Flexible Vibration Sensors with Omnidirectional Sensing Enabled by Femtosecond Laser-Assisted Fabrication
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Conductive Ink
2.3. Fabrication of Vibration Sensor
2.4. Design of the Groove-Based Composite Flexible Sensor
2.5. Characteristics of the Vibration Sensor
3. Results and Discussion
3.1. Performance of the Groove-Based Composite Flexible Sensor
3.2. Application of the Groove-Based Composite Flexible Sensor
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Mukhopadhyay, S.C.; Tyagi, S.K.S.; Suryadevara, N.K.; Piuri, V.; Scotti, F.; Zeadally, S. Artificial Intelligence-Based Sensors for Next Generation IoT Applications: A Review. IEEE Sens. J. 2021, 21, 24920–24932. [Google Scholar] [CrossRef]
- Goyal, D.; Pabla, B.S. The Vibration Monitoring Methods and Signal Processing Techniques for Structural Health Monitoring: A Review. Arch. Comput. Methods Eng. 2016, 23, 585–594. [Google Scholar] [CrossRef]
- Park, J.; Seo, B.; Jeong, Y.; Park, I. A Review of Recent Advancements in Sensor-Integrated Medical Tools. Adv. Sci. 2024, 11, 3207427. [Google Scholar] [CrossRef]
- Zou, Y.; Sun, M.; Zhang, X.; Wang, J.; Li, F.; Dong, F.; Zhao, Z.; Du, T.; Ji, Y.; Sun, P.; et al. A Flexible, Adaptive, and Self-Powered Triboelectric Vibration Sensor with Conductive Sponge-Silicone for Machinery Condition Monitoring. Small 2024, 20, e2309759. [Google Scholar] [CrossRef]
- Abdelrhman, A.M.; Hee, L.M.; Leong, M.S.; Al-Obaidi, S. Condition Monitoring of Blade in Turbomachinery: A Review. Adv. Mech. Eng. 2014, 2014, 210717. [Google Scholar] [CrossRef]
- Wang, T.; Lu, G.; Yan, P. Multi-Sensors Based Condition Monitoring of Rotary Machines: An Approach of Multidimensional Time-Series Analysis. Meas. J. Int. Meas. Confed. 2019, 134, 326–335. [Google Scholar] [CrossRef]
- Fabian, M.; Hind, D.M.; Gerada, C.; Sun, T.; Grattan, K.T.V. Comprehensive Monitoring of Electrical Machine Parameters Using an Integrated Fiber Bragg Grating-Based Sensor System. J. Light. Technol. 2018, 36, 1046–1051. [Google Scholar] [CrossRef]
- Ullo, S.L.; Sinha, G.R. Advances in Smart Environment Monitoring Systems Using IoT and Sensors. Sensors 2020, 20, 3113. [Google Scholar] [CrossRef]
- Bhatta, T.; Pradhan, G.B.; Shrestha, K.; Jeong, S.H.; Zhang, S.; Kim, H.S.; Park, J.Y. All Elastomeric Pillars-Based Triboelectric Vibration Sensor for Self-Powered Broad Range Machinery Condition Monitoring. Nano Energy 2023, 117, 108929. [Google Scholar] [CrossRef]
- Wang, L.; He, T.; Zhang, Z.; Zhao, L.; Lee, C.; Luo, G.; Mao, Q.; Yang, P.; Lin, Q.; Li, X.; et al. Self-Sustained Autonomous Wireless Sensing Based on a Hybridized TENG and PEG Vibration Mechanism. Nano Energy 2021, 80, 105555. [Google Scholar] [CrossRef]
- Lin, L.; Choi, Y.; Chen, T.; Kim, H.; Lee, K.S.; Kang, J.; Lyu, L.; Gao, J.; Piao, Y. Superhydrophobic and Wearable TPU Based Nanofiber Strain Sensor with Outstanding Sensitivity for High-Quality Body Motion Monitoring. Chem. Eng. J. 2021, 419, 129513. [Google Scholar] [CrossRef]
