Solar Radiation Drives the Plant Species Distribution in Urban Built-Up Areas
Abstract
:1. Introduction
2. Results and Discussion
2.1. The Role of Solar Radiation in Shaping Species Richness and Diversity
2.2. The Influence of Solar Radiation on Species Abundance
2.3. Solar Radiation and Plant Growth Dynamics
2.4. Additional Drivers of Species Distribution
3. Methods and Data
3.1. Study Area and Experimental Setup
3.1.1. Site Description
3.1.2. Plot Design and Configuration
3.2. Plant Species Survey and Data Collection
3.2.1. Survey Methods and Data Collection Tools
3.2.2. Plant Diversity Indices
- (1)
- Species Richness Index (R)
- (2)
- Simpson’s Index of Diversity (D)
- (3)
- Shannon–Wiener Index (H)
3.2.3. Data Processing and Integration
3.3. Solar Radiation Simulation and Calibration
3.3.1. Solar Radiation Simulation
3.3.2. Model Calibration and Validation
3.4. Experimental Design and Research Process
4. Conclusions and Future Prospects
- (1)
- In urban built-up areas, the distribution patterns of plant species, including species composition and diversity, is associated with solar radiation.
- (2)
- Based on the Species Richness Index (R), the highest average richness is observed in quadrats with lower solar radiation. Similarly, the highest average diversity, as measured by the Simpson’s Diversity Index (D), is found in quadrats with higher solar radiation. While the Diversity Index (D) and the Shannon–Wiener Index (H) show slight differences, D is more sensitive than H for evaluating species distribution.
- (3)
- Solar radiation impacts the abundance and growth levels of plant species, but the correlation varies significantly across species. Additionally, our data suggest that, beyond solar radiation, birds and wind play important roles in the spatial distribution of certain species.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- McKinney, M.L. Effects of urbanization on species richness: A review of plants and animals. Urban Ecosyst. 2008, 11, 161–176. [Google Scholar] [CrossRef]
- McKinney, M.L. Urbanization as a major cause of biotic homogenization. Biol. Conserv. 2006, 127, 247–260. [Google Scholar] [CrossRef]
- Nock, C.A.; Paquette, A.; Follett, M.; Nowak, D.J.; Messier, C. Effects of urbanization on tree species functional diversity in eastern North America. Ecosystems 2013, 16, 1487–1497. [Google Scholar] [CrossRef]
- de Barros Ruas, R.; Costa, L.M.S.; Bered, F. Urbanization driving changes in plant species and communities—A global view. Glob. Ecol. Conserv. 2022, 38, e02243. [Google Scholar]
- Aronson, M.F.; La Sorte, F.A.; Nilon, C.H.; Katti, M.; Goddard, M.A.; Lepczyk, C.A.; Warren, P.S.; Williams, N.S.; Cilliers, S.; Clarkson, B. A global analysis of the impacts of urbanization on bird and plant diversity reveals key anthropogenic drivers. Proc. R. Soc. B Biol. Sci. 2014, 281, 20133330. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.R.; Chen, M.C.; Su, M.H. Natural versus human drivers of plant diversity in urban parks and the anthropogenic species-area hypotheses. Landsc. Urban Plan. 2021, 208, 104023. [Google Scholar] [CrossRef]
- Ceplová, N.; Lososová, Z.; Kalusová, V. Urban ornamental trees: A source of current invaders; a case study from a European City. Urban Ecosyst. 2017, 20, 1135–1140. [Google Scholar] [CrossRef]
- Yang, Y.Q.; Ignatieva, M.; Gaynor, A.; Chen, C.D. Urban biodiversity in design: Insights into the debate on native versus non-native plants and bees in Western Australia. Urban For. Urban Green. 2024, 98, 128391. [Google Scholar] [CrossRef]
- United Nations Department of Economic and Social Affairs (UN DESA). World Population Prospects 2019; Population Division, United Nations: New York, NY, USA, 2019. [Google Scholar]
- Godefroid, S.; Koedam, N. Urban plant species patterns are highly driven by density and function of built-up areas. Landsc. Ecol. 2007, 22, 1227–1239. [Google Scholar] [CrossRef]
