Self-Healable and Recyclable Dual-Shape Memory Liquid Metal–Elastomer Composites
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of PU Prepolymers
2.3. Preparation of Bilayer-Structured Ga–PU Composites
2.4. Characterization
3. Results and Discussion
3.1. Fabrication and Characterization of the Ga–PU Composites
3.2. Dual-Shape Memory Effect of the Ga–PU Composites
3.3. Light-Controlled and Self-Healing Circuits Enabled by the Ga–PU Composites
3.4. Recycling of the Ga–PU Composites
4. Conclusions
- The composites exhibit high shape-morphing efficiency, with the shape fixity ratio exceeding 80% and the shape recovery ratio exceeding 70%.
- A four-fingered gripper was designed and fabricated by the shape programming of the composite; the gripper demonstrated the ability to catch and release an object.
- Combining its photothermal effect, electrical conductivity, and shape-morphing properties, the composite was used to design a light-controlled LED circuit that can remotely turn an LED lamp on and off, signifying that remote, on demand, and localized shape morphing is possible.
- The nature of DA bond crosslinked networks makes the composites self-healable and recyclable. Both Ga and PU elastomer are readily recycled, and the recycling efficiency of Ga is as high as 96.7%. The mechanical performance of the recycled PU elastomer is close to that of the pristine one.
- This multifunctional Ga–PU composite incorporates the properties of liquid metals and PU elastomers in terms of material and structural design, and exhibits enhanced performances for potential applications in soft robotics, reconfigurable electronics, and transient devices.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- da Cunha, M.P.; Debije, M.G.; Schenning, A.P.H.J. Bioinspired light-driven soft robots based on liquid crystal polymers. Chem. Soc. Rev. 2020, 49, 6568–6578. [Google Scholar] [CrossRef]
- Zhou, H.; Mayorga-Martinez, C.C.; Pane, S.; Zhang, L.; Pumera, M. Magnetically driven micro and nanorobots. Chem. Rev. 2021, 121, 4999–5041. [Google Scholar] [CrossRef]
- Kim, Y.; Parada, G.A.; Liu, S.; Zhao, X. Ferromagnetic soft continuum robots. Sci. Robot. 2019, 4, eaax7329. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Chan, K.F.; Yuan, K.; Wang, Q.; Xia, X.; Yang, L.; Ko, H.; Wang, Y.-X.J.; Sung, J.J.Y.; Chiu, P.W.Y.; et al. Endoscopy-assisted magnetic navigation of biohybrid soft microrobots with rapid endoluminal delivery and imaging. Sci. Robot. 2021, 6, abd2813. [Google Scholar] [CrossRef] [PubMed]
- Apsite, I.; Salehi, S.; Ionov, L. Materials for smart soft actuator systems. Chem. Rev. 2022, 122, 1349–1415. [Google Scholar] [CrossRef] [PubMed]
- Ilami, M.; Bagheri, H.; Ahmed, R.; Skowronek, E.O.; Marvi, H. Materials, actuators, and sensors for soft bioinspired robots. Adv. Mater. 2021, 33, 2003139. [Google Scholar] [CrossRef] [PubMed]
