.J.; Zhou, H.P.; Yang, X.Y.; Deng, K.X.; Liu, Y. Multifunctional BaMnLuGdF7:Yb/Er/Ho nanoparticles for in vivo tri-modal imaging. Opt. Mater. 2021, 111, 110578. [Google Scholar] [CrossRef]
- Yu, Z.F.; Fu, X.Y.; Zheng, S.H.; Zhang, H.W. Nd3+ doped LuOF nanophosphors for bimodality imaging of NIR-to-NIR-II luminescence and X-Ray computed tomography. J. Lumin. 2021, 231, 117753. [Google Scholar] [CrossRef]
- Xu, J.; Murata, D.; Katayama, Y.; Ueda, J.; Tanabe, S. Cr3+/Er3+ co-doped LaAlO3 perovskite phosphor: A near-infrared persistent luminescence probe covering the first and third biological windows. J. Mater. Chem. B 2017, 5, 6385–6393. [Google Scholar] [CrossRef]
- Jaque, D.; García Solé, J. Tunable Nd3+:Ca3Ga2Ge3O12 site-selective laser operating around 1.33 µm. Phys. Rev. B 2004, 70, 155116. [Google Scholar] [CrossRef]
- Li, J.J.; Li, T.; Suo, H.; Zhao, X.Q.; Guo, C.F. Up-conversion emission color tuning in NaLa(MoO4)2:Nd3+/Yb3+/Ho3+ excited at 808 nm. Ceram. Int. 2017, 43, 6333–6339. [Google Scholar] [CrossRef]
- Wu, Y.L.; Li, Y.; Qin, X.X.; Chen, R.C.; Wu, D.K.; Liu, S.J.; Qiu, J.R. Dual mode NIR long persistent phosphorescence and NIR-to-NIR Stokes luminescence in La3Ga5GeO14:Cr3+,Nd3+ phosphor. J. Alloys Compd. 2015, 649, 62–66. [Google Scholar] [CrossRef]
- Duan, W.K.; Zhang, Y.Y.; Wang, Z.Y.; Jiang, J.Y.; Liang, C.; Wei, W. Synthesis and near-infrared fluorescence of K5NdLi2F10 nanocrystals and their dispersion with high doping concentration and long lifetime. Nanoscale 2014, 6, 5634–5638. [Google Scholar] [CrossRef] [PubMed]
- Pokhrel, M.; Ray, N.; Kumar, G.A.; Sardar, D.K. Comparative studies of the spectroscopic properties of Nd3+:YAG nanocrystals, transparent ceramic and single crystal. Opt. Mater. Express 2012, 2, 235–249. [Google Scholar] [CrossRef]
- Suo, H.; Zhao, X.Q.; Zhang, Z.Y.; Guo, C.F. 808 nm light-triggered thermometer-heater upconverting platform based on Nd3+-sensitized yolk-shell GdOF@SiO2. ACS Appl. Mater. Interfaces 2017, 9, 43438–43448. [Google Scholar] [CrossRef]
- Yu, Z.F.; Shi, J.P.; Li, J.L.; Li, P.H.; Zhang, H.W. Luminescence enhancement of CaF2:Nd3+ nanoparticles in the second near-infrared window for in vivo imaging through Y3+ doping. J. Mater. Chem. B 2018, 6, 1238–1243. [Google Scholar] [CrossRef]
- Zhang, R.; Zang, P.Y.; Yang, D.; Li, J.H.; Hu, N.; Qu, S.N.; Yang, P.P. A phase engineering strategy of perovskite-type ZnSnO3:Nd for boosting the sonodynamic therapy performance. Adv. Funct. Mater. 2023, 33, 2300522. [Google Scholar] [CrossRef]
- Sharma, P.; Singh, P.; Bhushan, I.; Pathania, K. Combustion synthesis of NaSrVO4:Nd3+ nanophosphors with enhanced NIR 1.056 μm luminescent performance for solid-state laser and bioimaging applications. J. Mater. Sci. 2022, 57, 17219–17233. [Google Scholar] [CrossRef]