- Schmiedel, I.; Bergmeier, E.; Culmsee, H. Plant species richness patterns along a gradient of landscape modification intensity in Lower Saxony, Germany. Landsc. Urban Plan. 2015, 141, 41–51. [Google Scholar] [CrossRef]
- Opoku, A. Biodiversity and the built environment: Implications for the Sustainable Development Goals (SDGs). Resour. Conserv. Recycl. 2019, 141, 1–7. [Google Scholar] [CrossRef]
- Ariori, C.; Aiello-Lammens, M.E.; Silander, J.A. Plant invasion along an urban-to-rural gradient in northeast Connecticut. J. Urban Ecol. 2017, 3, jux008. [Google Scholar] [CrossRef]
- Bigirimana, J.; Bogaert, J.; De Cannière, C.; Bigendako, M.J.; Parmentier, I. Domestic garden plant diversity in Bujumbura, Burundi: Role of the socio-economical status of the neighborhood and alien species invasion risk. Landsc. Urban Plan. 2012, 107, 118–126. [Google Scholar] [CrossRef]
- Guo, P.; Yu, F.; Ren, Y.; Liu, D.; Li, J.; Ouyang, Z.; Wang, X. Response of Ruderal Species Diversity to an Urban Environment: Implications for Conservation and Management. Int. J. Environ. Res. Public Health 2018, 15, 2832. [Google Scholar] [CrossRef] [PubMed]
- Čeplová, N.; Kalusová, V.; Lososová, Z. Effects of settlement size, urban heat island and habitat type on urban plant biodiversity. Landsc. Urban Plan. 2017, 159, 15–22. [Google Scholar] [CrossRef]
- Kendal, D.; Zeeman, B.J.; Ikin, K.; Lunt, I.D.; McDonnell, M.J.; Farrar, A.; Pearce, L.M.; Morgan, J.W. The importance of small urban reserves for plant conservation. Biol. Conserv. 2017, 213, 146–153. [Google Scholar] [CrossRef]
- Planchuelo, G.; von Der Lippe, M.; Kowarik, I. Untangling the role of urban ecosystems as habitats for endangered plant species. Landsc. Urban Plan. 2019, 189, 320–334. [Google Scholar] [CrossRef]
- Wooster, E.I.F.; Fleck, R.; Torpy, F.; Ramp, D.; Irga, P.J. Urban green roofs promote metropolitan biodiversity: A comparative case study. Build. Environ. 2022, 207, 108458. [Google Scholar] [CrossRef]
- Madre, F.; Vergnes, A.; Machon, N.; Clergeau, P. Green roofs as habitats for wild plant species in urban landscapes: First insights from a large-scale sampling. Landsc. Urban Plan. 2014, 122, 100–107. [Google Scholar] [CrossRef]
- Lin, B.S.; Chen, T.W. The plant and faunal species composition and diversity on rooftop farms: Seasonal variation and the effects of site and surrounding characteristics. Landsc. Urban Plan. 2022, 226, 104483. [Google Scholar] [CrossRef]
- Samain, M.S.; Diaz, S.G.; Machuca, K.M.; Fuentes, A.C.D.; Correa, A.G.Z.; Martinez, D.V.; Nunez, F.A.A.; Redonda-Martinez, R.; Oldfield, S.F.; Salas, E.M.M. Meta-analysis of Red List conservation assessments of Mexican endemic and near endemic tree species shows nearly two thirds of these are threatened. Plants People Planet 2022, 5, 581–599. [Google Scholar] [CrossRef]
- Gorton, A.J.; Burghardt, L.T.; Tiffin, P. Adaptive Evolution of Plant Life History in Urban Environments. In Urban Evolutionary Biology; Oxford University Press: Oxford, UK, 2020; pp. 142–156. [Google Scholar]
- Johnson, M.T.J.; Munshi-South, J. Evolution of life in urban environments. Science 2017, 358, eaam8327. [Google Scholar] [CrossRef] [PubMed]
- Gelviz-Gelvez, S.M.; Pavón, N.P.; Illoldi-Rangel, P.; Ballesteros-Barrera, C. Ecological niche modeling under climate change to select shrubs for ecological restoration in Central Mexico. Ecol. Eng. 2015, 74, 302–309. [Google Scholar] [CrossRef]
- Wright, J.W.; Davies, K.F.; Lau, J.A.; McCall, A.C.; McKay, J.K. Experimental verification of ecological niche modeling in a heterogeneous environment. Ecology 2006, 87, 2433–2439. [Google Scholar] [CrossRef]
- Irfan-Ullah, M.; Amarnath, G.; Murthy, M.; Peterson, A.T. Mapping the geographic distribution of Aglaia bourdillonii Gamble (Meliaceae), an endemic and threatened plant, using ecological niche modeling. In Plant Conservation and Biodiversity; Springer: Berlin/Heidelberg, Germany, 2006; pp. 343–351. [Google Scholar]