- Zheng, L.; Handschuh-Wang, S.; Ye, Z.; Wang, B. Liquid metal droplets enabled soft robots. Appl. Mater. Today 2022, 27, 101423. [Google Scholar] [CrossRef]
- Li, F.; Shu, J.; Zhang, L.; Yang, N.; Xie, J.; Li, X.; Cheng, L.; Kuang, S.; Tang, S.-Y.; Zhang, S.; et al. Liquid metal droplet robot. Appl. Mater. Today 2020, 19, 100597. [Google Scholar] [CrossRef]
- Ren, L.; Xu, X.; Du, Y.; Kalantar-Zadeh, K.; Dou, S.X. Liquid metals and their hybrids as stimulus-responsive smart materials. Mater. Today 2020, 34, 92–114. [Google Scholar] [CrossRef]
- Handschuh-Wang, S.; Chen, Y.Z.; Zhu, L.F.; Zhou, X.C. Analysis and transformations of room-temperature liquid metal interfaces—A closer look through interfacial tension. Chemphyschem 2018, 19, 1584–1592. [Google Scholar] [CrossRef]
- Plevachuk, Y.; Sklyarchuk, V.; Eckert, S.; Gerbeth, G.; Novakovic, R. Thermophysical properties of the liquid ga-in-sn eutectic alloy. J. Chem. Eng. Data 2014, 59, 757–763. [Google Scholar] [CrossRef]
- Handschuh-Wang, S.; Gan, T.; Wang, T.; Stadler, F.J.; Zhou, X. Surface tension of the oxide skin of gallium-based liquid metals. Langmuir 2021, 37, 9017–9025. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.R.; Eaker, C.B.; Bowden, E.F.; Dickey, M.D. Giant and switchable surface activity of liquid metal via surface oxidation. Proc. Natl. Acad. Sci. USA 2014, 111, 14047–14051. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, Z.; Chen, Y.; Yun, F.F.; Cortie, D.; Jiang, L.; Wang, X. Discovery of a voltage-stimulated heartbeat effect in droplets of liquid gallium. Phys. Rev. Lett. 2018, 121, 024302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shu, J.; Ge, D.-A.; Wang, E.; Ren, H.; Cole, T.; Tang, S.-Y.; Li, X.; Zhou, X.; Li, R.; Jin, H.; et al. A liquid metal artificial muscle. Adv. Mater. 2021, 33, 2103062. [Google Scholar] [CrossRef]
- Wu, J.; Tang, S.-Y.; Fang, T.; Li, W.; Li, X.; Zhang, S. A wheeled robot driven by a liquid-metal droplet. Adv. Mater. 2018, 30, 1805039. [Google Scholar] [CrossRef]
- Li, X.; Tang, S.-Y.; Li, S.; Ge, D.a.; Yang, J.; Zhou, J.; Yang, H.; Zhang, S.; Li, W.; Sun, L. A robot boat powered by liquid metal engines. Adv. Mater. Technol. 2021, 6, 2000840. [Google Scholar] [CrossRef]
- Zhang, Y.; Jiang, S.; Hu, Y.; Wu, T.; Zhang, Y.; Li, H.; Li, A.; Zhang, Y.; Wu, H.; Ding, Y.; et al. Reconfigurable magnetic liquid metal robot for high-performance droplet manipulation. Nano Lett. 2022, 22, 2923–2933. [Google Scholar] [CrossRef]
- Li, Z.; Xu, J.; Wu, Z.; Guo, B.; He, Q. Liquid metal swimming nanorobots. Acc. Mater. Res. 2022, 3, 122–132. [Google Scholar] [CrossRef]
- Lu, Y.; Lin, Y.; Chen, Z.; Hu, Q.; Liu, Y.; Yu, S.; Gao, W.; Dickey, M.D.; Gu, Z. Enhanced endosomal escape by light-fueled liquid-metal transformer. Nano Lett. 2017, 17, 2138–2145. [Google Scholar] [CrossRef]
- Gan, T.; Shang, W.; Handschuh-Wang, S.; Zhou, X. Light-induced shape morphing of liquid metal nanodroplets enabled by polydopamine coating. Small 2019, 15, 1804838. [Google Scholar] [CrossRef] [PubMed]