- Lv, Z.J.; Jin, L.H.; Cao, Y.; Zhang, H.; Xue, D.Z.; Yin, N.; Zhang, T.Q.; Wang, Y.H.; Liu, J.H.; Liu, X.G.; et al. A nanotheranostic agent based on Nd3+-doped YVO4 with blood-brain-barrier permeability for NIR-II fluorescence imaging/magnetic resonance imaging and boosted sonodynamic therapy of orthotopic glioma. Light Sci. Appl. 2022, 11, 116. [Google Scholar] [CrossRef]
- Guo, G.G.; Yin, T.; Dong, M.R.; Nie, J.J.; Zhang, Y.Y.; Liu, Z.Y.; Wang, F.H.; Guan, L.; Li, X. Study on the mechanism of high energy transfer efficiency of blue light excited Cr3+, Nd3+ co-doped near infrared phosphors. Opt. Express 2023, 16, 25978–25992. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Cao, L.W.; Wang, Z.J.; Li, P.L. Luminescence properties and energy transfer of the near-infrared phosphor Ca3In2Ge3O12:Cr3+,Nd3+. RSC Adv. 2022, 12, 28405–28413. [Google Scholar] [CrossRef] [PubMed]
- Lei, J.X.; Li, W.; Tang, Y.Q.; Cai, Y.Y.; Wang, S.S.; Dou, K.P.; Zhang, J.C. Strengthening the non-pre-irradiated near-infrared mechanoluminescence of CaZnOS:Nd3+ by Mn2+ coactivation for biomechanical imaging. J. Mater. Chem. C 2023, 11, 3588–3595. [Google Scholar] [CrossRef]
- Xiang, G.T.; Yang, M.L.; Liu, Z.; Wang, Y.J.; Jiang, S.; Zhou, X.J.; Li, L.; Ma, L.; Wang, X.J.; Zhang, J.H. Near-infrared-to-near-infrared optical thermometer BaY2O4:Yb3+/Nd3+ assembled with photothermal conversion performance. Inorg. Chem. 2022, 61, 5425–5432. [Google Scholar] [CrossRef]
- Vinícius-Araújo, M.; Shrivastava, N.; Loures, G.S.; Krause, R.F.; Sousa, M.H.; Costa de Santana, R.; Bakuzis, A.F. Integration of 3D fluorescence imaging and luminescent thermometry with core-shell engineered NaYF4:Nd3+/Yb3+/Ho3+ nanoparticles. Inorg. Chem. 2024, 63, 1840–1852. [Google Scholar] [CrossRef]
- Zhu, Q.; Sun, T.Y.; Chung, M.N.; Sun, X.W.; Xiao, Y.; Qiao, X.S.; Wang, F. Yb3+-sensitized upconversion and downshifting luminescence in Nd3+ ions through energy migration. Dalton Trans. 2018, 47, 8581–8584. [Google Scholar] [CrossRef]
- Pan, Z.W.; Lu, Y.Y.; Liu, F. Sunlight-activated long-persistent luminescence in the near-infrared from Cr3+-doped zinc gallogermanates. Nat. Mater. 2012, 11, 58–63. [Google Scholar] [CrossRef]
- Abdukayum, A.; Chen, J.T.; Zhao, Q.; Yan, X.P. Functional near infrared-emitting Cr3+/Pr3+ co-doped zinc gallogermanate persistent luminescent nanoparticles with superlong afterglow for in vivo targeted bioimaging. J. Am. Chem. Soc. 2013, 135, 14125–14133. [Google Scholar] [CrossRef]
- Chen, D.Q.; Chen, Y.; Lu, H.W.; Ji, Z.G. A bifunctional Cr/Yb/Tm:Ca3Ga2Ge3O12 phosphor with near-infrared long-lasting phosphorescence and upconversion luminescence. Inorg. Chem. 2014, 53, 8638–8645. [Google Scholar] [CrossRef]
- Yi, X.; Chen, Z.T.; Ye, S.; Li, Y.; Song, E.H.; Zhang, Q.Y. Multifunctionalities of near-infrared upconversion luminescence, optical temperature sensing and long persistent luminescence in La3Ga5GeO14:Cr3+,Yb3+,Er3+ and their potential coupling. RSC Adv. 2015, 5, 49680–49687. [Google Scholar] [CrossRef]