- Ferreira, R.B.; Parreira, M.R.; de Arruda, F.V.; Falcao, M.J.A.; Mansano, V.D.; Nabout, J.C. Combining ecological niche models with experimental seed germination to estimate the effect of climate change on the distribution of endangered plant species in the Brazilian Cerrado. Environ. Monit. Assess. 2022, 194, 283. [Google Scholar] [CrossRef]
- Deng, L.; Wang, K.B.; Li, J.P.; Zhao, G.W.; Shangguan, Z. Effect of soil moisture and atmospheric humidity on both plant productivity and diversity of native grasslands across the Loess Plateau, China. Ecol. Eng. 2016, 94, 525–531. [Google Scholar] [CrossRef]
- Moeslund, J.E.; Arge, L.; Bocher, P.K.; Dalgaard, T.; Ejrnæs, R.; Odgaard, M.V.; Svenning, J.C. Topographically controlled soil moisture drives plant diversity patterns within grasslands. Biodivers. Conserv. 2013, 22, 2151–2166. [Google Scholar] [CrossRef]
- Minorta-Cely, V.; Niño, L.; Rangel, O.; Sánchez-Mata, D. Environmental Factors Influencing Species Richness Expression in Grasslands of the Colombian Orinoquia. Plants 2024, 13, 3545. [Google Scholar] [CrossRef] [PubMed]
- Hiddink, J.G.; Kaiser, M.J. Implications of Liebig’s law of the minimum for the use of ecological indicators based on abundance. Ecography 2005, 28(2), 264–271. [Google Scholar] [CrossRef]
- Tang, J.; Riley, W.J. Finding Liebig’s law of the minimum. Ecol. Appl. 2021, 31, e02458. [Google Scholar] [CrossRef]
- Hope, D.; Gries, C.; Zhu, W.X.; Fagan, W.F.; Redman, C.L.; Grimm, N.B.; Nelson, A.L.; Martin, C.; Kinzig, A. Socioeconomics drive urban plant diversity. Proc. Natl. Acad. Sci. USA 2003, 100, 8788–8792. [Google Scholar] [CrossRef] [PubMed]
- Kaseb, Z.; Rahbar, M. Towards CFD-based optimization of urban wind conditions: Comparison of Genetic algorithm, Particle Swarm Optimization, and a hybrid algorithm. Sustain. Cities Soc. 2022, 77, 103565. [Google Scholar] [CrossRef]
- Chun, B.; Guldmann, J.M. Spatial statistical analysis and simulation of the urban heat island in high-density central cities. Landsc. Urban Plan. 2014, 125, 76–88. [Google Scholar] [CrossRef]
- Fu, P.; Rich, P. The Solar Analyst 1.0 User Manual; Helios Environmental Modeling Institute: Lawrence, KS, USA, 2000; 1616p. [Google Scholar]
- Radosevic, N.; Duckham, M.; Liu, G.J.; Sun, Q. Solar radiation modeling with KNIME and Solar Analyst: Increasing environmental model reproducibility using scientific workflows. Environ. Model. Softw. 2020, 132, 104780. [Google Scholar] [CrossRef]
- Liu, M.; Bardossy, A.; Li, J.; Jiang, Y. GIS-based modelling of topography-induced solar radiation variability in complex terrain for data sparse region. Int. J. Geogr. Inf. Sci. 2012, 26, 1281–1308. [Google Scholar] [CrossRef]
- Wei, H.; Jiang, W.; Liu, X.; Huang, B. A Digital Framework to Predict the Sunshine Requirements of Landscape Plants. Appl. Sci. 2021, 11, 2098. [Google Scholar] [CrossRef]
- Wei, H.; Huang, Z.; Lin, M. A Decision Support System for Plant Optimization in Urban Areas with Diversified Solar Radiation. Sustainability 2017, 9, 215. [Google Scholar] [CrossRef]
- Wei, H.; Huang, Z. From Experience-Oriented to Quantity-Based: A Method for Landscape Plant Selection and Configuration in Urban Built-Up Areas. J. Sustain. For. 2015, 34, 698–719. [Google Scholar] [CrossRef]
- Getter, K.L.; Rowe, D.B.; Cregg, B.M. Solar radiation intensity influences extensive green roof plant communities. Urban For. Urban Green. 2009, 8, 269–281. [Google Scholar] [CrossRef]
- Dorji, T.; Moe, S.R.; Klein, J.A.; Totland, O. Plant Species Richness, Evenness, and Composition along Environmental Gradients in an Alpine Meadow Grazing Ecosystem in Central Tibet, China. Arct. Antarct. Alp. Res. 2014, 46, 308–326. [Google Scholar] [CrossRef]