- Cao, L.X.; Yu, D.H.; Xia, Z.S.; Wan, H.Y.; Liu, C.K.; Yin, T.; He, Z.Z. Ferromagnetic liquid metal putty-like material with transformed shape and reconfigurable polarity. Adv. Mater. 2020, 32, 2000827. [Google Scholar] [CrossRef] [PubMed]
- Majidi, C.; Alizadeh, K.; Ohm, Y.; Silva, A.; Tavakoli, M. Liquid metal polymer composites: From printed stretchable circuits to soft actuators. Flex. Print. Electron. 2022, 7, 013002. [Google Scholar] [CrossRef]
- Sun, X.; Wang, X.; Yuan, B.; Liu, J. Liquid metal-enabled cybernetic electronics. Mater. Today Phys. 2020, 14, 100245. [Google Scholar] [CrossRef]
- Style, R.W.; Tutika, R.; Kim, J.Y.; Bartlett, M.D. Solid-liquid composites for soft multifunctional materials. Adv. Funct. Mater. 2021, 31, 2005804. [Google Scholar] [CrossRef]
- Zaghloul, M.M.Y.M. Mechanical properties of linear low-density polyethylene fire-retarded with melamine polyphosphate. J. Appl. Polym. Sci. 2018, 135, 46770. [Google Scholar] [CrossRef]
- Zaghloul, M.M.Y.; Steel, K.; Veidt, M.; Heitzmann, M.T. Wear behaviour of polymeric materials reinforced with man-made fibres: A comprehensive review about fibre volume fraction influence on wear performance. J. Reinf. Plast. Compos. 2022, 41, 215–241. [Google Scholar] [CrossRef]
- Tang, S.-Y.; Qiao, R. Liquid metal particles and polymers: A soft–soft system with exciting properties. Acc. Mater. Res. 2021, 2, 966–978. [Google Scholar] [CrossRef]
- Ford, M.J.; Ambulo, C.P.; Kent, T.A.; Markvicka, E.J.; Pan, C.; Malen, J.; Ware, T.H.; Majidi, C. A multifunctional shape-morphing elastomer with liquid metal inclusions. Proc. Natl. Acad. Sci. USA 2019, 116, 21438–21444. [Google Scholar] [CrossRef] [Green Version]
- Ma, B.; Xu, C.; Cui, L.; Zhao, C.; Liu, H. Magnetic printing of liquid metal for perceptive soft actuators with embodied intelligence. ACS Appl. Mater. Interfaces 2021, 13, 5574–5582. [Google Scholar] [CrossRef]
- Ambulo, C.P.; Ford, M.J.; Searles, K.; Majidi, C.; Ware, T.H. 4d-printable liquid metal-liquid crystal elastomer composites. ACS Appl. Mater. Interfaces 2021, 13, 12805–12813. [Google Scholar] [CrossRef] [PubMed]
- Kotikian, A.; Morales, J.M.; Lu, A.; Mueller, J.; Davidson, Z.S.; Boley, J.W.; Lewis, J.A. Innervated, self-sensing liquid crystal elastomer actuators with closed loop control. Adv. Mater. 2021, 33, 2101814. [Google Scholar] [CrossRef]
- Lv, P.; Yang, X.; Bisoyi, H.K.; Zeng, H.; Zhang, X.; Chen, Y.; Xue, P.; Shi, S.; Priimagi, A.; Wang, L.; et al. Stimulus-driven liquid metal and liquid crystal network actuators for programmable soft robotics. Mater. Horiz. 2021, 8, 2475–2484. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Wang, Y.; Liao, W.; Yang, Z. Ultrafast, high-contractile electrothermal-driven liquid crystal elastomer fibers towards artificial muscles. Small 2021, 17, 2103700. [Google Scholar] [CrossRef] [PubMed]