- Mizoguchi, H.; Eng, H.W.; Woodward, P.M. Probing the electronic structures of ternary perovskite and pyrochlore oxides containing Sn4+ or Sb5+. Inorg. Chem. 2004, 43, 1667–1680. [Google Scholar] [CrossRef] [PubMed]
- Muralidharan, M.; Selvakumar, S.; Sivakumar, K.; Sivaji, K. Effect of Yb doping on structural, optical and induced ferromagnetism in SrSnO3 perovskite nanostructures. Phys. B 2021, 615, 413039. [Google Scholar] [CrossRef]
- Cortés-Adasme, E.; Vega, M.; Martin, I.R.; Llanos, J. Synthesis and characterization of SrSnO3 doped with Er3+ for up-conversion luminescence temperature sensors. RSC Adv. 2017, 7, 46796–46802. [Google Scholar] [CrossRef]
- Kumar, V.; Sharma, S.K.; Sharma, T.P.; Singh, V. Band gap determination in thick films from reflectance measurements. Opt. Mater. 1999, 12, 115–119. [Google Scholar] [CrossRef]
- Muralidharan, M.; Anbarasu, V.; Perumal, A.E.; Sivakumar, K. Room temperature ferromagnetism in Cr doped SrSnO3 perovskite system. J. Mater. Sci. Mater. Electron. 2017, 28, 4125–4137. [Google Scholar] [CrossRef]
- Mizoguchi, H.; Woodward, P.M.; Park, C.H.; Keszler, D.A. Strong near-infrared luminescence in BaSnO3. J. Am. Chem. Soc. 2004, 126, 9796–9800. [Google Scholar] [CrossRef]
- Lin, H.H.; Yu, T.; Bai, G.X.; Tsang, M.K.; Zhang, Q.Y.; Hao, J.H. Enhanced energy transfer in Nd3+/Cr3+ co-doped Ca3Ga2Ge3O12 phosphors with near-infrared and long-lasting luminescence properties. J. Mater. Chem. C 2016, 4, 3396–3402. [Google Scholar] [CrossRef]
- Deepa, M.; Doddoji, R.; Dwaraka Viswanath, C.S.; Chandrasekhar, A.V. Optical and NIR luminescence spectral studies: Nd3+-doped borosilicate glasses. J. Lumin. 2019, 213, 191–196. [Google Scholar] [CrossRef]
- Rojas-Hernandez, R.E.; Rubio-Marcos, F.; Gorni, G.; Marini, C.; Danilson, M.; Pascual, L.; Ichikawa, R.U.; Hussainova, I.; Fernandez, J.F. Enhancing NIR emission in ZnAl2O4:Nd,Ce nanofibers by co-doping with Ce and Nd: A promising biomarker material with low cytotoxicity. J. Mater. Chem. C 2021, 9, 657–670. [Google Scholar] [CrossRef]
- Bao, Q.; Wang, Z.J.; Sun, J.; Wang, Z.P.; Meng, X.Y.; Qiu, K.L.; Chen, Y.; Yang, Z.P.; Li, P.L. Crystal structure, luminescence properties, energy transfer, tunable occupation and thermal properties of a novel color-tunable phosphor NaBa1-zSrzB9O15:xCe3+,yMn2+. Dalton Trans. 2018, 47, 13913–13925. [Google Scholar] [CrossRef]
- Dang, P.P.; Li, G.G.; Yun, X.H.; Zhang, Q.Q.; Liu, D.J.; Lian, H.Z.; Shang, M.M.; Lin, J. Thermally stable and highly efficient red-emitting Eu3+-doped Cs3GdGe3O9 phosphors for WLEDs: Non-concentration quenching and negative thermal expansion. Light Sci. Appl. 2021, 10, 29. [Google Scholar] [CrossRef] [PubMed]
