Environmental Benefits of Sleep Apnoea Detection in the Home Environment
Abstract
:1. Introduction
2. Background
2.1. Physiological Signals Used for Sleep Apnoea Detection
2.1.1. Electrocardiogram (ECG)
2.1.2. Heart Rate (HR)
2.1.3. Oxygen Saturation of the Blood (SpO2)
2.1.4. Polysomnography (PSG)
2.2. Automated Apnoea Detection
3. Sleep Apnoea Detection in the Home Environment
4. Results
5. Discussion
5.1. Limitations
5.2. Future Work
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
PRISMA | Preferred Reporting Items for Systematic Reviews and Meta-Analyses |
AASM | American Academy of Sleep Medicine |
AHI | Apnoea-hypopnea index |
AI | Artificial Intelligence |
CART | Classification and Regression Tree |
CNN | Convolutional Neural Network |
CSA | Central sleep apnoea |
CVD | Cardiovascular Disease |
ECG | Electrocardiogram |
EDR | ECG derived respiration |
GDP | Gross Domestic Product |
HPG | Home polygraphy |
HR | Heart Rate |
HRP | Home Respiratory Polygraphy |
HRV | Heart Rate Variability |
IoT | Internet of Things |
IT | Information Technology |
KNN | K-Nearest Neighbour |
MSA | Mixed sleep apnoea |
OSA | Obstructive sleep apnoea |
PG | Polygraphy |
PPG | Photoplethysmogram |
PSG | Polysomnography |
RIP | Respiratory inductance plethysmography |
RM | Remote Monitoring |
RNN | Recurrent Neural Network |
SA | Sleep Apnoea |
SC | Statistical Classifier |
SCG | Seismocardiography |
SVM | Support Vector Machine |
Appendix A
Authors | Signal | Detection Method | Online/Offline | Number of Participants | Detection Performance |
---|---|---|---|---|---|
Saletu et al., 2018 [85] | PSG | Sleep physicians | Online | 265 | - |
Massie et al., 2018 [86] | PSG | Sleep physicians | Online | 101 | - |
Rosen et al., 2018 [87] | - | Home sleep apnoea test | Online | - | - |
Ng et al., 2019 [88] | PSG | Sleep physicians | 316 | Sensitivity = 78% Specificity = 23% Negative predictive value = 67% positive = 35% | |
Gu et al., 2020 [89] | SpO2 | Sleep physicians | Online | 50 | Sensitivity = 85% Specificity = 87%% Positive and negative predictive value = 0.88% and 0.83% |
Chiner et al., 2020 [90] | Home respiratory polygraphy HRP | Sleep physicians | Online | 121 | Accuracy = 93% |
Gutiérrez-Tobal et al., 2019 [91] | SpO2 | Machine learning AB-LDA | Offline | 230 | Accuracy = 78.7% |
Zancanella et al., 2022 [92] | PSG | EmblettaX100 system | Offline | 40 | - |
Manoni et al., 2020 [93] | PSG | MORFEA | Online | - | - |
Kole 2020 [94] | Home sleep apnoea testing | - | >800 | - | |
R. Stretch et al., 2019 [95] | PSG | Sleep physicians | Online | 613 | Sensitivity = 0.46, Specificity = 0.95% Positive predictive value = 0.81% negative predictive value = 0.80% |
Castillo-Escario et al., 2019b [96] | PSG | MATLAB | Offline | 13 | Sensitivity = 76%, Positive Predictive Value = 82% |
Hunasikatti 2019 [97] | PSG | Sleep physicians | Online | 206 | - |
Romero et al., 2022 [98] | PSG | Sleep physicians | Online | 103 | Sensitivity = 79% Specificity = 80% |
Massie, Van Pee, & Bergmann 2022 [99] | PSG | WatchPAT | Offline | 20 | - |
Kristiansen, Nikolaidis, et al., 2021 [12] | PSG | Machine learning | Online | 579 | Accuracy = 89% |
Nobuaki Tanaka et al., 2021 [100] | - | W-PAT | - | 776 | - |
Colelli et al., 2021a [101] | HSAT | Sleep physicians | Online | 119 | - |
Ikizoglu et al., 2019 [102] | PSG and HPG | Sleep physicians | Online | 19 | Sensitivity = 100% Specificity = 83% |
Aielo et al., 2019 [103] | PG | Sleep physicians | Online | 300 | Accuracy = 95% |
Zavanelli et al., 2021 [104] | ECG, SCG, and PPG | Sleep physicians | Online | - | Accuracy = 95% |
Colaco et al., 2018 [105] | PSG | Sleep physicians | Online | 43,780 | - |
Ekiz et al., [106] | PSG | Sleep physicians | Online | 43,780 | - |
Maggio et al., 2021 [107] | PSG | Embla® Embletta® GOLD portable sleep system | Online | 45 | Accuracy = 93% |
Steffen et al., 2021 [108] | PSG and HST | Sleep physicians | Online | 131 | - |
Orr et al., 2018 [109] | PSG and HST | MATLAB | Offline | 27 | Sensitivity = 70% Specificity = 71% |
Gutiérrez-Tobal et al., 2021 [110] | SpO2 | Least-squares boosting algorithm | Offline | 8762 | Accuracy = 87.2% |
Fietze et al., 2022 [54] | polygraphy (PG) | Sleep physicians | Online | 505 | - |
Fitzpatrick et al., 2020 [111] | PSG | BresoDx® portable monitor | Offline | 233 | Sensitivity = 85% Specificity = 0.48% Positive and negative predictive values were, 0.81% and 0.54% |
Ferrer-Lluis et al., 2019 [112] | Pulse oximetry | Apnealink™ Air | Offline | - | - |
Huysmans et al., 2021 [113] | PSG | Total Sleep Time (TST) | Offline | 183 | Sensitivity = 78% Specificity = 89% |
Joymangul et al., 2020 [114] | Positive Airway Pressure (PAP) therapy | Python | Online | 668 | - |
Młyńczak et al., 2020 [115] | PSG | Audio sensor | Online | 30 | Accuracy = 86% Sensitivity = 96%, Specificity = 76% |
Van Pee et al., 2022 [116] | PSG and PAT HSAT | Sleep physicians | Online | 167 | - |
Castillo-Escario et al., 2019a [117] | audio signals | MATLAB | Offline | 3 | Accuracy = 95.9% |
Navarro-Martínez et al., 2021 [118] | pulse oximetry | Epworth sleepiness scale, STOP-BANG questionnaire, and C-reactive protein screening | Online | 117 | Sensitivity = 80% Specificity = 92% |
Patel et al., 2018 [119] | PSG | ApneaLink Air devices | Online | 106 | Sensitivity = 82% Specificity = 92% |
Magalang et al., 2019 [120] | Nasal pressure | Fifteen HSAT | Offline | - | - |
Muñoz-Ferrer et al., 2020 [121] | PSG | Sleepwise (SW) | Online | 38 | Accuracy = 84% |
Light et al., 2018 [122] | EEG and PSG | Sleep physicians | Online | 207 | Accuracy = 95% |
Oceja et al., 2021 [123] | PSG | HRP | Online | 320 | - |
Di Pumpo et al., 2021 [124] | - | WatchPAT | - | - | - |
Hoshide et al., [125] | PSG | CPAP therapy | Online | 105 | Accuracy = 86.9% |
Hui et al., 2018 [126] | PSG | Respiratory polygraphy | Online | - | Accuracy = 95% |
Goldstein et al., 2018 [127] | PSG | Sleep physicians | 196 | Accuracy = 84% | |
Jensen et al., 2022 [128] | PSG | NightOwl™ | Offline | 150 | Accuracy = 95% |
Simonds 2022 [129] | Body movement, respiratory rate, heart rate, snoring, and breathing pauses | Withings Sleep Analyzer | Online | 67,278 | Sensitivity = 88% Specificity = 88% |
Rajhbeharrysingh et al., 2019 [130] | PSG | Machine learning | Online | 14 | Accuracy = 82.9% Sensitivity = 88.9%, Specificity = 76.5% |
Facco et al., 2019 [131] | PSG | Sleep physicians | Online | 43 | 80.0% |
Kristiansen et al., 2021 [132] | PSG and PG | Sleep physicians | Online | 34 | Sensitivity = 97.2% Positive prediction value = 94.2%. |
Li et al., 2021 [133] | PSG | Sleep physicians | Online | 43,780 | - |
Massie et al., 2022 [134] | PSG | MATLAB | Offline | 261 | Sensitivity = 87% Specificity = 89% |
Hart et al., 2021 [135] | PSG | CPAP | Offline | 18 | - |
da Rosa et al., 2021 [136] | PSG | Sleep physicians | Online | 94 | Accuracy = 80.7% |
Ashley Suniega et al., 2019 [137] | PSG | HRP | Online | 430 | Accuracy = 95% |
Mosquera-Lopez et al., 2018 [138] | PSG | Machine learning | Offline | 14 | Accuracy = 86.96% Sensitivity = 81.82% Specificity = 91.67%. |
Lipatov et al., 2019 [139] | PSG | HSAT devices | Offline | 141 | - |
Silva et al., 2021 [140] | PSG | SPSS software | Offline | 427 | - |
Bonnesen et al., 2018 [141] | Audio | Portable device | Online | 23 | Sensitivity = 75%, Accuracy = 60% |
Green et al., 2022 [142] | PSG | Online video technician | Online | 100 | - |
Ben Azouz et al., 2018 [143] | PSG | Equivital™ EQ02 LifeMonitor | Online | 32 | - |
Honda et al., 2022 [144] | Respiration activity | wearable sensor | Offline | - | - |
Ghandeharioun 2021 [145] | ECG and SpO2 | Sleep physicians | Online | 155 | Accuracy = 85% |