- Daeneke, T.; Khoshmanesh, K.; Mahmood, N.; de Castro, I.A.; Esrafilzadeh, D.; Barrow, S.J.; Dickey, M.D.; Kalantar-zadeh, K. Liquid metals: Fundamentals and applications in chemistry. Chem. Soc. Rev. 2018, 47, 4073–4111. [Google Scholar] [CrossRef]
- Tang, S.Y.; Tabor, C.; Kalantar-Zadeh, K.; Dickey, M.D. Gallium liquid metal: The devil’s elixir. Annu. Rev. Mater. Res. 2021, 51, 381–408. [Google Scholar] [CrossRef]
- Bartlett, M.D.; Kazem, N.; Powell-Palm, M.J.; Huang, X.N.; Sun, W.H.; Malen, J.A.; Majidi, C. High thermal conductivity in soft elastomers with elongated liquid metal inclusions. Proc. Natl. Acad. Sci. USA 2017, 114, 2143–2148. [Google Scholar] [CrossRef] [Green Version]
- Haque, A.; Tutika, R.; Byrum, R.L.; Bartlett, M.D. Programmable liquid metal microstructures for multifunctional soft thermal composites. Adv. Funct. Mater. 2020, 30, 2000832. [Google Scholar] [CrossRef]
- Ma, Z.J.; Huang, Q.Y.; Xu, Q.; Zhuang, Q.N.; Zhao, X.; Yang, Y.H.; Qiu, H.; Yang, Z.L.; Wang, C.; Chai, Y.; et al. Permeable superelastic liquid-metal fibre mat enables biocompatible and monolithic stretchable electronics. Nat. Mater. 2021, 20, 859–868. [Google Scholar] [CrossRef]
- Park, J.E.; Kang, H.S.; Koo, M.; Park, C. Autonomous surface reconciliation of a liquid-metal conductor micropatterned on a deformable hydrogel. Adv. Mater. 2020, 32, 2002178. [Google Scholar] [CrossRef]
- Wang, H.; Yao, Y.; He, Z.; Rao, W.; Hu, L.; Chen, S.; Lin, J.; Gao, J.; Zhang, P.; Sun, X.; et al. A highly stretchable liquid metal polymer as reversible transitional insulator and conductor. Adv. Mater. 2019, 31, 1901337. [Google Scholar] [CrossRef] [PubMed]
- Chang, B.S.; Tutika, R.; Cutinho, J.; Oyola-Reynoso, S.; Chen, J.; Bartlett, M.D.; Thuo, M.M. Mechanically triggered composite stiffness tuning through thermodynamic relaxation (st3r). Mater. Horiz. 2018, 5, 416–422. [Google Scholar] [CrossRef]
- Zhu, L.F.; Chen, Y.Z.; Shang, W.H.; Handschuh-Wang, S.; Zhou, X.H.; Gan, T.S.; Wu, Q.X.; Liu, Y.Z.; Zhou, X.C. Anisotropic liquid metal-elastomer composites. J. Mater. Chem. C 2019, 7, 10166–10172. [Google Scholar] [CrossRef]
- Liu, H.; Xin, Y.; Lou, Y.; Peng, Y.; Wei, L.; Zhang, J. Liquid metal gradient fibers with reversible thermal programmability. Mater. Horiz. 2020, 7, 2141–2149. [Google Scholar] [CrossRef]
- Chen, G.K.; Deng, X.B.; Zhu, L.F.; Handschuh-Wang, S.; Gan, T.S.; Wang, B.; Wu, Q.X.; Fang, H.; Ren, N.L.; Zhou, X.C. Recyclable, weldable, mechanically durable, and programmable liquid metal-elastomer composites. J. Mater. Chem. A 2021, 9, 10953–10965. [Google Scholar] [CrossRef]
- Jiang, Z.C.; Xiao, Y.Y.; Yin, L.; Han, L.; Zhao, Y. “Self-lockable” liquid crystalline diels-alder dynamic network actuators with room temperature programmability and solution reprocessability. Angew. Chem. Int. Ed. 2020, 59, 4925–4931. [Google Scholar] [CrossRef]