- Ao, S.-I.; Gelman, L.; Karimi, H.R.; Tiboni, M. Advances in Machine Learning for Sensing and Condition Monitoring. Appl. Sci. 2022, 12, 12392. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, Y.; Guo, Z.; Li, J.; Ge, X.; Sun, Q.; Yan, Z.; Li, Z.; Huang, Y. Health Monitoring by Optical Fiber Sensing Technology for Rechargeable Batteries. eScience 2024, 4, 100174. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, M.; Zhang, L.; Xu, J.; Xiao, X.; Zhang, X. Inkjet-Printed Flexible Sensors: From Function Materials, Manufacture Process, and Applications Perspective. Mater. Today Commun. 2022, 31, 103263. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, H.; Zhao, W.; Zhang, M.; Qin, H.; Xie, Y. Flexible, Stretchable Sensors for Wearable Health Monitoring: Sensing Mechanisms, Materials, Fabrication Strategies and Features. Sensors 2018, 18, 645. [Google Scholar] [CrossRef] [PubMed]
- Cheng, M.; Zhu, G.; Zhang, F.; Tang, W.L.; Jianping, S.; Yang, J.Q.; Zhu, L.Y. A Review of Flexible Force Sensors for Human Health Monitoring. J. Adv. Res. 2020, 26, 53–68. [Google Scholar] [CrossRef]
- Du, G.; Zhao, J.; Shao, Y.; Liu, T.; Luo, B.; Zhang, S.; Chi, M.; Cai, C.; Liu, Z.; Wang, S.; et al. A Self-Damping Triboelectric Tactile Patch for Self-Powered Wearable Electronics. eScience 2024, 100324. [Google Scholar] [CrossRef]
- Jan, A.A.; Kim, S.; Kim, S. A Skin-Wearable and Self-Powered Laminated Pressure Sensor Based on Triboelectric Nanogenerator for Monitoring Human Motion. Soft Sci. 2024, 4, 17. [Google Scholar] [CrossRef]
- Bian, Y.; Zhang, Y.; Xia, X. Design and Fabrication of a Multi-Electrode Metal-Core Piezoelectric Fiber and Its Application as an Airflow Sensor. J. Bionic Eng. 2016, 13, 416–425. [Google Scholar] [CrossRef]
- Da Silva, J.G.; De Carvalho, A.A.; Da Silva, D.D. A Strain Gauge Tactile Sensor for Finger-Mounted Applications. IEEE Trans. Instrum. Meas. 2002, 51, 18–22. [Google Scholar] [CrossRef]
- Lei, J.F.; Will, H.A. Thin-Film Thermocouples and Strain-Gauge Technologies for Engine Applications. Sens. Actuators A Phys. 1998, 65, 187–193. [Google Scholar] [CrossRef]
- Kervran, Y.; De Sagazan, O.; Crand, S.; Coulon, N.; Mohammed-Brahim, T.; Brel, O. Microcrystalline Silicon: Strain Gauge and Sensor Arrays on Flexible Substrate for the Measurement of High Deformations. Sens. Actuators A Phys. 2015, 236, 273–280. [Google Scholar] [CrossRef]
- Pang, C.; Lee, G.Y.; Kim, T.I.; Kim, S.M.; Kim, H.N.; Ahn, S.H.; Suh, K.Y. A Flexible and Highly Sensitive Strain-Gauge Sensor Using Reversible Interlocking of Nanofibres. Nat. Mater. 2012, 11, 795–801. [Google Scholar] [CrossRef] [PubMed]
- Hussain, S.; Liu, L.; Rui, M.; Yuanxiang, Z.; Ghaffar, A.; Chen, G.Y.; Alshehri, H.M.; Qureshi, K.K.; Ali, K.; Das, B.; et al. POF Helical Sensor: A Simple Design Approach for Vibration Measuring Based on Bend Loss Coupling. Opt. Express 2024, 32, 46763–46775. [Google Scholar] [CrossRef]
