Development of Dynamic Four-Dimensional Printing Technology for Patterned Structures by Applying Microcellular Foaming Process
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Specimen
2.1.2. Blowing Agents
2.2. Experiment
2.2.1. Microcellular Foaming Process
2.2.2. Three-Dimensional Printing of Patterned Specimens
2.2.3. Microcellular Foaming 4D Printing
2.3. Characterization
3. Results and Discussion
3.1. Foaming Characteristics
3.1.1. Gas Absorption
3.1.2. Foaming Ratio
3.1.3. Cell Morphology
3.2. Bending Dynamics Induced by Patterning and Foaming
3.3. Application
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ngo, T.D.; Kashani, A.; Imbalzano, G.; Nguyen, K.T.Q.; Hui, D. Additive Manufacturing (3D Printing): A Review of Materials, Methods, Applications and Challenges. Compos. B Eng. 2018, 143, 172–196. [Google Scholar] [CrossRef]
- Jandyal, A.; Chaturvedi, I.; Wazir, I.; Raina, A.; Ul Haq, M.I. 3D Printing—A Review of Processes, Materials and Applications in Industry 4.0. Sustain. Oper. Comput. 2022, 3, 33–42. [Google Scholar] [CrossRef]
- Hussain, A.; Jabeen, N.; Tabassum, A.; Ali, J. 3D-Printed Conducting Polymers for Solid Oxide Fuel Cells. 3D Print. Conduct. Polym. 2024, 17, 179–195. [Google Scholar]
- Tibbits, S. 4D Printing: Multi-Material Shape Change. Archit. Des. 2014, 84, 116–121. [Google Scholar] [CrossRef]
- Song, H.; Kim, J. 4D Printing with Smart Materials and Structures. Ceramist 2020, 23, 27–37. [Google Scholar] [CrossRef]
- Goo, B.; Hong, C.H.; Park, K. 4D Printing Using Anisotropic Thermal Deformation of 3D-Printed Thermoplastic Parts. Mater. Des. 2020, 188, 108485. [Google Scholar] [CrossRef]
- Mahmood, A.; Akram, T.; Chen, H.; Chen, S. On the Evolution of Additive Manufacturing (3D/4D Printing) Technologies: Materials, Applications, and Challenges. Polymers 2022, 14, 4698. [Google Scholar] [CrossRef]
- McLellan, K.; Sun, Y.C.; Naguib, H.E. A Review of 4D Printing: Materials, Structures, and Designs towards the Printing of Biomedical Wearable Devices. Bioprinting 2022, 27, e00217. [Google Scholar] [CrossRef]
- Alshebly, Y.S.; Nafea, M.; Mohamed Ali, M.S.; Almurib, H.A.F. Review on Recent Advances in 4D Printing of Shape Memory Polymers. Eur. Polym. J. 2021, 159, 110708. [Google Scholar] [CrossRef]
- Le Duigou, A.; Correa, D.; Ueda, M.; Matsuzaki, R.; Castro, M. A Review of 3D and 4D Printing of Natural Fibre Biocomposites. Mater. Des. 2020, 194, 108911. [Google Scholar] [CrossRef]
- Correa, D.; Papadopoulou, A.; Guberan, C.; Jhaveri, N.; Reichert, S.; Menges, A.; Tibbits, S. 3D-Printed Wood: Programming Hygroscopic Material Transformations. 3D Print. Addit. Manuf. 2015, 2, 106–116. [Google Scholar] [CrossRef]
- Liman, G.; Mutluturk, E.; Demirel, G. Light- and Solvent-Responsive Bilayer Hydrogel Actuators with Reversible Bending Behaviors. ACS Mater. Au 2024, 4, 385–392. [Google Scholar] [CrossRef] [PubMed]
