Improved Dielectric Breakdown Strength of Polyimide by Incorporating Polydopamine-Coated Graphitic Carbon Nitride
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Sample Preparation
2.3. Characterization and Measurement
3. Results and Discussions
3.1. Structure of the CNNS and DCNNS
3.2. Fractured Surface Morphologies
3.3. Dielectric Performance
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wan, B.Q.; Li, H.Y.; Xiao, Y.H.; Yue, S.S.; Liu, Y.Y.; Zhang, Q.W. Enhanced dielectric and energy storage properties of BaTiO3 nanofiber/polyimide composites by controlling surface defects of BaTiO3 nanofibers. Appl. Surf. Sci. 2020, 501, 144243. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, X.; Yang, X.; Li, C.; Wang, Y.; Chen, W. High Breakdown Strength and Energy Storage Density in Aligned SrTiO3@SiO2 Core–Shell Platelets Incorporated Polymer Composites. Membranes 2021, 11, 756. [Google Scholar] [CrossRef] [PubMed]
- Cai, Z.M.; Wang, X.H.; Luo, B.C.; Hong, W.; Wu, L.W.; Li, L.T. Nanocomposites with enhanced dielectric permittivity and breakdown strength by microstructure design of nanofillers. Compos. Sci. Technol. 2017, 151, 109–114. [Google Scholar] [CrossRef]
- Li, L.L.; Zhou, B.; Ye, J.F.; Wu, W.; Wen, F.; Xie, Y.C.; Bass, P.; Xu, Z.; Wang, L.W.; Wang, G.F.; et al. Enhanced dielectric and energy-storage performance of nanocomposites using interface-modified anti-ferroelectric fillers. J. Alloys Compd. 2020, 831, 154770. [Google Scholar] [CrossRef]
- Zhao, H.; Yang, C.; Li, N.; Yin, J.H.; Feng, Y.; Liu, Y.Y.; Li, J.L.; Li, Y.P.; Yue, D.; Zhu, C.C.; et al. Electrical and mechanical properties of polyimide composite films reinforced by ultralong titanate nanotubes. Surf. Coat. Technol. 2019, 360, 13–19. [Google Scholar] [CrossRef]
- Yin, P.; Shi, Z.; Sun, L.; Xie, P.; Dastan, D.; Sun, K.; Fan, R. Improved breakdown strengths and energy storage properties of polyimide composites: The effect of internal interfaces of C/SiO2 hybrid nanoparticles. Polym. Compos. 2021, 42, 3000–3010. [Google Scholar] [CrossRef]
- Ai, D.; Li, H.; Zhou, Y.; Ren, L.; Han, Z.; Yao, B.; Zhou, W.; Zhao, L.; Xu, J.; Wang, Q. Tuning Nanofillers in In Situ Prepared Polyimide Nanocomposites for High-Temperature Capacitive Energy Storage. Adv. Energy Mater. 2020, 10, 1903881. [Google Scholar] [CrossRef]
- Li, F.R.; Zhao, J.Y.; Guo, H.Q.; Gao, L.X. Enhanced Energy Storage Performance of Polyimide-based Nanocomposites by Introducing Two-dimensional Nanosheets. Acta Polym. Sin. 2020, 51, 295–302. [Google Scholar] [CrossRef]
- Duan, G.Y.; Cao, Y.T.; Quan, J.Y.; Hu, Z.M.; Wang, Y.; Yu, J.R.; Zhu, J. Bioinspired construction of BN@polydopamine@Al2O3 fillers for preparation of a polyimide dielectric composite with enhanced thermal conductivity and breakdown strength. J. Mater. Sci. 2020, 55, 8170–8184. [Google Scholar] [CrossRef]
- He, S.J.; Hu, J.B.; Zhang, C.; Wang, J.Q.; Chen, L.; Bian, X.M.; Lin, J.; Du, X.Z. Performance improvement in nano-alumina filled silicone rubber composites by using vinyl tri-methoxysilane. Polym. Test. 2018, 67, 295–301. [Google Scholar] [CrossRef]