- Qin, Y.; Zhao, Y.; Li, Y.; Zhao, Y.; Wang, P. A High Performance Torque Sensor for Milling Based on a Piezoresistive MEMS Strain Gauge. Sensors 2016, 16, 513. [Google Scholar] [CrossRef]
- Zhu, T.; Wu, D.; Liu, M.; Duan, D.W. In-Line Fiber Optic Interferometric Sensors in Single-Mode Fibers. Sensors 2012, 12, 10430–10449. [Google Scholar] [CrossRef]
- Wang, A.; Member, S.; Xiao, H.; Wang, J.; Wang, Z.; Zhao, W.; May, R.G. Self-Calibrated Interferometric–Intensity-Based Optical Fiber Sensors. J. Light. Technol. 2001, 19, 1495–1501. [Google Scholar] [CrossRef]
- Friedman, S.J.; Barwick, B.; Batelaan, H. Focused-Laser Interferometric Position Sensor. Rev. Sci. Instrum. 2005, 76, 123106. [Google Scholar] [CrossRef]
- Koo, K.P.; Kersey, A.D. Bragg Grating-Based Laser Sensors Systems with Interferometric Interrogation and Wavelength Division Multiplexing. J. Light. Technol. 1995, 13, 1243–1249. [Google Scholar] [CrossRef]
- Lee, B.H.; Kim, Y.H.; Park, K.S.; Eom, J.B.; Kim, M.J.; Rho, B.S.; Choi, H.Y. Interferometric Fiber Optic Sensors. Sensors 2012, 12, 2467–2486. [Google Scholar] [CrossRef]
- Rajibul Islam, M.; Mahmood Ali, M.; Lai, M.H.; Lim, K.S.; Ahmad, H. Chronology of Fabry-Perot Interferometer Fiber-Optic Sensors and Their Applications: A Review. Sensors 2014, 14, 7451–7488. [Google Scholar] [CrossRef]
- Wang, Y.; Xie, F.; Ma, S.; Dong, L. Review of Surface Profile Measurement Techniques Based on Optical Interferometry. Opt. Lasers Eng. 2017, 93, 164–170. [Google Scholar] [CrossRef]
- Cao, X.; Xiong, Y.; Sun, J.; Zhu, X.; Sun, Q.; Wang, Z.L. Piezoelectric Nanogenerators Derived Self-Powered Sensors for Multifunctional Applications and Artificial Intelligence. Adv. Funct. Mater. 2021, 31, 2102983. [Google Scholar] [CrossRef]
- Bottega, V.; Molter, A.; Fonseca, J.S.O.; Pergher, R. Vibration Control of Manipulators with Flexible Nonprismatic Links Using Piezoelectric Actuators and Sensors. Math. Probl. Eng. 2009, 2009, 727385. [Google Scholar] [CrossRef]
- Romano, C.; Presti, D.L.; Silvestri, S.; Schena, E.; Massaroni, C. Tunable Soft Pressure Sensors Based on Magnetic Coupling Mediated by Hyperelastic Materials. Soft Sci. 2024, 4, 31. [Google Scholar] [CrossRef]
- Gao, Y.; Xia, Q.; Liao, G.; Shi, T. Sensitivity Analysis of a Bioinspired Refractive Index Based Gas Sensor. J. Bionic Eng. 2011, 8, 323–334. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, H.; Liu, L.; Yang, Y.; Zhang, C.; Duan, J. Crack-Based Composite Flexible Sensor with Superhydrophobicity to Detect Strain and Vibration. Polymers 2024, 16, 2535. [Google Scholar] [CrossRef]
- Cao, P.; Wang, C.; Niu, S.; Han, Z.; Liu, L.; Duan, J. An Ultrasensitive Flexible Force Sensor with Nature-Inspired Minimalistic Architecture to Achieve a Detection Resolution and Threshold of 1 MN for Underwater Applications. Mater. Sci. Eng. R Rep. 2024, 161, 100862. [Google Scholar] [CrossRef]
- Fuji, Y.; Hara, M.; Higashi, Y.; Kaji, S.; Masunishi, K.; Nagata, T.; Yuzawa, A.; Otsu, K.; Okamoto, K.; Baba, S.; et al. An Ultrasensitive Spintronic Strain-Gauge Sensor and a Spin-MEMS Microphone. Electron. Commun. Jpn. 2019, 102, 48–54. [Google Scholar] [CrossRef]