Labarca et al., 2018 [146] | PG | HSAT an Embletta® | Online | 198 | - |
Lee et al., 2021 [147] | PSG | HSAT | Offline | 154 | Sensitivity = 85% Specificity = 95% |
Huysmans et al., 2020 [148] | ECG and RIP | CNN | Online | 81 | Kappa score = 0.48 |
Barriuso et al., 2020 [149] | Respiratory polygraphy | HRP | Online | 301 | - |
Mashaqi et al., 2018 [150] | PSG | HSAT, RYGB and LSG | Online | 10 | Accuracy = 94% |
Takao et al., 2019 [151] | Audio | Autoencoder | Offline | 5 | Accuracy = 94.7% |
Borsini et al., 2021 [152] | PG | Apnea Link Plus and Air | Online | 3854 | Accuracy = 90% |
Gu, W., & Leung 2018 [153] | PPG | pulse oximeter | Online | 23 | Accuracy = 97% |
Mieno et al., 2020 [154] | PSG | PulSleep LS-140 | Offline | 58 | Sensitivity = 96.4% Specificity = 100% |
Arguelles et al., 2019 [155] | PSG | HSAT | Online | 88 | Accuracy = 98% |
Stretch et al., 2019 [156] | PSG | k-nearest neighbors algorithm | Offline | 415 | Sensitivity = 0.43% Specificity = 0.96% |
Iqubal & Lam 2020 [157] | PSG | HSAT | Online | 88 | Sensitivity = 98% Specificity = 76% |
Tanaka et al., 2020 [158] | PSG | WP device | Offline | 774 | - |
Kay et al., 2021 [159] | PSG | HSAT | Online | 1 | - |
Bollu et al., 2020 [160] | PSG | nox-T3 sleep monitor and Nomad HSAT | Online | 178 | - |
Yeh et al., 2020 [161] | PSG | Sleep physicians | Offline | - | - |
Sterner et al., 2020 [162] | - | WatchPAT | - | - | - |
Iakoubova et al., 2020 [163] | PSG | Sleep physicians | Online | 900 | - |
Arguelles et al., 2018 [164] | PSG | Sleep physicians | Online | 60 | Accuracy = 90% |
Gamaldo et al., 2018 [165] | PSG | HSAT | Online | 147 | - |
Journal et al., 2019 [166] | PG | Sleep physicians | Online | 1055 | - |
He, Mendez, and Atwood 2020 [167] | PSG | WatchPAT | Online | 295 | - |
Pinheiro et al., 2020 [168] | PSG | HST | Online | 1013 | Sensitivity = 95.8% Specificity = 94.3% |
Anderer et al., 2020 [169] | PSG | Deep Learning | Online | 472 | Accuracy = 95%. |
Zeineddine et al., 2020 [170] | PSG | HSAT | Online | 33 | - |
F. Facco et al., 2018 [171] | PSG | HST | Online | 34 | Accuracy = 90.5% |
Zhongming et al., 2021 [172] | PSG | HSAT | Online | 31 | - |
Carey et al., 2020 [173] | PSG | WPHST | Online | 62 | - |
Aydin et al., 2020 [174] | PSG | APAP | Online | 43 | - |
Homan et al., 2021 [175] | SpO2 | HSAT | Online | 558 | Accuracy = 90% |
Rudock et al., 2019 [176] | PSG | HSAT | Online | - | - |
Bliznuks et al., 2022 [177] | SpO2 | CPAP | Online | 16 | - |
Thomas et al., 2021 [178] | PSG | HSAT | Online | 297 | - |
Kazaglis 2018 [179] | Audio | Noxturnal T3 device | Offline | 2 | - |
Arguelles et al., 2019 [71] | PSG | HSAT | Online | 11 | Accuracy = 95% |
Fynn et al., 2020 [180] | PSG | sleep physicians | Online | 246 | - |
Wenbo et al., 2019 [181] | PSG | ring-type pulse oximeter | Online | 32 | Accuracy = 95.0% |
Gutiérrez-Tobal et al., 2018 [182] | SpO2 | SAHS | Online | 200 | Sensitivity = 83.8% Specificity = 85.5% |
Stretch et al., 2020 [183] | PSG | NN approach | Offline | 1329 | 79% |
Johnson et al., 2018 [184] | - | HSAT | - | - | - |
Sever et al., 2018 [185] | PSG | Sleep physicians | Online | 1 | - |
Martinot et al., 2020 [186] | PSG | Machine learning | Online | 192 | Accuracy = 84% |
Haaland et al., 2018 [187] | PSG | Apnealink | Online | 1021 | - |
Do et al., 2022 [188] | PSG | HSAT | Online | 505 | - |
Stanchina et al., 2020 [189] | PSG | APAP | Online | 238 | - |
Perriol et al., 2018 [190] | PSG | CPAP | Offline | 66 | - |
Krause-Sorio et al., 2021 [191] | HR and SpO2 | Telephone screening | Offline | 5 | - |
Mahmood et al., 2018 [192] | PSG | HST | Offline | 454 | - |
Robinson et al., 2018 [193] | PSG | HSAT | Offline | 961 | Sensitivity = 97.1% Specificity = 100% |
Ferreira 2019 [194] | PSG | CPAP | Online | 191 | - |
References
- Gurrala, V.; Yarlagadda, P.; Koppireddi, P. Detection of Sleep Apnea based on the analysis of sleep stages data using single channel EEG. Trait. Signal 2021, 38, 431–436. [Google Scholar] [CrossRef]
- Yan, R.; Li, F.; Zhou, D.D.; Ristaniemi, T.; Cong, F. Automatic sleep scoring: A deep learning architecture for multi-modality time series. J. Neurosci. Methods 2021, 348, 108971. [Google Scholar] [CrossRef]
- Koenker, H.M.; Loll, D.; Rweyemamu, D.; Ali, A.S. A good night’s sleep and the habit of net use: Perceptions of risk and reasons for bed net use in Bukoba and Zanzibar. Malar. J. 2013, 12, 203. [Google Scholar] [CrossRef]
- Dong, H.; Zhang, Q.; Zhu, C.; Lv, Q. Sleep quality of nurses in the emergency department of public hospitals in China and its influencing factors: A cross-sectional study. Health Qual. Life Outcomes 2020, 18, 116. [Google Scholar] [CrossRef]
- Yin, J.; Jin, X.; Shan, Z.; Li, S.; Huang, H.; Li, P.; Peng, X.; Peng, Z.; Yu, K.; Bao, W.; et al. Relationship of sleep duration with all-cause mortality and cardiovascular events: A systematic review and dose-response meta-analysis of prospective cohort studies. J. Am. Heart Assoc. 2017, 6, e005947. [Google Scholar] [CrossRef]
- Corrigan, J.; Ogah, I.; Ip-Buting, A.; Sharpe, H.; Laratta, C.R.; Peller, P.; Tsai, W.H.; Pendharkar, S.R. An evaluation of rural–urban disparities in treatment outcomes for obstructive sleep apnoea: Study protocol for a prospective cohort study. ERJ Open Res. 2020, 6, 00141–02020. [Google Scholar] [CrossRef]
- Faal, M.; Almasganj, F. Obstructive sleep apnea screening from unprocessed ECG signals using statistical modelling. Biomed. Signal Process. Control 2021, 68. [Google Scholar] [CrossRef]
- Benjafield, A.V.; Ayas, N.T.; Eastwood, P.R.; Heinzer, R.; Ip, M.S.M.; Morrell, M.J.; Nunez, C.M.; Patel, S.R.; Penzel, T.; Pépin, J.L.D.; et al. Estimation of the global prevalence and burden of obstructive sleep apnoea: A literature-based analysis. Lancet Respir. Med. 2019, 7, 687–698. [Google Scholar] [CrossRef]
- Banluesombatkul, N.; Rakthanmanon, T.; Wilaiprasitporn, T. Single Channel ECG for Obstructive Sleep Apnea Severity Detection Using a Deep Learning Approach. In Proceedings of the TENCON 2018–2018 IEEE Region 10 Conference, Jeju, Korea, 28–31 October 2018; 2018; pp. 2011–2016. [Google Scholar] [CrossRef]
- ElMoaqet, H.; Eid, M.; Glos, M.; Ryalat, M.; Penzel, T. Deep Recurrent Neural Networks for Automatic Detection of Sleep Apnea from Single Channel Respiration Signals. Sensors 2020, 20, 5037. [Google Scholar] [CrossRef]
- Sweed, R.A.; Hassan, S.; ElWahab, N.H.A.; Aref, S.R.; Mahmoud, M.I. Comorbidities associated with obstructive sleep apnea: A retrospective Egyptian study on 244 patients. Sleep Breath. 2019, 23, 1079–1085. [Google Scholar] [CrossRef]
- Kristiansen, S.; Nikolaidis, K.; Plagemann, T.; Goebel, V.; Traaen, G.M.; Øverland, B.; Aakerøy, L.; Hunt, T.-E.; Loennechen, J.P.; Steinshamn, S.L.; et al. Machine Learning for Sleep Apnea Detection with Unattended Sleep Monitoring at Home. ACM Trans. Comput. Healthc. 2021, 2, 1–25. [Google Scholar] [CrossRef]
- San, K.H.; Malhotra, R.K. A Review of the Evidence for Use of the Home Sleep Apnea Test or Portable Monitoring in the Evaluation of Central Sleep Apnea. Curr. Pulmonol. Rep. 2021, 1–6. [Google Scholar] [CrossRef]
- Natsky, A.N.; Vakulin, A.; Coetzer, C.L.C.; McEvoy, R.D.; Adams, R.J.; Kaambwa, B. Economic evaluation of diagnostic sleep studies for obstructive sleep apnoea: A systematic review protocol. Syst. Rev. 2021, 10, 104. [Google Scholar] [CrossRef]
- Senaratna, C.V.; Perret, J.L.; Lodge, C.J.; Lowe, A.J.; Campbell, B.E.; Matheson, M.C.; Hamilton, G.S.; Dharmage, S.C. Prevalence of obstructive sleep apnea in the general population: A systematic review. Sleep Med. Rev. 2017, 34, 70–81. [Google Scholar] [CrossRef]