- Truong, T.T.; Thai, S.H.; Nguyen, H.T.; Phung, D.T.T.; Nguyen, L.T.; Pham, H.Q.; Nguyen, L.T.T. Tailoring the hard-soft interface with dynamic diels-alder linkages in polyurethanes: Toward superior mechanical properties and healability at mild temperature. Chem. Mater. 2019, 31, 2347–2357. [Google Scholar] [CrossRef]
- Lu, X.L.; Fei, G.X.; Xia, H.S.; Zhao, Y. Ultrasound healable shape memory dynamic polymers. J. Mater. Chem. A 2014, 2, 16051–16060. [Google Scholar] [CrossRef]
- Xin, Y.M.; Peng, H.; Xu, J.; Zhang, J.Y. Ultrauniform embedded liquid metal in sulfur polymers for recyclable, conductive, and self-healable materials. Adv. Funct. Mater. 2019, 29, 1808989. [Google Scholar] [CrossRef]
- Zhang, P.J.; Wang, Q.; Guo, R.; Zhang, M.K.; Wang, S.Q.; Lu, C.N.; Xue, M.Q.; Fan, J.B.; He, Z.Z.; Rao, W. Self-assembled ultrathin film of cnc/pva-liquid metal composite as a multifunctional janus material. Mater. Horiz. 2019, 6, 1643–1653. [Google Scholar] [CrossRef]
- Thrasher, C.; Farrell, Z.; Morris, N.; Willey, C.; Tabor, C. Mechanoresponsive polymerized liquid metal networks. Adv. Mater. 2019, 31, 1903864. [Google Scholar] [CrossRef] [PubMed]
- Yu, D.H.; Liao, Y.; Song, Y.C.; Wang, S.L.; Wan, H.Y.; Zeng, Y.H.; Yin, T.; Yang, W.H.; He, Z.Z. A super-stretchable liquid metal foamed elastomer for tunable control of electromagnetic waves and thermal transport. Adv. Sci. 2020, 7, 2000177. [Google Scholar] [CrossRef] [PubMed]
- Xin, Y.M.; Zhang, S.L.; Lou, Y.; Xu, J.; Zhang, J.Y. Determinative energy dissipation in liquid metal polymer composites for advanced electronic applications. Adv. Mater. Technol. 2020, 5, 2000018. [Google Scholar] [CrossRef]
- Lou, Y.; Liu, H.Z.; Zhang, J.Y. Liquid metals in plastics for super-toughness and high-performance force sensors. Chem. Eng. J. 2020, 399, 125732. [Google Scholar] [CrossRef]
- Yan, J.; Malakooti, M.H.; Lu, Z.; Wang, Z.; Kazem, N.; Pan, C.; Bockstaller, M.R.; Majidi, C.; Matyjaszewski, K. Solution processable liquid metal nanodroplets by surface-initiated atom transfer radical polymerization. Nat. Nanotechnol. 2019, 14, 684–690. [Google Scholar] [CrossRef] [PubMed]
- Handschuh-Wang, S.; Stadler, F.J.; Zhou, X. Critical review on the physical properties of gallium-based liquid metals and selected pathways for their alteration. J. Phys. Chem. C 2021, 125, 20113–20142. [Google Scholar] [CrossRef]
- Zhang, Y.L.; Zhou, S.W.; Chong, K.C.; Wang, S.W.; Liu, B. Near-infrared light-induced shape memory, self-healable and anti-bacterial elastomers prepared by incorporation of a diketopyrrolopyrrole-based conjugated polymer. Mater. Chem. Front. 2019, 3, 836–841. [Google Scholar] [CrossRef]
- Du, W.N.; Jin, Y.; Lai, S.Q.; Shi, L.J.; Fan, W.H.; Pan, J.Z. Near-infrared light triggered shape memory and self-healable polyurethane/ functionalized graphene oxide composites containing diselenide bonds. Polymer 2018, 158, 120–129. [Google Scholar] [CrossRef]