- Klimek, S.; Kemmermann, A.R.G.; Hofmann, M.; Isselstein, J. Plant species richness and composition in managed grasslands: The relative importance of field management and environmental factors. Biol. Conserv. 2007, 134, 559–570. [Google Scholar] [CrossRef]
- Cepelova, B.; Munzbergova, Z. Factors determining the plant species diversity and species composition in a suburban landscape. Landsc. Urban Plan. 2012, 106, 336–346. [Google Scholar] [CrossRef]
- Alahuhta, J.; Toivanen, M.; Hjort, J. Geodiversity–biodiversity relationship needs more empirical evidence. Nat. Ecol. Evol. 2020, 4, 2–3. [Google Scholar] [CrossRef] [PubMed]
- Bailey, J.J.; Boyd, D.S.; Hjort, J.; Lavers, C.P.; Field, R. Modelling native and alien vascular plant species richness: At which scales is geodiversity most relevant? Glob. Ecol. Biogeogr. 2017, 26, 763–776. [Google Scholar] [CrossRef]
- Tukiainen, H.; Alahuhta, J.; Field, R.; Ala-Hulkko, T.; Lampinen, R.; Hjort, J. Spatial relationship between biodiversity and geodiversity across a gradient of land-use intensity in high-latitude landscapes. Landsc. Ecol. 2017, 32, 1049–1063. [Google Scholar] [CrossRef]
- De Falco, N.; Tal-Berger, R.; Hjazin, A.; Yizhaq, H.; Stavi, I.; Rachmilevitch, S. Geodiversity impacts plant community structure in a semi-arid region. Sci. Rep. 2021, 11, 15259. [Google Scholar] [CrossRef] [PubMed]
- Wang, J. The models of niche and their application. Ecol. Model. 1995, 80, 279–291. [Google Scholar] [CrossRef]
- Drake, J.M.; Randin, C.; Guisan, A. Modelling ecological niches with support vector machines. J. Appl. Ecol. 2006, 43, 424–432. [Google Scholar] [CrossRef]
- Yang, M.; Li, Z.; Liu, L.; Bo, A.; Zhang, C.; Li, M. Ecological niche modeling of Astragalus membranaceus var. mongholicus medicinal plants in Inner Mongolia, China. Sci. Rep. 2020, 10, 12482. [Google Scholar] [PubMed]
- Silvertown, J. Plant coexistence and the niche. Trends Ecol. Evol. 2004, 19, 605–611. [Google Scholar] [CrossRef]
- Stevens, M.H.H.; Carson, W.P. Resource quantity, not resource heterogeneity, maintains plant diversity. Ecol. Lett. 2002, 5, 420–426. [Google Scholar] [CrossRef]
- Tooke, T.R.; Coops, N.C.; Voogt, J.A.; Meitner, M.J. Tree structure influences on rooftop-received solar radiation. Landsc. Urban Plan. 2011, 102, 73–81. [Google Scholar] [CrossRef]
- Archer, S. Tree-grass dynamics in a Prosopis-thornscrub savanna parkland: Reconstructing the past and predicting the future. Ecoscience 1995, 2, 83–99. [Google Scholar] [CrossRef]
- Kowarik, I.; von der Lippe, M. Plant population success across urban ecosystems: A framework to inform biodiversity conservation in cities. J. Appl. Ecol. 2018, 55, 2354–2361. [Google Scholar] [CrossRef]
- Itani, M.; Al Zein, M.; Nasralla, N.; Talhouk, S.N. Biodiversity conservation in cities: Defining habitat analogues for plant species of conservation interest. PLoS ONE 2020, 15, e0220355. [Google Scholar] [CrossRef] [PubMed]
- Muvengwi, J.; Kwenda, A.; Mbiba, M.; Mpindu, T. The role of urban schools in biodiversity conservation across an urban landscape. Urban For. Urban Green. 2019, 43, 126370. [Google Scholar] [CrossRef]
- Lundholm, J.T.; Marlin, A. Habitat origins and microhabitat preferences of urban plant species. Urban Ecosyst. 2006, 9, 139–159. [Google Scholar] [CrossRef]
- Schmidt, K.J.; Poppendieck, H.-H.; Jensen, K. Effects of urban structure on plant species richness in a large European city. Urban Ecosyst. 2014, 17, 427–444. [Google Scholar] [CrossRef]
- Sikorska, D.; Ciężkowski, W.; Babańczyk, P.; Chormański, J.; Sikorski, P. Intended wilderness as a Nature-based Solution: Status, identification and management of urban spontaneous vegetation in cities. Urban For. Urban Green. 2021, 62, 127155. [Google Scholar] [CrossRef]
- Bayulken, B.; Huisingh, D.; Fisher PM, J. How are nature based solutions helping in the greening of cities in the context of crises such as climate change and pandemics? A comprehensive review. J. Clean. Prod. 2021, 288, 125569. [Google Scholar] [CrossRef]