- Faust, O.; Acharya, U.R.; Ng, E.Y.K.; Fujita, H. A review of ECG-Based diagnosis support systems for obstructive sleep apnea. J. Mech. Med. Biol. 2016, 16, 1640004. [Google Scholar] [CrossRef]
- Randerath, W.; Schiza, S.; Deleanu, O.; Pepin, J.L. Central sleep apnoea and periodic breathing in heart failure: Prognostic significance and treatment options. Eur. Respir. Rev. 2019, 28, 190084. [Google Scholar] [CrossRef]
- Bernardini, A.; Brunello, A.; Gigli, G.L.; Montanari, A.; Saccomanno, N. AIOSA: An approach to the automatic identification of obstructive sleep apnea events based on deep learning. Artif. Intell. Med. 2021, 118, 102133. [Google Scholar] [CrossRef]
- Feng, K.; Qin, H.; Wu, S.; Pan, W.; Liu, G. A Sleep Apnea Detection Method Based on Unsupervised Feature Learning and Single-Lead Electrocardiogram. IEEE Trans. Instrum. Meas. 2020, 70, 1–12. [Google Scholar] [CrossRef]
- JeyaJothi, E.S.; Anitha, J.; Rani, S.; Tiwari, B. A Comprehensive Review: Computational Models for Obstructive Sleep Apnea Detection in Biomedical Applications. BioMed Res. Int. 2022, 2022, 1–21. [Google Scholar] [CrossRef]
- Gottlieb, D.J.; Punjabi, N.M. Diagnosis and Management of Obstructive Sleep Apnea: A review. JAMA 2020, 323, 1389–1400. [Google Scholar] [CrossRef]
- Veugen, C.C.A.F.M.; Teunissen, E.M.; Otter, L.A.S.D.; Kos, M.P.; Stokroos, R.J.; Copper, M.P. Prediction of obstructive sleep apnea: Comparative performance of three screening instruments on the apnea-hypopnea index and the oxygen desaturation index. Sleep Breath. 2020, 25, 1267–1275. [Google Scholar] [CrossRef]
- Soori, R.; Baikunje, N.; D’Sa, I.; Bhushan, N.; Nagabhushana, B.; Hosmane, G.B. Pitfalls of AHI system of severity grading in obstructive sleep apnoea. Sleep Sci. 2022, 15, 285–288. [Google Scholar] [CrossRef]
- Brown, J.; Yazdi, F.; Jodari-Karimi, M.; Owen, J.G.; Reisin, E. Obstructive Sleep Apnea and Hypertension: Updates to a Critical Relationship. Curr. Hypertens. Rep. 2022, 24, 173–184. [Google Scholar] [CrossRef]
- Azimi, H.; Xi, P.; Bouchard, M.; Goubran, R.; Knoefel, F. Machine learning-based automatic detection of central sleep apnea events from a pressure sensitive mat. IEEE Access 2020, 8, 173428–173439. [Google Scholar] [CrossRef]
- Barika, R.; Shenfield, A.; Razaghi, H.; Faust, O. A smart sleep apnea detection service. In Proceedings of the 17th International Conference on Condition Monitoring and Asset Management, London, UK, 14–18 June 2021; The British Institute of NDT: Northampton, UK, 2021. [Google Scholar]
- Mirmomeni, M.; Fazio, T.; von Cavallar, S.; Harrer, S. From Wearables to THINKables: Artificial Intelligence-Enabled Sensors for Health Monitoring, 2nd ed.; Elsevier Inc.: Oxford, UK, 2021; ISBN 9780128192467. [Google Scholar]
- Thomas, E.E.; Taylor, M.L.; Banbury, A.; Snoswell, C.L.; Haydon, H.M.; Gallegos Rejas, V.M.; Smith, A.C.; Caffery, L.J. Factors influencing the effectiveness of remote patient monitoring interventions: A realist review. BMJ Open 2021, 11, e051844. [Google Scholar] [CrossRef]
- Snoswell, C.L.; Taylor, M.L.; Comans, T.A.; Smith, A.C.; Gray, L.C.; Caffery, L.J. Determining if Telehealth Can Reduce Health System Costs: Scoping Review. J. Med. Internet Res. 2020, 22, e17298. [Google Scholar] [CrossRef]
- Troughton, G. The Future of Patient Monitoring: How Digitisation and User Experience Are Impacting Product Roadmaps; Cambridge Consultants: Cambridge, UK, 2019; pp. 1–16. [Google Scholar]
- Rosier, A.; Gentils, M.; Durand, J.; Bensaber, A. Potential impact of a new generation of remote monitoring platform: Evaluation of the yearly triage burden for 35,595 patients. Eur. Heart J. 2021, 42, 3098. [Google Scholar] [CrossRef]
- Malasinghe, L.P.; Ramzan, N.; Dahal, K. Remote patient monitoring: A comprehensive study. J. Ambient Intell. Humaniz. Comput. 2019, 10, 57–76. [Google Scholar] [CrossRef]
- Taiwo, O.; Ezugwu, A.E. Smart healthcare support for remote patient monitoring during covid-19 quarantine. Inform. Med. Unlocked 2020, 20, 100428. [Google Scholar] [CrossRef]
- Modgil, S.; Dwivedi, Y.K.; Rana, N.P.; Gupta, S.; Kamble, S. Has Covid-19 accelerated opportunities for digital entrepreneurship? An Indian perspective. Technol. Forecast. Soc. Chang. 2022, 175, 121415. [Google Scholar] [CrossRef]
- Philip, N.Y.; Rodrigues, J.J.P.C.; Wang, H.; Fong, S.J.; Chen, J. Internet of Things for In-Home Health Monitoring Systems: Current Advances, Challenges and Future Directions. IEEE J. Sel. Areas Commun. 2021, 39, 300–310. [Google Scholar] [CrossRef]
- Loh, H.W.; Ooi, C.P.; Vicnesh, J.; Oh, S.L.; Faust, O.; Gertych, A.; Rajendra Acharya, U. Automated detection of sleep stages using deep learning techniques: A systematic review of the last decade (2010–2020). Appl. Sci. 2020, 10, 8963. [Google Scholar] [CrossRef]
- Faust, O.; Razaghi, H.; Barika, R.; Ciaccio, E.J.; Acharya, U.R. A review of automated sleep stage scoring based on physiological signals for the new millennia. Comput. Methods Prog. Biomed. 2019, 176, 81–91. [Google Scholar] [CrossRef]
- Olafsson, T.A.; Steinsvik, E.A.; Bachmann-Harildstad, G.; Hrubos-Strøm, H. A validation study of an esophageal probe–based polygraph against polysomnography in obstructive sleep apnea. Sleep Breath. 2022, 26, 575–584. [Google Scholar] [CrossRef]
- Bozkurt, F.; Uçar, M.K.; Bozkurt, M.R.; Bilgin, C. Detection of Abnormal Respiratory Events with Single Channel ECG and Hybrid Machine Learning Model in Patients with Obstructive Sleep Apnea. Irbm 2020, 41, 241–251. [Google Scholar] [CrossRef]
- Khan, A.A.; Lip, G.Y.H.; Shantsila, A. Heart rate variability in atrial fibrillation: The balance between sympathetic and parasympathetic nervous system. Eur. J. Clin. Investig. 2019, 49, e13174. [Google Scholar] [CrossRef]
- Pearson, M.; Faust, O. Heart-rate based sleep apnea detection using arduino. J. Mech. Med. Biol. 2019, 19, 1940006. [Google Scholar] [CrossRef]
- Acharya, U.R.; Chua, E.C.P.; Faust, O.; Lim, T.C.; Lim, L.F.B. Automated detection of sleep apnea from electrocardiogram signals using nonlinear parameters. Physiol. Meas. 2011, 32, 287–303. [Google Scholar] [CrossRef]
- Olmedo-Aguirre, J.O.; Reyes-Campos, J.; Alor-Hernández, G.; Machorro-Cano, I.; Rodríguez-Mazahua, L.; Sánchez-Cervantes, J.L. Remote Healthcare for Elderly People Using Wearables: A Review. Biosensors 2022, 12, 73. [Google Scholar] [CrossRef]
- Achten, J.; Jeukendrup, A.E. Heart rate monitoring: Applications and limitations. Consum. Rep. 2003, 68, 18. [Google Scholar] [CrossRef]
- Wójcikowski, M.; Pankiewicz, B. Photoplethysmographic time-domain heart rate measurement algorithm for resource-constrained wearable devices and its implementation. Sensors 2020, 20, 1783. [Google Scholar] [CrossRef]
- Obi, A.I. An Overview of Wearable Photoplethysmographic Sensors and Various Algorithms for Tracking of Heart Rates. Eng. Proc. 2022, 10, 77. [Google Scholar] [CrossRef]
- Loh, H.W.; Xu, S.; Faust, O.; Ooi, C.P.; Barua, P.D.; Chakraborty, S.; Tan, R.S.; Molinari, F.; Acharya, U.R. Application of photoplethysmography signals for healthcare systems: An in-depth review. Comput. Methods Prog. Biomed. 2022, 216, 106677. [Google Scholar] [CrossRef]
- Faust, O.; Yi, L.M.; Hua, L.M. Heart Rate Variability Analysis for Different Age and Gender. J. Med. Imaging Health Inform. 2013, 3, 395–400. [Google Scholar] [CrossRef]
- Ramachandran, A.; Karuppiah, A. A Survey on Recent Advances in Wearable Fall Detection Systems. BioMed Res. Int. 2020, 2020, 2167160. [Google Scholar] [CrossRef]
- Burgos, A.; Goñi, A.; Illarramendi, A.; Bermúdez, J. Real-time detection of apneas on a PDA. IEEE Trans. Inf. Technol. Biomed. 2010, 14, 995–1002. [Google Scholar] [CrossRef]