- Kang, X.J.; Lü, W.; Zhu, Z.N.; Jia, C.Y. A novel blue-light excitable Pr3+ doped (Sr,Ba)LaMgTaO6 phosphor for plant growth lighting. J. Rare Earths 2023, 41, 666–672. [Google Scholar] [CrossRef]
- Deng, K.Y.; Jin, Y.H.; Yuan, L.F.; Wang, B.; Wu, H.Y.; Hu, Y.H. A thermal-stable Mn4+-doped far-red-emitting phosphor-converted LED for indoor plant cultivation. Mater. Today Chem. 2022, 26, 101010. [Google Scholar] [CrossRef]
- Li, Z.Y.; Zhang, X.H.; Wu, J.; Guo, R.; Luo, L.; Xiong, Y.H.; Wang, L.; Chen, W. A novel inequivalent double-site substituted red phosphor Li4AlSbO6:Mn4+ with high color purity: Its structure, photoluminescence properties, and application in warm white LEDs. J. Mater. Chem. C 2021, 9, 13236–13246. [Google Scholar] [CrossRef]
- Wang, J.Y.; Wang, X.D.; Zhang, C.J.; Zhang, X.Y.; Zhou, T.L.; Xie, R.J. Broadband emitting phosphor Sr6Sc2Al4O15:Cr3+ for near-infrared LEDs. J. Mater. Chem. C 2023, 11, 9030–9036. [Google Scholar] [CrossRef]
- De Freitas, S.M.; Júnior, G.J.; Santos, R.D.; Rezende, M.V.D.S. Defects and dopant properties of SrSnO3 compound: A computational study. Comput. Condens. Matter 2019, 21, e00411. [Google Scholar] [CrossRef]
- Muralidharan, M.; Ajaykumari, P.; Avinash, M.; Selvakumr, S.; Sivaji, K. Optical, magnetic and defect studies of Ni2+ doped SrSnO3 nanostructures. Ceram. Int. 2024, 50, 12840–12851. [Google Scholar] [CrossRef]
- Qiao, J.W.; Ning, L.X.; Molokeev, M.S.; Chuang, Y.C.; Liu, Q.L.; Xia, Z.G. Eu2+ site preferences in the mixed cation K2BaCa(PO4)2 and thermally stable luminescence. J. Am. Chem. Soc. 2018, 140, 9730–9736. [Google Scholar] [CrossRef]
Temperature (K) | A1 | τ1 (μs) | A2 | τ2 (μs) | τave (μs) |
---|---|---|---|---|---|
298 | 0.9213 | 149.45 | 0.9400 | 338.48 | 287.70 |
323 | 1.0831 | 180.20 | 0.6981 | 370.19 | 288.56 |
373 | 1.0685 | 181.87 | 0.6966 | 374.19 | 292.02 |
423 | 0.9174 | 150.37 | 0.9467 | 344.34 | 286.66 |
473 | 1.1418 | 128.31 | 0.8640 | 330.13 | 261.65 |
523 | 1.9923 | 84.20 | 0.7547 | 324.05 | 226.46 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hou, D.; Li, J.-Y.; Huang, R.; Zhang, W.; Zhang, Y.; Lin, Z.; Li, H.; Dong, J.; Lin, H.; Zhou, L. Multifunctional Near-Infrared Luminescence Performance of Nd3+ Doped SrSnO3 Phosphor. Photonics 2024, 11, 1060. https://doi.org/10.3390/photonics11111060
Hou D, Li J-Y, Huang R, Zhang W, Zhang Y, Lin Z, Li H, Dong J, Lin H, Zhou L. Multifunctional Near-Infrared Luminescence Performance of Nd3+ Doped SrSnO3 Phosphor. Photonics. 2024; 11(11):1060. https://doi.org/10.3390/photonics11111060
Chicago/Turabian StyleHou, Dejian, Jin-Yan Li, Rui Huang, Wenxing Zhang, Yi Zhang, Zhenxu Lin, Hongliang Li, Jianhong Dong, Huihong Lin, and Lei Zhou. 2024. "Multifunctional Near-Infrared Luminescence Performance of Nd3+ Doped SrSnO3 Phosphor" Photonics 11, no. 11: 1060. https://doi.org/10.3390/photonics11111060