- Sundar, U.; Lao, Z.; Cook-Chennault, K. Enhanced Dielectric Permittivity of Optimized Surface Modified of Barium Titanate Nanocomposites. Polymers 2020, 12, 827. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, S.J.; He, T.F.; Wang, J.Q.; Wu, X.H.; Xue, Y.; Zhang, L.Q.; Lin, J. A novel method to prepare acrylonitrile-butadiene rubber/clay nanocomposites by compounding with clay gel. Compos. Part B Eng. 2019, 167, 356–361. [Google Scholar] [CrossRef]
- Qin, S.L.; Qiu, S.H.; Cui, M.J.; Dai, Z.D.; Zhao, H.C.; Wang, L.P. Synthesis and properties of polyimide nanocomposite containing dopamine-modified graphene oxide. High Perform. Polym. 2019, 31, 331–340. [Google Scholar] [CrossRef]
- Chen, X.; Wang, J.Q.; Zhang, C.; Yang, W.; Lin, J.; Bian, X.M.; He, S.J. Performance of silicone rubber composites using boron nitride to replace alumina tri-hydrate. High Volt. 2021, 6, 480–486. [Google Scholar] [CrossRef]
- Zhu, Y.; Yao, H.; Jiang, P.; Wu, J.; Zhu, X.; Huang, X. Two-Dimensional High-k Nanosheets for Dielectric Polymer Nanocomposites with Ultrahigh Discharged Energy Density. J. Phys. Chem. C 2018, 122, 18282–18293. [Google Scholar] [CrossRef]
- Zhang, Y.-H.; Dang, Z.-M.; Xin, J.H.; Daoud, W.A.; Ji, J.-H.; Liu, Y.; Fei, B.; Li, Y.; Wu, J.; Yang, S.; et al. Dielectric Properties of Polyimide-Mica Hybrid Films. Macromol. Rapid Comm. 2005, 26, 1473–1477. [Google Scholar] [CrossRef]
- He, S.J.; Luo, C.M.; Zheng, Y.Z.; Xue, Y.; Song, X.P.; Lin, J. Improvement in the charge dissipation performance of epoxy resin composites by incorporating amino-modified boron nitride nanosheets. Mater. Lett. 2021, 298, 130009. [Google Scholar] [CrossRef]
- Xue, Y.; Wang, H.; Li, X.; Chen, Y. Synergy boost thermal conductivity through the design of vertically aligned 3D boron nitride and graphene hybrids in silicone rubber under low loading. Mater. Lett. 2020, 281, 128596. [Google Scholar] [CrossRef]
- Liao, Y.F.; Weng, Y.X.; Wang, J.Q.; Zhou, H.F.; Lin, J.; He, S.J. Silicone rubber composites with high breakdown strength and low dielectric loss based on polydopamine coated mica. Polymers 2019, 11, 2030. [Google Scholar] [CrossRef] [Green Version]
- Gaddam, S.K.; Pothu, R.; Boddula, R. Graphitic carbon nitride (g-C3N4) reinforced polymer nanocomposite systems—A review. Polym. Compos. 2020, 41, 430–442. [Google Scholar] [CrossRef]
- Xu, S.; Wang, J.; Lin, L.; Valério, A.; He, D. Synthesis of carbon nitride nanosheets with tunable size by hydrothermal method for tetracycline degradation. Mater. Lett. 2020, 264, 127005. [Google Scholar] [CrossRef]
- Kang, S.; He, M.; Chen, M.; Wang, J.; Zheng, L.; Chang, X.; Duan, H.; Sun, D.; Dong, M.; Cui, L. Ultrafast plasma immersion strategy for rational modulation of oxygen-containing and amino groups in graphitic carbon nitride. Carbon 2020, 159, 51–64. [Google Scholar] [CrossRef]
- Zhu, L.; You, L.J.; Shi, Z.X.; Song, H.J.; Li, S.J. An investigation on the graphitic carbon nitride reinforced polyimide composite and evaluation of its tribological properties. J. Appl. Polym. Sci. 2017, 134, 45403. [Google Scholar] [CrossRef]
- Wang, Y.Y.; Zhang, X.; Ding, X.; Zhang, P.; Shu, M.T.; Zhang, Q.; Gong, Y.; Zheng, K.; Tian, X.Y. Imidization-induced carbon nitride nanosheets orientation towards highly thermally conductive polyimide film with superior flexibility and electrical insulation. Compos. Part B Eng. 2020, 199, 108267. [Google Scholar] [CrossRef]