- Moshtaghi-kashanian, N.; Nejad, M.H.; Moshtaghi-kashanian, N.; Niroomand, H. Reduction of Oxygen Saturation and Increase of Heart Rate in Hospital Workers Wearing Face Mask during Routine Shift. J. Res. Appl. Basic Med. Sci. 2021, 7, 11–17. [Google Scholar]
- Elfasakhany, A.; Alsehli, M.; Salem, F.A. Using artificial intelligence to determine the patient infection time with Coronavirus and report the level of medical care needed. Rev. Argent. Clínica Psicológica 2021, 30, 269. [Google Scholar] [CrossRef]
- Erdenebayar, U.; Kim, Y.J.; Park, J.U.; Joo, E.Y.; Lee, K.J. Deep learning approaches for automatic detection of sleep apnea events from an electrocardiogram. Comput. Methods Prog. Biomed. 2019, 180, 105001. [Google Scholar] [CrossRef] [PubMed]
- Fietze, I.; Herberger, S.; Wewer, G.; Woehrle, H.; Lederer, K.; Lips, A.; Willes, L.; Penzel, T. Initiation of therapy for obstructive sleep apnea syndrome: A randomized comparison of outcomes of telemetry-supported home-based vs. sleep lab-based therapy initiation. Sleep Breath. 2022, 26, 269–277. [Google Scholar] [CrossRef]
- Gauld, C.; Micoulaud-Franchi, J. Why could sleep medicine never do without polysomnography? J. Sleep Res. 2021, e13541. [Google Scholar] [CrossRef] [PubMed]
- Hussain, Z.; Sheng, Q.Z.; Zhang, W.E.; Ortiz, J.; Pouriyeh, S. A Review of the Non-Invasive Techniques for Monitoring Different Aspects of Sleep. arXiv 2021, arXiv:2104.12964. [Google Scholar] [CrossRef]
- Kukwa, W.; Migacz, E.; Lis, T.; Ishman, S.L. The effect of in-lab polysomnography and home sleep polygraphy on sleep position. Sleep Breath. 2021, 25, 251–255. [Google Scholar] [CrossRef]
- Yue, H.; Lin, Y.; Wu, Y.; Wang, Y.; Li, Y.; Guo, X.; Huang, Y.; Wen, W.; Zhao, G.; Pang, X.; et al. Deep learning for diagnosis and classification of obstructive sleep apnea: A nasal airflow-based multi-resolution residual network. Nat. Sci. Sleep 2021, 13, 361–373. [Google Scholar] [CrossRef]
- Shi, M.; Yang, C.; Zhang, D. A Smart Detection Method of Sleep Quality Using EEG Signal and Long Short-Term Memory Model. Math. Probl. Eng. 2021, 2021, 1–8. [Google Scholar] [CrossRef]
- Janbakhshi, P.; Shamsollahi, M.B. ECG-derived respiration estimation from single-lead ECG using gaussian process and phase space reconstruction methods. Biomed. Signal Process. Control 2018, 45, 80–90. [Google Scholar] [CrossRef]
- Nakayama, C.; Fujiwara, K.; Sumi, Y.; Matsuo, M.; Kano, M.; Kadotani, H. Obstructive sleep apnea screening by heart rate variability-based apnea/normal respiration discriminant model. Physiol. Meas. 2019, 40, 125001. [Google Scholar] [CrossRef]
- Bozkurt, M.R.; Uçar, M.K.; Bozkurt, F.; Bilgin, C. In obstructive sleep apnea patients, automatic determination of respiratory arrests by photoplethysmography signal and heart rate variability. Australas. Phys. Eng. Sci. Med. 2019, 42, 959–979. [Google Scholar] [CrossRef]
- Wang, L.; Lin, Y.; Wang, J. A RR interval based automated apnea detection approach using residual network. Comput. Methods Prog. Biomed. 2019, 176, 93–104. [Google Scholar] [CrossRef]
- Shen, Q.; Qin, H.; Wei, K.; Liu, G. Multiscale Deep Neural Network for Obstructive Sleep Apnea Detection Using RR Interval from Single-Lead ECG Signal. IEEE Trans. Instrum. Meas. 2021, 70, 1–13. [Google Scholar] [CrossRef]
- Ye, G.; Yin, H.; Chen, T.; Chen, H.; Cui, L.; Zhang, X. FENet: A Frequency Extraction Network for Obstructive Sleep Apnea Detection. IEEE J. Biomed. Health Inform. 2021, 25, 2848–2856. [Google Scholar] [CrossRef]
- Wang, T.; Lu, C.; Sun, Y.; Yang, M.; Liu, C.; Ou, C. Automatic ECG classification using continuous wavelet transform and convolutional neural network. Entropy 2021, 23, 119. [Google Scholar] [CrossRef]
- Faust, O.; Barika, R.; Shenfield, A.; Ciaccio, E.J.; Acharya, U.R. Accurate detection of sleep apnea with long short-term memory network based on RR interval signals. Knowl. -Based Syst. 2021, 212, 106591. [Google Scholar] [CrossRef]
- Lee, K.; Kim, J.Y.; Choi, H.O.; Nam, Y. Detection of Atrial Fibrillation in Short-Lead Electrocardiogram Recordings Obtained using a Smart Scale. J. Electr. Eng. Technol. 2021, 16, 1109–1118. [Google Scholar] [CrossRef]
- Singh, H.; Tripathy, R.K.; Pachori, R.B. Detection of sleep apnea from heart beat interval and ECG derived respiration signals using sliding mode singular spectrum analysis. Digit. Signal Process. A Rev. J. 2020, 104, 102796. [Google Scholar] [CrossRef]
- Faust, O.; Hong, W.; Loh, H.W.; Xu, S.; Tan, R.S.; Chakraborty, S.; Barua, P.D.; Molinari, F.; Acharya, U.R. Heart rate variability for medical decision support systems: A review. Comput. Biol. Med. 2022, 145, 105407. [Google Scholar] [CrossRef]
- D. Arguelles, J.; Chang, J.; Lambert, H.; Villalpando, C.; Romero, M.; Montoya, E.; Becker, K.; Kim, J.B.; Derose, S.; Hwang, D.; et al. 0455 Comparing Three Home Sleep Apnea Testing Devices to Polysomnography: Evaluating Diagnostic Performance in Poor Sleepers. Sleep 2019, 43, A183. [Google Scholar] [CrossRef]
- Drager, L.F.; Malhotra, A.; Yan, Y.; Pépin, J.L.; Armitstead, J.P.; Woehrle, H.; Nunez, C.M.; Cistulli, P.A.; Benjafield, A.V. Adherence with positive airway pressure therapy for obstructive sleep apnea in developing vs. developed countries: A big data study. J. Clin. Sleep Med. 2021, 17, 703–709. [Google Scholar] [CrossRef] [PubMed]
- Rundo, J.V.; Downey, R. Polysomnography. Handb. Clin. Neurol. 2019, 160, 381–392. [Google Scholar] [CrossRef]
- Spagnuolo, C.M.; McIsaac, M.; Dosman, J.; Karunanayake, C.; Pahwa, P.; Pickett, W. Distance to specialist medical care and diagnosis of obstructive sleep apnea in rural Saskatchewan. Can. Respir. J. 2019, 2019, 38–44. [Google Scholar] [CrossRef] [Green Version]
- Jiménez-Marrero, S.; Yun, S.; Cainzos-Achirica, M.; Enjuanes, C.; Garay, A.; Farre, N.; Verdú, J.M.; Linas, A.; Ruiz, P.; Hidalgo, E.; et al. Impact of telemedicine on the clinical outcomes and healthcare costs of patients with chronic heart failure and mid-range or preserved ejection fraction managed in a multidisciplinary chronic heart failure programme: A sub-analysis of the iCOR randomized. J. Telemed. Telecare 2020, 26, 64–72. [Google Scholar] [CrossRef] [PubMed]
- Lew, S.Q.; Sikka, N.; Thompson, C.; Magnus, M. Impact of remote biometric monitoring on cost and hospitalization outcomes in peritoneal dialysis. J. Telemed. Telecare 2019, 25, 581–586. [Google Scholar] [CrossRef] [PubMed]
- Ehlert, A.; Oberschachtsiek, D. Can telehealth reduce health care expenditure? A lesson from German health insurance data. Int. J. Health Plann. Manag. 2019, 34, 1121–1132. [Google Scholar] [CrossRef] [PubMed]
- Dimitrievski, A.; Koceska, N.; Zdravevski, E.; Lameski, P.; Cico, B.; Koceski, S.; Trajkovik, V. Sleep apnea detection in fog based ambient assisted living system. CEUR Workshop Proc. 2021, 2872, 136–145. [Google Scholar]
- Maresova, P.; Tomsone, S.; Lameski, P.; Madureira, J.; Mendes, A.; Zdravevski, E.; Chorbev, I.; Trajkovik, V.; Ellen, M.; Rodile, K. Technological Solutions for Older People with Alzheimer’s Disease: Review. Curr. Alzheimer Res. 2018, 15, 975–983. [Google Scholar] [CrossRef]
- Whitehead, B.; Andrews, D.; Shah, A.; Maidment, G. Assessing the environmental impact of data centres part 1: Background, energy use and metrics. Build. Environ. 2014, 82, 151–159. [Google Scholar] [CrossRef]
- Faust, O.; Hagiwara, Y.; Hong, T.J.; Lih, O.S.; Acharya, U.R. Deep learning for healthcare applications based on physiological signals: A review. Comput. Methods Prog. Biomed. 2018, 161, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Rosenberg, R.; Hirshkowitz, M.; Rapoport, D.M.; Kryger, M. The role of home sleep testing for evaluation of patients with excessive daytime sleepiness: Focus on obstructive sleep apnea and narcolepsy. Sleep Med. 2019, 56, 80–89. [Google Scholar] [CrossRef]