- Stockmann, M.; Naumann, J.; Schumann, J.; Mönch, I. Differential Strain Gauge: A Sensor Device for Macro- and Microsystems. Strain 2011, 47, 104–112. [Google Scholar] [CrossRef]
- Song, J.H.; Kim, Y.; Cho, S.; Song, W.; Moon, S.; Park, C.; Park, S.; Myoung, J.M.; Jeong, U. Surface-Embedded Stretchable Electrodes by Direct Printing and Their Uses to Fabricate Ultrathin Vibration Sensors and Circuits for 3D Structures. Adv. Mater. 2017, 29, 1702625. [Google Scholar] [CrossRef] [PubMed]
- Mebarki, A. Resilience: Theory and Metrics–A Metal Structure as Demonstrator. Eng. Struct. 2017, 138, 425–433. [Google Scholar] [CrossRef]
- Choi, H.; Choi, S.; Cha, H. Structural Health Monitoring System Based on Strain Gauge Enabled Wireless Sensor Nodes. In Proceedings of the 2008 5th International Conference on Networked Sensing Systems, Kanazawa, Japan, 17–19 June 2008; IEEE: Piscataway, NJ, USA, 2008; pp. 211–214. [Google Scholar]
- Zhang, Y.; Li, M.; Qi, Z.; Chen, R.; Lin, Y.; Cao, S.; Li, X.; Tang, R.; Chen, H. Nonlinear Mechanics of Horseshoe Microstructure-Based Lattice Design. Int. J. Mech. Sci. 2025, 285, 109781. [Google Scholar] [CrossRef]
- Kim, T.; Hong, I.; Roh, Y.; Kim, D.; Kim, S.; Im, S.; Kim, C.; Jang, K.; Kim, S.; Kim, M.; et al. Spider-Inspired Tunable Mechanosensor for Biomedical Applications. npj Flex. Electron. 2023, 7, 12. [Google Scholar] [CrossRef]
- Chen, X.; Zeng, Q.; Shao, J.; Li, S.; Li, X.; Tian, H.; Liu, G.; Nie, B.; Luo, Y. Channel-Crack-Designed Suspended Sensing Membrane as a Fully Flexible Vibration Sensor with High Sensitivity and Dynamic Range. ACS Appl. Mater. Interfaces 2021, 13, 34637–34647. [Google Scholar] [CrossRef] [PubMed]
- Cheng, A.J.; Chang, W.; Qiao, Y.; Huang, F.; Sha, Z.; He, S.; Wu, L.; Chu, D.; Peng, S. High-Performance Supercapacitive Pressure Sensors via Height-Grading Micro-Domes of Ionic Conductive Elastomer. ACS Appl. Mater. Interfaces 2024, 16, 59614–59625. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mou, Y.; Wang, C.; Liu, S.; Liu, L.; Duan, J. Flexible Vibration Sensors with Omnidirectional Sensing Enabled by Femtosecond Laser-Assisted Fabrication. Polymers 2025, 17, 211. https://doi.org/10.3390/polym17020211
Mou Y, Wang C, Liu S, Liu L, Duan J. Flexible Vibration Sensors with Omnidirectional Sensing Enabled by Femtosecond Laser-Assisted Fabrication. Polymers. 2025; 17(2):211. https://doi.org/10.3390/polym17020211
Chicago/Turabian StyleMou, Yaojia, Cong Wang, Shilei Liu, Linpeng Liu, and Ji’an Duan. 2025. "Flexible Vibration Sensors with Omnidirectional Sensing Enabled by Femtosecond Laser-Assisted Fabrication" Polymers 17, no. 2: 211. https://doi.org/10.3390/polym17020211
APA StyleMou, Y., Wang, C., Liu, S., Liu, L., & Duan, J. (2025). Flexible Vibration Sensors with Omnidirectional Sensing Enabled by Femtosecond Laser-Assisted Fabrication. Polymers, 17(2), 211. https://doi.org/10.3390/polym17020211