- He, S.J.; Wang, J.Q.; Hu, J.B.; Zhou, H.F.; Nguyen, H.; Luo, C.M.; Lin, J. Silicone rubber composites incorporating graphitic carbon nitride and modified by vinyl tri-methoxysilane. Polym. Test. 2019, 79, 106005–106010. [Google Scholar] [CrossRef]
- Song, H.J.; Li, L.Y.; Yang, J.; Jia, X.H. Fabrication of Polydopamine-Modified Carbon Fabric/Polyimide Composites With Enhanced Mechanical and Tribological Properties. Polym. Compos. 2019, 40, 1911–1918. [Google Scholar] [CrossRef]
- Su, C.; Xue, F.; Xu, F.L.; Li, T.S.; Xin, Y.S.; Wang, M.M. Tribological Properties of Surface-Modified Graphene Filled Carbon Fabric/Polyimide Composites. J. Macromol. Sci. Part B 2019, 58, 603–618. [Google Scholar] [CrossRef]
- McCaffrey, M.; Hones, H.; Cook, J.; Krchnavek, R.; Xue, W. Geometric analysis of dielectric failures in polyimide/silicon dioxide nanocomposites. Polym. Eng. Sci. 2019, 59, 1897–1904. [Google Scholar] [CrossRef]
- Yu, Z.X.; Li, F.; Yang, Q.B.; Shi, H.; Chen, Q.; Xu, M. Nature-Mimic Method To Fabricate Polydopamine/Graphitic Carbon Nitride for Enhancing Photocatalytic Degradation Performance. ACS Sustain. Chem. Eng. 2017, 5, 7840–7850. [Google Scholar] [CrossRef]
- Xia, P.; Mingjin, L.; Cheng, B.; Yu, J.; Zhang, L. Dopamine Modified g-C3N4 and Its Enhanced Visible-Light Photocatalytic H2-Production Activity. ACS Sustain. Chem. Eng. 2018, 6, 8945–8953. [Google Scholar] [CrossRef]
- Kim, C.; Jiang, P.K.; Liu, F.; Hyon, S.; Ri, M.G.; Yu, Y.; Ho, M. Investigation on dielectric breakdown behavior of thermally aged cross-linked polyethylene cable insulation. Polym. Test. 2019, 80, 106045. [Google Scholar] [CrossRef]
- Zhao, Y.K.; Zhang, G.Q.; Guo, R.R.; Yang, F.Y. The Breakdown Characteristics of Thermostable Insulation Materials under High-Frequency Square Waveform. IEEE Trans. Dielectr. Electr. Insul. 2019, 26, 1073–1080. [Google Scholar] [CrossRef]
- Silau, H.; Stabell, N.B.; Petersen, F.R.; Pham, M.; Yu, L.Y.; Skov, A.L. Weibull Analysis of Electrical Breakdown Strength as an Effective Means of Evaluating Elastomer Thin Film Quality. Adv. Eng. Mater. 2018, 20, 1800241. [Google Scholar] [CrossRef]
- Beier, C.W.; Sanders, J.M.; Brutchey, R.L. Improved Breakdown Strength and Energy Density in Thin-Film Polyimide Nanocomposites with Small Barium Strontium Titanate Nanocrystal Fillers. J. Phys. Chem. C 2013, 117, 6958–6965. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, Y.; Wang, Z.; Huo, S.; Lin, J.; He, S. Improved Dielectric Breakdown Strength of Polyimide by Incorporating Polydopamine-Coated Graphitic Carbon Nitride. Polymers 2022, 14, 385. https://doi.org/10.3390/polym14030385
Dong Y, Wang Z, Huo S, Lin J, He S. Improved Dielectric Breakdown Strength of Polyimide by Incorporating Polydopamine-Coated Graphitic Carbon Nitride. Polymers. 2022; 14(3):385. https://doi.org/10.3390/polym14030385
Chicago/Turabian StyleDong, Yinjie, Zhaoyang Wang, Shouchao Huo, Jun Lin, and Shaojian He. 2022. "Improved Dielectric Breakdown Strength of Polyimide by Incorporating Polydopamine-Coated Graphitic Carbon Nitride" Polymers 14, no. 3: 385. https://doi.org/10.3390/polym14030385