- Delgado-Santos, P.; Stragapede, G.; Tolosana, R.; Guest, R.; Deravi, F.; Vera-Rodriguez, R. A Survey of Privacy Vulnerabilities of Mobile Device Sensors. ACM Comput. Surv. 2022, 1–28. [Google Scholar] [CrossRef]
- Laroia, G.; Horne, B.D.; Esplin, S.; Ramaswamy, V.K. A unified health algorithm that teaches itself to improve health outcomes for every individual: How far into the future is it? Digit. Health 2022, 8, 20552076221074126. [Google Scholar] [CrossRef]
- Saletu, M.T.; Kotzian, S.T.; Schwarzinger, A.; Haider, S.; Spatt, J.; Saletu, B. Home sleep apnea testing is a feasible and accurate method to diagnose obstructive sleep apnea in stroke patients during in-hospital rehabilitation. J. Clin. Sleep Med. 2018, 14, 1495–1501. [Google Scholar] [CrossRef]
- Massie, F.; De Almeida, D.M.; Dreesen, P.; Thijs, I.; Vranken, J.; Klerkx, S. An evaluation of the Night Owl home sleep apnea testing system. J. Clin. Sleep Med. 2018, 14, 1791–1796. [Google Scholar] [CrossRef] [PubMed]
- Rosen, I.M.; Kirsch, D.B.; Carden, K.A.; Malhotra, R.K.; Ramar, K.; Aurora, R.N. Clinical Use of a Home Sleep Apnea Test: An Updated American Academy of Sleep Medicine Position Statement. J. Clin. Sleep Med. 2018, 13, 1205–1207. [Google Scholar] [CrossRef] [PubMed]
- Ng, S.S.; Tam, W.; Chan, T.O.; To, K.W.; Ngai, J.; Chan, K.K.P.; Yip, W.H.; Lo, R.L.; Yiu, K.; Ko, F.W.; et al. Use of Berlin questionnaire in comparison to polysomnography and home sleep study in patients with obstructive sleep apnea. Respir. Res. 2019, 20, 40. [Google Scholar] [CrossRef] [PubMed]
- Gu, W.; Leung, L.; Kwok, K.C.; Wu, I.C.; Folz, R.J.; Chiang, A.A. Belun Ring Platform: A novel home sleep apnea testing system for assessment of obstructive sleep apnea. J. Clin. Sleep Med. 2020, 16, 1611–1617. [Google Scholar] [CrossRef] [PubMed]
- Chiner, E.; Cánovas, C.; Molina, V.; Sancho-Chust, J.N.; Vañes, S.; Pastor, E.; Martinez-Garcia, M.A. Home respiratory polygraphy is useful in the diagnosis of childhood obstructive sleep apnea syndrome. J. Clin. Med. 2020, 9, 2067. [Google Scholar] [CrossRef]
- Gutiérrez-Tobal, G.C.; Álvarez, D.; Crespo, A.; Del Campo, F.; Hornero, R. Evaluation of Machine-Learning Approaches to Estimate Sleep Apnea Severity From At-Home Oximetry Recordings. IEEE J. Biomed. Health Inform. 2019, 23, 882–892. [Google Scholar] [CrossRef]
- Zancanella, E.; do Prado, L.F.; de Carvalho, L.B.; Machado Júnior, A.J.; Crespo, A.N.; do Prado, G.F. Home sleep apnea testing: An accuracy study. Sleep Breath. 2022, 26, 117–123. [Google Scholar] [CrossRef]
- Manoni, A.; Loreti, F.; Radicioni, V.; Pellegrino, D.; Torre, L.D.; Gumiero, A.; Halicki, D.; Palange, P.; Irrera, F. A new wearable system for home sleep apnea testing, screening, and classification. Sensors 2020, 20, 7014. [Google Scholar] [CrossRef]
- Kole, A. Home sleep apnea testing in the era of COVID-19: A community perspective. J. Clin. Sleep Med. 2020, 16, 1633. [Google Scholar] [CrossRef]
- Stretch, R.; Ryden, A.; Fung, C.H.; Martires, J.; Liu, S.; Balasubramanian, V.; Saedi, B.; Hwang, D.; Martin, J.L.; Della Penna, N.; et al. Predicting nondiagnostic home sleep apnea tests using machine learning. J. Clin. Sleep Med. 2019, 15, 1599–1608. [Google Scholar] [CrossRef] [Green Version]
- Castillo-Escario, Y.; Ferrer-Lluis, I.; Montserrat, J.M.; Jane, R. Entropy analysis of acoustic signals recorded with a smartphone for detecting apneas and hypopneas: A comparison with a commercial system for home sleep apnea diagnosis. IEEE Access 2019, 7, 128224–128241. [Google Scholar] [CrossRef]
- Hunasikatti, M. Predictors of obstructive sleep apnea on home sleep apnea test after a negative attended polysomnography: Not so fast. J. Clin. Sleep Med. 2019, 15, 807. [Google Scholar] [CrossRef] [PubMed]
- Romero, H.E.; Ma, N.; Brown, G.; Hill, E.A. Acoustic Screening for Obstructive Sleep Apnea in Home Environments Based on Deep Neural Networks. IEEE J. Biomed. Health Inform. 2022, 2194, 1–11. [Google Scholar] [CrossRef]
- Massie, F.; Van Pee, B.; Bergmann, J. Correlations between home sleep apnea tests and polysomnography outcomes do not fully reflect the diagnostic accuracy of these tests. J. Clin. Sleep Med. 2022, 18, 871–876. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, N.; Tanaka, K.; Hirao, Y.; Okada, M.; Ninomiya, Y.; Yoshimoto, I.; Onishi, T.; Koyama, Y.; Okamura, A.; Iwakura, K.; et al. Home sleep apnea test to screen patients with atrial fibrillation for sleep apnea prior to catheter ablation. Circ. J. 2021, 85, 252–260. [Google Scholar] [CrossRef]
- Colelli, D.R.; Black, S.E.; Masellis, M.; Lam, B.; Lim, A.S.P.; Boulos, M.I. Feasibility of unattended home sleep apnea testing in a cognitively impaired clinic population. J. Clin. Sleep Med. 2021, 17, 435–444. [Google Scholar] [CrossRef]
- Ikizoglu, N.B.; Kiyan, E.; Polat, B.; Ay, P.; Karadag, B.; Ersu, R. Are home sleep studies useful in diagnosing obstructive sleep apnea in children with down syndrome? Pediatr. Pulmonol. 2019, 54, 1541–1546. [Google Scholar] [CrossRef]
- Aielo, A.N.; Santos, R.B.; Silva, W.A.; Parise, B.K.; Souza, S.P.; Cunha, L.F.; Giatti, S.; Lotufo, P.A.; Bensenor, I.M.; Drager, L.F. Pragmatic Validation of Home Portable Sleep Monitor for diagnosing Obstructive Sleep Apnea in a non-referred population: The ELSA-Brasil study. Sleep Sci. 2019, 12, 65–71. [Google Scholar] [CrossRef]
- Zavanelli, N.; Kim, H.; Kim, J.; Herbert, R.; Mahmood, M.; Kim, Y.S.; Kwon, S.; Bolus, N.B.; Torstrick, F.B.; Lee, C.S.D.; et al. At-home wireless monitoring of acute hemodynamic disturbances to detect sleep apnea and sleep stages via a soft sternal patch. Sci. Adv. 2021, 7, eabl4146. [Google Scholar] [CrossRef]
- Colaco, B.; Herold, D.; Johnson, M.; Roellinger, D.; Naessens, J.M.; Morgenthaler, T.I. Analyses of the complexity of patients undergoing attended polysomnography in the era of home sleep apnea tests. J. Clin. Sleep Med. 2018, 14, 631–639. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ekiz, T.; Kara, M.; Özçakar, L. Revisiting Vitamin D and home-based exercises for patients with sleep apnea facing the COVID-19 quarantine. J. Clin. Sleep Med. 2020, 16, 1409–1410. [Google Scholar] [CrossRef] [PubMed]
- Maggio, A.B.R.; Beghetti, M.; Cao Van, H.; Grasset Salomon, C.; Barazzone-Argiroffo, C.; Corbelli, R. Home respiratory polygraphy in obstructive sleep apnea syndrome in children: Comparison with a screening questionnaire. Int. J. Pediatr. Otorhinolaryngol. 2021, 143, 110635. [Google Scholar] [CrossRef]
- Steffen, A.; König, I.R.; Baptista, P.M.; Abrams, N.; Jeschke, S.; Hasselbacher, K. Home Sleep Testing to Direct Upper Airway Stimulation Therapy Optimization for Sleep Apnea. Laryngoscope 2021, 131, E1375–E1379. [Google Scholar] [CrossRef] [PubMed]
- Orr, J.E.; Sands, S.A.; Edwards, B.A.; Deyoung, P.N.; Deacon, N.; Jen, R.; Li, Y.; Owens, R.L.; Malhotra, A. Measuring loop gain via home sleep testing in patients with obstructive sleep apnea. Am. J. Respir. Crit. Care Med. 2018, 197, 1353–1355. [Google Scholar] [CrossRef]
- Gutiérrez-Tobal, G.C.; Álvarez, D.; Vaquerizo-Villar, F.; Crespo, A.; Kheirandish-Gozal, L.; Gozal, D.; del Campo, F.; Hornero, R. Ensemble-learning regression to estimate sleep apnea severity using at-home oximetry in adults. Appl. Soft Comput. 2021, 111, 107827. [Google Scholar] [CrossRef]
- Fitzpatrick, M.; Rac, V.E.; Mitsakakis, N.; Abrahamyan, L.; Pechlivanoglou, P.; Chung, S.; Carcone, S.M.; Pham, B.; Kendzerska, T.; Zwarenstein, M.; et al. SIESTA—Home sleep study with BresoDx for obstructive sleep apnea: A randomized controlled trial. Sleep Med. 2020, 65, 45–53. [Google Scholar] [CrossRef]