- Xie, L.; Bulkeley, H. Nature-based solutions for urban biodiversity governance. Environ. Sci. Policy 2020, 110, 77–87. [Google Scholar] [CrossRef]
- Chau, N.L.; Chu, L.M. Fern cover and the importance of plant traits in reducing erosion on steep soil slopes. Catena 2017, 151, 98–106. [Google Scholar] [CrossRef]
- Lang, Y.; Wang, M.; Zhang, G.C.; Zhao, Q.K. Experimental and simulated light responses of photosynthesis in leaves of three tree species under different soil water conditions. Photosynthetica 2013, 51, 370–378. [Google Scholar] [CrossRef]
- Selzer, L.J.; Busso, C.A. Pigments and photosynthesis of understory grasses: Light irradiance and soil moisture effects. Russ. J. Plant Physiol. 2016, 63, 224–234. [Google Scholar] [CrossRef]
- Sage, R.F.; Sage, T.L.; Kocacinar, F. Photorespiration and the Evolution of C-4 Photosynthesis. Annu. Rev. Plant Biol. 2012, 63, 19–47. [Google Scholar] [CrossRef]
- Lenoir, J.; Gegout, J.C.; Marquet, P.A.; de Ruffray, P.; Brisse, H. A significant upward shift in plant species optimum elevation during the 20th century. Science 2008, 320, 1768–1771. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, J. Assessing the effects of environmental changes in a landscape by means of ecological characteristics of plant species. Landsc. Urban Plan. 1998, 41, 239–248. [Google Scholar] [CrossRef]
- Kauffman, J.H.; Wang, M.; Zhang, B. People’s Republic of China: Reference soils of the Red Basins of Jiangxi Province; Soil Brief CN 8; Institute of Soil Science, Academica Sinica: Nanjing, China; International Soil Reference and Information Centre: Wageningen, The Netherlands, 1995; p. 35. [Google Scholar]
- Wang, L.; Kisi, O.; Zounemat-Kermani, M.; Salazar, G.A.; Zhu, Z.; Gong, W. Solar radiation prediction using different techniques: Model evaluation and comparison. Renew. Sustain. Energy Rev. 2016, 61, 384–397. [Google Scholar] [CrossRef]
- Hofierka, J.; Lacko, M.; Zubal, S. Parallelization of interpolation, solar radiation and water flow simulation modules in GRASS GIS using OpenMP. Comput. Geosci. 2017, 107, 20–27. [Google Scholar] [CrossRef]
- Machete, R.; Falcão, A.P.; Gomes, M.G.; Moret, A. The use of 3D GIS to analyse the influence of urban context on buildings’ solar energy potential. Energy Build. 2018, 177, 290–302. [Google Scholar] [CrossRef]
Level | Judgmental Features | Coverage Percentage (%) |
---|---|---|
I | Plants cover the entire quadrat; plant bodies are consistently connected. | 76–100 |
II | Plant coverage is high, but individuals are not fully connected. | 51–75 |
III | diversity plant coverage, not yet half of the quadrat. | 26–50 |
IV | Low plant coverage, with scattered plant appearances. | 6–25 |
V | Plants are rare, with very low coverage. | <5 |
Input Raster | Cell Size | Latitude | Time Configuration | Transmittivity | Diffuse Proportion |
---|---|---|---|---|---|
Building footprint | 0.1 m × 0.1 m | N 28.7 | From spring to autumn | 0.5 | 0.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, H.; Huang, B.; Wang, M.; Liu, X. Solar Radiation Drives the Plant Species Distribution in Urban Built-Up Areas. Plants 2025, 14, 539. https://doi.org/10.3390/plants14040539
Wei H, Huang B, Wang M, Liu X. Solar Radiation Drives the Plant Species Distribution in Urban Built-Up Areas. Plants. 2025; 14(4):539. https://doi.org/10.3390/plants14040539
Chicago/Turabian StyleWei, Heyi, Bo Huang, Mingshu Wang, and Xuejun Liu. 2025. "Solar Radiation Drives the Plant Species Distribution in Urban Built-Up Areas" Plants 14, no. 4: 539. https://doi.org/10.3390/plants14040539
APA StyleWei, H., Huang, B., Wang, M., & Liu, X. (2025). Solar Radiation Drives the Plant Species Distribution in Urban Built-Up Areas. Plants, 14(4), 539. https://doi.org/10.3390/plants14040539