- Tang, L.; Wu, X.; Xu, Y.; Li, Y.; Wu, S.; Gong, L.; Tang, J. Bilayer Hydrogel Actuators with High Mechanical Properties and Programmable Actuation via the Synergy of Double-Network and Synchronized Ultraviolet Polymerization Strategies. Polymers 2024, 16, 840. [Google Scholar] [CrossRef] [PubMed]
- Eristoff, S.; Kim, S.Y.; Sanchez-Botero, L.; Buckner, T.; Yirmibeşoğlu, O.D.; Kramer-Bottiglio, R. Soft Actuators Made of Discrete Grains. Adv. Mater. 2022, 34, 2109617. [Google Scholar] [CrossRef]
- Zolfagharian, A.; Kaynak, A.; Khoo, S.Y.; Kouzani, A. Pattern-Driven 4D Printing. Sens. Actuators A Phys. 2018, 274, 231–243. [Google Scholar] [CrossRef]
- Waldman, F.A. The Processing of Microcellular Foam. Master’s Thesis, Massachusetts Institute of Technology, Cambridge, MA, USA, 1982. [Google Scholar]
- Cha, S.W. A Microcellular Foaming/Forming Process Performed at Ambient Temperature and a Super-Microcellular Foaming Process. Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA, USA, 1994. [Google Scholar]
- Jeon, B.; Kim, H.K.; Cha, S.W.; Lee, S.J.; Han, M.S.; Lee, K.S. Microcellular Foam Processing of Biodegradable Polymers—Review. Int. J. Precis. Eng. Manuf. 2013, 14, 679–690. [Google Scholar] [CrossRef]
- Taki, K.; Nakayama, T.; Yatsuzuka, T.; Ohshima, M. Visual Observations of Batch and Continuous Foaming Processes. J. Cell. Plast. 2003, 39, 155–169. [Google Scholar] [CrossRef]
- Kim, H.K.; Sohn, J.S.; Ryu, Y.; Kim, S.W.; Cha, S.W. Warpage Reduction of Glass Fiber Reinforced Plastic Using Microcellular Foaming Process Applied Injection Molding. Polymers 2019, 11, 360. [Google Scholar] [CrossRef] [PubMed]
- Cha, S.W.; Cho, S.H.; Sohn, J.S.; Ryu, Y.; Ahn, J. Reflectance According to Cell Size, Foaming Ratio and Refractive Index of Microcellular Foamed Amorphous Polymer. Int. J. Mol. Sci. 2019, 20, 6068. [Google Scholar] [CrossRef]
- Yang, H.; Liu, Y.; Sun, K.; Fang, L.; Lu, C.; Xu, Z. Precise Prediction of Photothermally Induced Irreversible Bending Deformation Based on Non-Uniform Thermal Expansion of Layer-Structure Films. Smart Mater. Struct. 2022, 31, 095041. [Google Scholar] [CrossRef]
- Lim, D.; Kim, J.; Hong, J.; Kim, K.; Cha, S.W. Development of Smart Materials with Versatile Bending Capabilities Using Microcellular Foaming Process: Influence of Foaming and Desorption Time. Smart Mater. Struct. 2024, 33, 065008. [Google Scholar] [CrossRef]
- Brütting, C.; Dreier, J.; Bonten, C.; Altstädt, V.; Ruckdäschel, H. Glass Transition of PLA-CO2 Mixtures after Solid-State Saturation. J. Cell. Plast. 2022, 58, 917–931. [Google Scholar] [CrossRef]
- Nofar, M.; Tabatabaei, A.; Ameli, A.; Park, C.B. Comparison of Melting and Crystallization Behaviors of Polylactide under High-Pressure CO2, N2, and He. Polymer 2013, 54, 6471–6478. [Google Scholar] [CrossRef]
- Wong, A.; Mark, L.H.; Hasan, M.M.; Park, C.B. The Synergy of Supercritical CO2 and Supercritical N2 in Foaming of Polystyrene for Cell Nucleation. J. Supercrit. Fluids 2014, 90, 35–43. [Google Scholar] [CrossRef]