- Ferrer-Lluis, I.; Castillo-Escario, Y.; Montserrat, J.M.; Jane, R. Automatic Event Detector from Smartphone Accelerometry: Pilot mHealth Study for Obstructive Sleep Apnea Monitoring at Home. In Proceedings of the 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Berlin, Germany, 23–27 July 2019; pp. 4990–4993. [Google Scholar] [CrossRef]
- Huysmans, D.; Borzée, P.; Buyse, B.; Testelmans, D.; Van Huffel, S.; Varon, C. Sleep Diagnostics for Home Monitoring of Sleep Apnea Patients. Front. Digit. Health 2021, 3, 58. [Google Scholar] [CrossRef]
- Joymangul, J.S.; Sekhari, A.; Moalla, N.; Grasset, O. Obstructive sleep apnea compliance: Modeling home care patient profiles. In Proceedings of the 2020 IEEE 33rd International Symposium on Computer-Based Medical Systems (CBMS), Rochester, MN, USA, 28–30 July 2020; pp. 397–402. [Google Scholar] [CrossRef]
- Młyńczak, M.; Valdez, T.A.; Kukwa, W. Joint apnea and body position analysis for home sleep studies using a wireless audio and motion sensor. IEEE Access 2020, 8, 170579–170587. [Google Scholar] [CrossRef]
- Van Pee, B.; Massie, F.; Vits, S.; Dreesen, P.; Klerkx, S.; Bijwadia, J.; Verbraecken, J.; Bergmann, J. A multicentric validation study of a novel home sleep apnea test based on peripheral arterial tonometry. Sleep 2022, 45, zsac028. [Google Scholar] [CrossRef]
- Castillo-Escario, Y.; Ferrer-Lluis, I.; Montserrat, J.M.; Jane, R. Automatic Silence Events Detector from Smartphone Audio Signals: A Pilot mHealth System for Sleep Apnea Monitoring at Home. In Proceedings of the 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Berlin, Germany, 23–27 July 2019; Volume 2019, pp. 4982–4985. [Google Scholar] [CrossRef]
- Navarro-Martínez, S.; Carrasco-Llatas, M.; Matarredona-Quiles, S.; Diez Ares, J.Á.; Peris Tomás, N.; Trullenque Juan, R. Feasibility of at-home continuous overnight pulse oximetry for obstructive sleep apnea screening in bariatric surgery candidates. Eur. Arch. Oto-Rhino-Laryngol. 2021, 278, 3533–3539. [Google Scholar] [CrossRef] [PubMed]
- Patel, N.; Raissi, A.; Elias, S.; Kamra, M.; Kendzerska, T.; Murray, B.J.; Boulos, M.I. A Modified Definition for Obstructive Sleep Apnea in Home Sleep Apnea Testing after Stroke or Transient Ischemic Attack. J. Stroke Cerebrovasc. Dis. 2018, 27, 1524–1532. [Google Scholar] [CrossRef]
- Magalang, U.J.; Johns, J.N.; Wood, K.A.; Mindel, J.W.; Lim, D.C.; Bittencourt, L.R.; Chen, N.; Cistulli, P.A.; Gíslason, T.; Arnardottir, E.S.; et al. Home sleep apnea testing: Comparison of manual and automated scoring across international sleep centers. Sleep Breath. 2019, 23, 25–31. [Google Scholar] [CrossRef]
- Muñoz-Ferrer, A.; Cervantes, M.-Á.; Garcia-Olivé, I.; Vicente, I.; Folgado, C.; Ruiz-Manzano, J.; Rosell, A.; Abad, J. In-Home Diagnosis of Obstructive Sleep Apnea Using Automatic Video Analysis. Arch. Bronconeumol. (Engl. Ed.) 2020, 56, 704–709. [Google Scholar] [CrossRef]
- Light, M.P.; Casimire, T.N.; Chua, C.; Koushyk, V.; Burschtin, O.E.; Ayappa, I.; Rapoport, D.M. Addition of frontal EEG to adult home sleep apnea testing: Does a more accurate determination of sleep time make a difference? Sleep Breath. 2018, 22, 1179–1188. [Google Scholar] [CrossRef]
- Oceja, E.; Rodríguez, P.; Jurado, M.J.; Alonso, M.L.; Del Río, G.; Villar, M.Á.; Mediano, O.; Martínez, M.; Juarros, S.; Merino, M.; et al. Validity and cost-effectiveness of pediatric home respiratory polygraphy for the diagnosis of obstructive sleep apnea in children: Rationale, study design, and methodology. Methods Protoc. 2021, 4, 9. [Google Scholar] [CrossRef]
- Di Pumpo, M.; Nurchis, M.C.; Moffa, A.; Giorgi, L.; Sabatino, L.; Baptista, P.; Sommella, L.; Casale, M.; Damiani, G. Multiple-access versus telemedicine home-based sleep apnea testing for obstructive sleep apnea (OSA) diagnosis: A cost-minimization study. Sleep Breath. 2021, 1–7. [Google Scholar] [CrossRef]
- Hoshide, S.; Yoshida, T.; Mizuno, H.; Aoki, H.; Tomitani, N.; Kario, K. Association of Night-to-Night Adherence of Continuous Positive Airway Pressure With Day-to-Day Morning Home Blood Pressure and Its Seasonal Variation in Obstructive Sleep Apnea. J. Am. Heart Assoc. 2022, 11, e024865. [Google Scholar] [CrossRef]
- Hui, D.S.; Ng, S.S.; Tam, W.W.S. Home-based approach noninferior to hospital-based approach in managing patients with suspected obstructive sleep apnea syndrome. Am. J. Respir. Crit. Care Med. 2018, 197, 1233–1234. [Google Scholar] [CrossRef]
- Goldstein, C.A.; Karnib, H.; Williams, K.; Virk, Z.; Shamim-Uzzaman, A. The utility of home sleep apnea tests in patients with low versus high pre-test probability for moderate to severe OSA. Sleep Breath. 2018, 22, 641–651. [Google Scholar] [CrossRef]
- Jensen, M.H.; Dalgaard, F.; Laub, R.R.; Gottlieb, V.; Hansen, M.L.; Vendelboe, O.; Hansen, J.; Lamberts, M. Protocol for detecting unrecognized sleep apnea in patients with atrial fibrillation by a home-monitoring device: The DAN-APNO study. BMC Cardiovasc. Disord. 2022, 22, 6. [Google Scholar] [CrossRef]
- Simonds, A.K. How Many More Nights? Diagnosing and Classifying Obstructive Sleep Apnea Using Multinight Home Studies. Am. J. Respir. Crit. Care Med. 2022, 205, 491–492. [Google Scholar] [CrossRef] [PubMed]
- Rajhbeharrysingh, U.; Hanks, C.; Jacobs, P.G. Design and Evaluation of a Non-Contact Bed-Mounted Sensing Device for Automated In-Home Detection of Obstructive Sleep Apnea: A Pilot Study. Biosensors 2019, 9, 90. [Google Scholar] [CrossRef]
- Facco, F.L.; Lopata, V.; Wolsk, J.M.; Patel, S.; Wisniewski, S.R. Can We Use Home Sleep Testing for the Evaluation of Sleep Apnea in Obese Pregnant Women? Sleep Disord. 2019, 2019, 3827579. [Google Scholar] [CrossRef] [PubMed]
- Kristiansen, S.; Andersen, M.H.; Goebel, V.; Plagemann, T.; Traaen, G.M.; Overland, B.; Akre, H.; Gullestad, L. Evaluating a Low-Cost Strain Gauge Breathing Sensor for Sleep Apnea Detection at Home. In Proceedings of the 2021 IEEE International Conference on Communications Workshops (ICC Workshops), Montreal, QC, Canada, 14–23 June 2021; pp. 1–6. [Google Scholar] [CrossRef]
- Li, S.; Xu, L.; Dong, X.; Zhang, X.; Keenan, B.T.; Han, F.; Bi, T.; Chang, Y.; Yu, Y.; Zhou, B.; et al. Home sleep apnea testing of adults with chronic heart failure. J. Clin. Sleep Med. 2021, 17, 1453–1463. [Google Scholar] [CrossRef]
- Massie, F.; Van Pee, B.; Vits, S.; Verbraecken, J.; Bergmann, J. Phenotyping REM OSA by means of peripheral arterial tone-based home sleep apnea testing and polysomnography: A critical assessment of the sensitivity and specificity of both methods. J. Sleep Res. 2022, 31, e13481. [Google Scholar] [CrossRef] [PubMed]
- Hart, A.; Robertus, S.; Dyken, M.; Pearlman, A. Identifying Signs and Symptoms of Obstructive Sleep Apnea in a Men’s Health Clinic: The Utility of Home Sleep Apnea Testing During COVID-19. Am. J. Mens. Health 2021, 15, 15579883211029460. [Google Scholar] [CrossRef]
- da Rosa, J.C.F.; Peres, A.; Gasperin Júnior, L.; Martinez, D.; Fontanella, V. Diagnostic accuracy of oximetry for obstructive sleep apnea: A study on older adults in a home setting. Clinics 2021, 76, 1–6. [Google Scholar] [CrossRef]
- Ashley Suniega, E.; Thoma, C.M.; Scott Earwood, J.; Seehusen, D.A.; Lyon, C. Can sleep apnea be accurately diagnosed at home? J. Fam. Pract. 2019, 68, 459–461. [Google Scholar]
- Mosquera-Lopez, C.; Leitschuh, J.; Condon, J.; Hagen, C.C.; Hanks, C.; Jacobs, P.G. In-Home Sleep Apnea Severity Classification using Contact-free Load Cells and an AdaBoosted Decision Tree Algorithm. In Proceedings of the 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Honolulu, HI, USA, 18–21 July 2018; pp. 6044–6047. [Google Scholar] [CrossRef]