- Li, X.K.; Li, M.J.; Shou, Q.H.; Zhou, L.; Ge, A.L.; Pei, D.F.; Li, C.X. Liquid metal initiator of ring-opening polymerization: Self-capsulation into thermal/photomoldable powder for multifunctional composites. Adv. Mater. 2020, 32, 2003553. [Google Scholar] [CrossRef]
- Lu, H.F.; Wang, M.; Chen, X.M.; Lin, B.P.; Yang, H. Interpenetrating liquid-crystal polyurethane/polyacrylate elastomer with ultrastrong mechanical property. J. Am. Chem. Soc. 2019, 141, 14364–14369. [Google Scholar] [CrossRef]
- Yang, Z.H.; Wang, Q.H.; Wang, T.M. Dual-triggered and thermally reconfigurable shape memory graphene-vitrimer composites. ACS Appl. Mater. Interfaces 2016, 8, 21691–21699. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Pei, Z.Q.; Li, Z.; Wei, Y.; Ji, Y. Making and remaking dynamic 3d structures by shining light on flat liquid crystalline vitrimer films without a mold. J. Am. Chem. Soc. 2016, 138, 2118–2121. [Google Scholar] [CrossRef] [PubMed]
- Zheng, N.; Xu, Y.; Zhao, Q.; Xie, T. Dynamic covalent polymer networks: A molecular platform for designing functions beyond chemical recycling and self-healing. Chem. Rev. 2021, 121, 1716–1745. [Google Scholar] [CrossRef]
- Teng, L.; Ye, S.C.; Handschuh-Wang, S.; Zhou, X.H.; Gan, T.S.; Zhou, X.C. Liquid metal-based transient circuits for flexible and recyclable electronics. Adv. Funct. Mater. 2019, 29, 1808739. [Google Scholar] [CrossRef]
- Yoon, J.; Han, J.; Choi, B.; Lee, Y.; Kim, Y.; Park, J.; Lim, M.; Kang, M.H.; Kim, D.H.; Kim, D.M.; et al. Three-dimensional printed poly(vinyl alcohol) substrate with controlled on-demand degradation for transient electronics. ACS Nano 2018, 12, 6006–6012. [Google Scholar] [CrossRef]
- Chen, Y.Z.; Zhou, T.J.; Li, Y.Y.; Zhu, L.F.; Handschuh-Wang, S.; Zhu, D.Y.; Zhou, X.H.; Liu, Z.; Gan, T.S.; Zhou, X.C. Robust fabrication of nonstick, noncorrosive, conductive graphene-coated liquid metal droplets for droplet-based, floating electrodes. Adv. Funct. Mater. 2018, 28, 1706277. [Google Scholar] [CrossRef]
- Handschuh-Wang, S.; Chen, Y.Z.; Zhu, L.F.; Gan, T.S.; Zhou, X.C. Electric actuation of liquid metal droplets in acidified aqueous electrolyte. Langmuir 2019, 35, 372–381. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deng, X.; Chen, G.; Liao, Y.; Lu, X.; Hu, S.; Gan, T.; Handschuh-Wang, S.; Zhang, X. Self-Healable and Recyclable Dual-Shape Memory Liquid Metal–Elastomer Composites. Polymers 2022, 14, 2259. https://doi.org/10.3390/polym14112259
Deng X, Chen G, Liao Y, Lu X, Hu S, Gan T, Handschuh-Wang S, Zhang X. Self-Healable and Recyclable Dual-Shape Memory Liquid Metal–Elastomer Composites. Polymers. 2022; 14(11):2259. https://doi.org/10.3390/polym14112259
Chicago/Turabian StyleDeng, Xiaobo, Guokang Chen, Yifan Liao, Xi Lu, Shuangyan Hu, Tiansheng Gan, Stephan Handschuh-Wang, and Xueli Zhang. 2022. "Self-Healable and Recyclable Dual-Shape Memory Liquid Metal–Elastomer Composites" Polymers 14, no. 11: 2259. https://doi.org/10.3390/polym14112259