- Kim, J.; Kim, K.H.; Lim, D.H.; Kwon, B.C.; Hong, J.; Yoon, H.S.; Cha, S.W. Modeling and Experiment for the Diffusion Coefficient of Subcritical Carbon Dioxide in Poly(Methyl Methacrylate) to Predict Gas Sorption and Desorption. Polymers 2022, 14, 596. [Google Scholar] [CrossRef]
- Seo, J.H.; Han, J.; Lee, K.S.; Cha, S.W. Combined Effects of Chemical and Microcellular Foaming on Foaming Characteristics of PLA (Poly Lactic Acid) in Injection Molding Process. Polym.-Plast. Technol. Eng. 2012, 51, 455–460. [Google Scholar] [CrossRef]
- Pang, Y.; Cao, Y.; Zheng, W.; Park, C.B. A Comprehensive Review of Cell Structure Variation and General Rules for Polymer Microcellular Foams. Chem. Eng. J. 2022, 430, 132662. [Google Scholar] [CrossRef]
- Xue, S.; Jia, P.; Ren, Q.; Liu, X.; Lee, R.E.; Zhai, W. Improved Expansion Ratio and Heat Resistance of Microcellular Poly(L-Lactide) Foam via in-Situ Formation of Stereocomplex Crystallites. J. Cell. Plast. 2018, 54, 103–119. [Google Scholar] [CrossRef]
- Chen, P.; Wang, W.; Wang, Y.; Yu, K.; Zhou, H.; Wang, X.; Mi, J. Crystallization-Induced Microcellular Foaming of Poly (Lactic Acid) with High Volume Expansion Ratio. Polym. Degrad. Stab. 2017, 144, 231–240. [Google Scholar] [CrossRef]
- Kim, K.H.; Kim, J.H.; Lim, D.H.; Kwon, B.C.; Hong, J.; Yoon, H.S.; Cha, S.W. In Situ Changes in Mechanical Properties Based on Gas Saturation Inside Pressure Vessels. Polymers 2024, 16, 1276. [Google Scholar] [CrossRef]
- Kostopoulos, G.; Stamoulis, K.; Lappas, V.; Georgantzinos, S.K. Shape Morphing of 4D-Printed Polylactic Acid Structures under Thermal Stimuli: An Experimental and Finite Element Analysis. Aerospace 2024, 11, 134. [Google Scholar] [CrossRef]
- Yeo, S.D.; Kiran, E. Formation of Polymer Particles with Supercritical Fluids: A Review. J. Supercrit. Fluids 2005, 34, 287–308. [Google Scholar] [CrossRef]
Property | Value |
---|---|
Nozzle temperature (°C) | 210 |
Bed temperature (°C) | 60 |
Nozzle size (mm) | 0.2 |
Layer thickness (mm) | 0.2 |
Infill (%) | 100 |
Infill pattern | Lines |
Property | Value |
---|---|
Saturation pressure (MPa) | 5 |
Saturation temperature (°C) | 20 |
Saturation time (min) | 15, 30, 60, 120, 180, 300 |
Foaming temperature (°C) | 110 |
Foaming time (s) | 40 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, K.H.; Kim, J.H.; Hong, J.; Cha, S.W. Development of Dynamic Four-Dimensional Printing Technology for Patterned Structures by Applying Microcellular Foaming Process. Polymers 2024, 16, 2242. https://doi.org/10.3390/polym16162242
Kim KH, Kim JH, Hong J, Cha SW. Development of Dynamic Four-Dimensional Printing Technology for Patterned Structures by Applying Microcellular Foaming Process. Polymers. 2024; 16(16):2242. https://doi.org/10.3390/polym16162242
Chicago/Turabian StyleKim, Kwan Hoon, Jae Hoo Kim, Jin Hong, and Sung Woon Cha. 2024. "Development of Dynamic Four-Dimensional Printing Technology for Patterned Structures by Applying Microcellular Foaming Process" Polymers 16, no. 16: 2242. https://doi.org/10.3390/polym16162242