- Lipatov, K.; Ghamande, S.; Jones, S. Response to kapoor m. Positive home sleep apnea test after a negative polysomnogram: Role of potential confounding factors. J. Clin. Sleep Med. 2019, 15, 521. [Google Scholar] [CrossRef] [PubMed]
- Silva, R.; Brito, T.P.; Neto, A.C.W.; Frota, R.B.; Melo, J.C. Major risk factors for obstructive sleep apnea monitored in the home. A cross-sectional study. Sao Paulo Med. J. 2021, 139, 643–647. [Google Scholar] [CrossRef] [PubMed]
- Bonnesen, M.P.; Sorensen, H.B.D.; Jennum, P. Mobile Apnea Screening System for at-home Recording and Analysis of Sleep Apnea Severity. In Proceedings of the 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Honolulu, HI, USA, 18–21 July 2018; pp. 457–460. [Google Scholar] [CrossRef]
- Green, A.; Nagel, N.; Kemer, L.; Dagan, Y. Comparing in-lab full polysomnography for diagnosing sleep apnea in children to home sleep apnea tests (HSAT) with an online video attending technician. Sleep Biol. Rhythms 2022, 20, 397–401. [Google Scholar] [CrossRef]
- Ben Azouz, A.; Issa, A.; Knief, P.; Kane, T.; Coyle, S.; Costello, R.; McGuigan, K.G.; Diamond, D. Evaluation of Use of Wearable Sensor Garment in Home Screening for Sleep Apnea Events. In Proceedings of the 2018 International Conference on Promising Electronic Technologies (ICPET), Deir El-Balah, Palestine, 3–4 October 2018; pp. 104–107. [Google Scholar] [CrossRef]
- Honda, S.; Hara, H.; Arie, T.; Akita, S.; Takei, K. A wearable, flexible sensor for real-time, home monitoring of sleep apnea. iScience 2022, 25, 104163. [Google Scholar] [CrossRef]
- Ghandeharioun, H. Automatic Home-based Screening of Obstructive Sleep Apnea using Single Channel Electrocardiogram and SPO2 Signals. Int. J. Artif. Intell. Appl. 2021, 12, 47–63. [Google Scholar] [CrossRef]
- Labarca, G.; Dreyse, J.; Salas, C.; Contreras, A.; Nazar, G.; Gaete, M.I.; Jorquera, J. Differences between manual and automatic analysis in determining the severity of obstructive sleep apnea using home sleep apnea testing. Sleep Med. 2018, 47, 66–71. [Google Scholar] [CrossRef]
- Lee, J.Y.; Kim, D.; Blake, S.; Kalluri, L.; Walter, J.; Davies, C.; Zee, P.; Xu, S.; Power, T. 403 Comparative study of wireless sensors versus type III home sleep apnea test for home-based diagnosis of obstructive sleep apnea. 2021, 44, A160. Sleep 2021, 44, A160. [Google Scholar] [CrossRef]
- Huysmans, D.; Heffinck, E.; Castro, I.D.; Deviaene, M.; Borzee, P.; Buyse, B.; Testelmans, D.; Van Huffel, S.; Varon, C. Sleep-Wake Classification for Home Monitoring of Sleep Apnea Patients. In Proceedings of the 2020 Computing in Cardiology, Rimini, Italy, 13–16 September 2020; pp. 1–4. [Google Scholar] [CrossRef]
- Barriuso, B.; Martin, L.; Sevilla, C.; Muñoz, C.; López, V.; Bello, M.J.; Manchado, N.; Pamiés, M.; Díez, P.; Sanz, R.; et al. Self-setup of home respiratory polygraphy for the diagnosis of sleep apnea syndrome: Cost-efficiency study. Sleep Breath. 2020, 24, 1067–1074. [Google Scholar] [CrossRef]
- Mashaqi, S.; Steffen, K.; Crosby, R.; Garcia, L. The Impact of Bariatric Surgery on Sleep Disordered Breathing Parameters From Overnight Polysomnography and Home Sleep Apnea Test. Cureus 2018, 10, e2593. [Google Scholar] [CrossRef]
- Takao, I.; Nishio, K.; Kaburagi, T.; Kumagai, S.; Matsumoto, T.; Kurihara, Y. A Home Sleep Apnea State Monitoring System using a Stacked Autoencoder. In Proceedings of the 2019 IEEE Sensors, Montreal, QC, Canada, 27–30 October 2019; pp. 1–4. [Google Scholar] [CrossRef]
- Borsini, E.E.; Blanco, M.; Ernst, G.; Salvado, A.; Bledel, I.; Nigro, C.A. Contribution of pulse oximetry in relation to respiratory flow events in a home-based approach aimed at diagnosing obstructive sleep apnea. Sleep Sci. 2021, 14, 77–81. [Google Scholar] [CrossRef]
- Gu, W.; Leung, L. 0482 A Novel Home Screening Platform for Obstructive Sleep Apnea through Wearable Ring-Type Pulse Oximeter. Sleep 2018, 41, 2018. [Google Scholar] [CrossRef]
- Mieno, Y.; Hayashi, M.; Hirochi, M.; Ikeda, A.; Kako, H.; Ina, T.; Maeda, Y.; Maeda, S.; Inoue, T.; Souma, T.; et al. Availability of Home sleep apnea test equipment LS-140 on a comparison with Polysomnography. Fujita Med. J. 2022, 8, 17–24. [Google Scholar] [PubMed]
- Arguelles, J.; Chang, J.; Henry, L.; Villalpando, C.; Romero, M.; Montoya, E.; Becker, K.; Kim, J.B.; Derose, S.H. 0451 Comparing Three Home Sleep Apnea Testing Devices to Polysomnography: Evaluating Diagnostic Rates for Obstructive Sleep Apnea. Sleep 2019, 42, A181. [Google Scholar] [CrossRef]
- Stretch, R.; Maller, A.; Hwang, D.; Ryden, A.; Fung, C.; Zeidler, M. 0465 Performance of revised machine learning models for prediction of non-diagnostic home sleep apnea tests. Sleep 2019, 42, A187. [Google Scholar] [CrossRef]
- Iqubal, M.F.B.M.; Lam, Y.Y.H. Home-based monitoring and alert system for Sleep Apnea patients. In Proceedings of the 2020 IEEE 7th International Conference on Engineering Technologies and Applied Sciences (ICETAS), Kuala Lumpur, Malaysia, 18–20 December 2020; pp. 1–4. [Google Scholar] [CrossRef]
- Tanaka, N.; Inoue, K.; Tanaka, K.; Hirao, Y.; Oka, T.; Okada, M.; Yoshimoto, I.; Onishi, T.; Iwakura, K.; Fujii, K. Screening for obstructive sleep apnea in atrial fibrillation patients at their home before catheter ablation using watch peripheral arterial tonometry. Eur. Heart J. 2020, 41, 2020. [Google Scholar] [CrossRef]
- Kay, H.G.; Kent, D.T.; Phillips, J.D. Pediatric hypoglossal nerve stimulator implantation with postoperative assessment using home sleep apnea testing. Otolaryngol. Case Rep. 2021, 19, 100293. [Google Scholar] [CrossRef]
- Bollu, P.; Gurung, P.; Mehta, T.; Monegro, A.; Manjamalai, S.; Goyal, M.; Thakkar, M.; Sahota, P. 0619 To Rely or No to Rely: Understanding the Demographics and Polysomnographic Features of False Negative Home Sleep Apnea Testing0619 To Rely or No to Rely: Understanding the Demographics and Polysomnographic Features of False Negative Home Sleep Apnea. Sleep 2020, 43, A237. [Google Scholar] [CrossRef]
- Yeh, E.; Wong, E.; Strohl, K.; Gu, W.; Tsai, C.; Leung, L.; Yar, W.; Chiang, A. 1202 Validation Of A Novel Wearable Home Sleep Testing Device For Assessment Of Obstructive Sleep Apnea. Sleep 2020, 36, A459–A460. [Google Scholar] [CrossRef]
- Sterner, T.; Yankowy, L.; Vesnaver, D.; Senft, R. 1182 Using Home Delivery Of Home Sleep Tests To Improve The Diagnosis Of Obstructive Sleep Apnea. Sleep 2020, 43, A451–A452. [Google Scholar] [CrossRef]
- Iakoubova, O.A.; Tong, C.H.; Arellano, A.R.; Bare, L.A.; Fragala, M.S.; Devlin, J.J.; Birse, C.E. 1010 Individuals with Metabolic Syndrome and Unrecognized Sleep Apnea Can Be Identified by an Employer-Sponsored Healthcare Program and At-Home Sleep Study. Sleep 2020, 43, A384. [Google Scholar] [CrossRef]
- Arguelles, J.; Kim, J.; Becker, K.; Chang, J.; Dewitte, J.; Montoya, E.; Villalpando, C.; Woodrum, R.; Henry, L.; Takehara, J.; et al. 0486 Comparing Three Home Sleep Apnea Testing Devices to Polysomnography: Evaluating Diagnostic Rates for Obstructive Sleep Apnea. Sleep 2018, 41, A183. [Google Scholar]
- Gamaldo, C.E.; Gamaldo, A.A.; Hou, L.T.; Kalloo, A.; Hexter, D.; Salter, B.; Price, M.; Carter, M.; Salas, R.M.E. When a private community neurology practice executes home sleep apnea testing: Benefits identified and lessons learned in a retrospective observational study. Sleep Health 2018, 4, 217–223. [Google Scholar] [CrossRef]
- Journal, A.S.; Alakuijala, A.; Tervamäki, J.; Maasilta, P. Treatment & Care Predicting Technical Success in Home Sleep Apnea Test. J. Sleep Disord. 2019, 8, 1000226. [Google Scholar] [CrossRef]
- He, K.; Mendez, M.; Atwood, C.W. 0605 Comparison of Sleep Specialist vs. Primary Care Driven Home Sleep Apnea Testing in Routine Practice. Sleep 2020, 43, A231. [Google Scholar] [CrossRef]
- Pinheiro, G.D.L.; Cruz, A.F.; Domingues, D.M.; Genta, P.R.; Drager, L.F.; Strollo, P.J.; Lorenzi-Filho, G. Validation of an Overnight Wireless High-Resolution Oximeter plus Cloud-Based Algorithm for the Diagnosis of Obstructive Sleep Apnea. Clinics 2020, 75, e2414. [Google Scholar] [CrossRef]
- Anderer, P.; Ross, M.; Cerny, A.; Radha, M.; Fonseca, P. 0436 Deep Learning for Scoring Sleep Based on Signals Available in Home Sleep Apnea Test Studies: Cardiorespiratory Sleep Staging. Sleep 2020, 43, A167. [Google Scholar] [CrossRef]
- Zeineddine, S.; Sankari, A.; Salloum, A.; Awad, Y.A.; Martin, J.L.; Badr, M.S. 0597 Precision of Sleep-Disordered Breathing Event Classification Using Simulated Home Sleep Apnea Testing in Patients with Spinal Cord Injury, or Disease. Sleep 2020, 43, A228–A229. [Google Scholar] [CrossRef]
- Facco, F.; Patel, S.; Wolsk, J.; Wisniewski, S. 825: Can we use home sleep testing with autoscore to triage for sleep apnea in obese pregnant women? Am. J. Obstet. Gynecol. 2018, 218, S491. [Google Scholar] [CrossRef]
- Zhongming, H.; Cao, C.; Penzel, T.; Han, F. Home Sleep Apnea Testing with Telemedicine in Ostensibly Healthy Adults. Am. J. Respir. Crit. Care Med. 2021, 203, A1725. [Google Scholar] [CrossRef]
- Carey, S.A.; Afzal, A.; Jamil, A.; Whiteley, W.; Ostransky, D. Our Experience with Using WatchPat® (Itamar Medical, Ltd.), Home Sleep Testing (HST) for the Diagnosis of Sleep Apnea in Advanced Heart Failure Patients. J. Card. Fail. 2020, 26, S6. [Google Scholar] [CrossRef]
- Aydin Guclu, O.; Ursavas, A.; Kasapoglu, F.; Ocakoglu, G.; Karadag, M. Comparison of 3-months treatment adherence and estimating residual apnea hypopnea index between home versus in-laboratory auto-titrating positive airway pressure titration. Clin. Respir. J. 2020, 14, 622–630. [Google Scholar] [CrossRef] [PubMed]
- Homan, T.D.; Wichman, B.; Uhles, M.; Espiritu, J. The Epidemiology of Nocturnal Hypoxemia on Home Sleep Apnea Testing. Am. J. Respir. Crit. Care Med. 2021, 203, A4720. [Google Scholar] [CrossRef]
- Rudock, R.; Obretenova, S.; Landsness, E.; Toedebusch, B. 0454 Comparison of Home Sleep Apnea Testing and In-laboratory Polysomnography at a Single Academic Outpatient Sleep Center. Sleep 2019, 42, A182–A183. [Google Scholar] [CrossRef]
- Bliznuks, D.; Kistkins, S.; Teličko, J.; Geža, V.; Zāģeris, Ģ.; Svaža, A.; Syundyukov, E.; Purenkovs, M.; Zeme, D.; Jēkabsone, S.; et al. The oxygenation module: The missing link in using sleep apnea devices to treat COVID-19 pneumonia at home. Biomed. Eng. Online 2022, 21, 10. [Google Scholar] [CrossRef] [PubMed]
- Thomas, A.; Obeidat, N.; Musa, R.; Hoskere, G. Home Sleep Apnea Testing: Are We Doing It Right in Primary Care? Chest 2021, 160, A2438. [Google Scholar] [CrossRef]
- Kazaglis, L. The value of a well-trained ear: Incidental detection of catathrenia on home sleep apnea tests in patients with low probability for obstructive sleep apnea. J. Clin. Sleep Med. 2018, 14, 2083–2086. [Google Scholar] [CrossRef]
- Fynn, T.A.; Alnemri, A.; Grewal, R.G.; Vasudevan, P.; Doghramji, K.; Tingting, Z. Diagnostic Accuracy of Home Sleep Apnea Testing Based on Recording Duration. Am. J. Respir. Crit. Care Med. 2020, 201, A4139. [Google Scholar] [CrossRef]
- Wenbo, G.U.; Leung, L.; Chiang, A. 1006 A Novel Web-based Ring Device for Sleep Apnea Screening at Home. Sleep 2019, 42, A405. [Google Scholar]
- Gutiérrez-Tobal, G.C.; Álvarez, D.; Vaquerizo-Villar, F.; Barroso-García, V.; Martín-Montero, A.; Crespo, A.; del Campo, F.; Hornero, R. Pulse rate variability analysis to enhance oximetry as at-home alternative for sleep apnea diagnosing. IFMBE Proc. 2018, 68, 213–217. [Google Scholar] [CrossRef]
- Stretch, R.J.; Fung, C.H.; Ryden, A.M.; Hwang, D.; Martin, J.L.; Zeidler, M.R. Neural Network Improves Upon Prior Models for Predicting Non-Diagnostic Home Sleep Apnea Tests. In C109. SRN: Innovative Ways to Assess SDB and Predict Outcomes to Current Therapies; American Thoracic Society: New York, NY, USA, 2020; p. A6162. [Google Scholar] [CrossRef]
- Johnson, K.G.; Johnson, D.C.; Visintainer, P.F.; Kryger, M.H.; Thomas, R.J.; Lindenauer, P.; Feldmann, E. 0478 Novel Flow Limitation/Obstruction With Recovery Breath (FLOW) Event For Improved Scoring With Polysomnography And Home Sleep Apnea Testing. Sleep 2018, 41, A180–A181. [Google Scholar]
- Sever, O.; Dasgupta, R.; Khoury, J. 1093 The limitations of Apnea Hypopnea Index and home sleep testing in the evaluation of excessive daytime sleepiness in Multiple Sclerosis patients. Sleep 2018, 41, A407. [Google Scholar] [CrossRef]
- Martinot, J.-B.; Le-Dong, N.-N.; Letesson, C.; Cuthbert, V.; Gozal, D.; Pepin, J.-L. Design and Validation of a New Technology for Home-Based Screening of Sleep Apnea Syndrome. In C109. SRN: Innovative Ways to Assess SDB and Predict Outcomes to Current Therapies; 2020; p. A6160. [Google Scholar] [CrossRef]
- Haaland, C.; Cutrufello, N.; Kern, J. 1071 Does Significant Central Sleep Apnea and Periodic Breathing on Home Sleep Apnea Testing Require In-Laboratory Positive Airway Pressure Titration? Sleep 2018, 41, A398. [Google Scholar] [CrossRef]
- Do, T.Q.P.; MacKay, S.G.; Lam, M.E.; Sideris, A.W.; Jones, A.C.; Chan, L.S. Precision Medicine in Adult Obstructive Sleep Apnea and Home Diagnostic Testing: Caution in Interpretation of Home Studies Without Clinician Input Is Necessary. Front. Neurol. 2022, 13, 825708. [Google Scholar] [CrossRef] [PubMed]
- Stanchina, M.L.; Lincoln, J.; Prenda, S.; Holt, M.; Donat, W.E.; Corrao, W.M. The Impact of Direct Home Shipments of APAP with Remote Set Up Versus Traditional in Center PAP Set Up on Compliance in Patients with Obstructive Sleep Apnea. Am. J. Respir. Crit. Care Med. 2020, 201, A6172. [Google Scholar] [CrossRef]
- Perriol, M.P.; Lamblin, C.; Andrieux, A.; Ellaffi, M. 0759 Patients’ Compliance Of Cpap Treatment At Home For 66 Children And Teenagers, Suffering From Severe Sleep Apnea, After 1, 3, 6 And 12 Months. Sleep 2018, 41, A282. [Google Scholar] [CrossRef]
- Krause-Sorio, B.; An, E.; Aguila, A.P.; Martinez, F.; Aysola, R.S.; Macey, P.M. Inspiratory Muscle Training for Obstructive Sleep Apnea: Protocol Development and Feasibility of Home Practice by Sedentary Adults. Front. Physiol. 2021, 12, 737493. [Google Scholar] [CrossRef]
- Mahmood, T.; Bauer, C.; Jones, K. 0484 Repeat Home Sleep Apnea Testing (HST) For Technically Inadequate Initial HST. Sleep 2018, 41, A182–A183. [Google Scholar] [CrossRef]
- Robinson, K.; Ali, I.S.; Laws, R. 0488 Clinical Applications of a Modified Home Sleep Apnea Test in the Diagnosis of Obstructive Sleep Apnea. Sleep 2018, 41, A184. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, A. Sleep Apnea: Adherence and Home Respiratory Therapy Companies Performance. EC Pulmonol. Respir. Med. 2019, 8, 65–71. [Google Scholar]
Title | AND (Full-Text and Metadata) | Database | No. of Studies |
---|---|---|---|
“Apnea home” | “Apnea home” | Google Scholar | 179 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barika, R.; Elphick, H.; Lei, N.; Razaghi, H.; Faust, O. Environmental Benefits of Sleep Apnoea Detection in the Home Environment. Processes 2022, 10, 1739. https://doi.org/10.3390/pr10091739
Barika R, Elphick H, Lei N, Razaghi H, Faust O. Environmental Benefits of Sleep Apnoea Detection in the Home Environment. Processes. 2022; 10(9):1739. https://doi.org/10.3390/pr10091739
Chicago/Turabian StyleBarika, Ragab, Heather Elphick, Ningrong Lei, Hajar Razaghi, and Oliver Faust. 2022. "Environmental Benefits of Sleep Apnoea Detection in the Home Environment" Processes 10, no. 9: 1739. https://doi.org/10.3390/pr10091739