Improved Sparrow Search Algorithm Based on Multistrategy Collaborative Optimization Performance and Path Planning Applications
Abstract
:1. Introduction
2. Methods
2.1. Sparrow Search Algorithm (SSA)
2.2. Proposed Algorithm
2.2.1. SPM Chaotic Mapping
2.2.2. Introduction of Dancing Search Behavior (DBO)
2.2.3. Integration of Adaptive t-Variation Improvement Strategy
3. Results
3.1. Algorithm Performance Testing
3.1.1. Benchmark Test Functions
3.1.2. Comparative Analysis with Other Swarm Intelligence Algorithms
3.1.3. Analysis of the Effectiveness of Improvement Strategies
3.2. Simulation and Verification of Path Planning
3.2.1. Single-Target Point Path Planning
3.2.2. Multi-Target Point Path Planning
4. Discussion
4.1. Comparison with the Prior Literature
4.2. Implications of the Research Results
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Function Name | Metric | PSO | GWO | WOA | SSA | ISSA |
---|---|---|---|---|---|---|
f1 | Worst | 6.73 × 10−2 | 1.62 × 10−26 | 5.45 × 10−71 | 3.48 × 10−45 | 0 |
Best | 1.73 × 10−4 | 1.43 × 10−29 | 1.02 × 10−90 | 0 | 0 | |
Average | 7.07 × 10−3 | 1.13 × 10−27 | 7.42 × 10−73 | 3.48 × 10−47 | 0 | |
STD | 9.77 × 10−3 | 2.48 × 10−27 | 5.59 × 10−72 | 3.48 × 10−46 | 0 | |
f2 | Worst | 20 | 8.72 × 10−16 | 3.22 × 10−49 | 1.23 × 10−22 | 5.56 × 10−269 |
Best | 3.36 × 10−3 | 6.65 × 10−18 | 2.26 × 10−57 | 0 | 0 | |
Average | 1.62 | 1.04 × 10−16 | 8.19 × 10−51 | 1.24 × 10−24 | 5.56 × 10−271 | |
STD | 4.20 | 1.12 × 10−16 | 3.96 × 10−50 | 1.23 × 10−23 | 0 | |
f3 | Worst | 1.62 × 104 | 2.79 × 10−4 | 8.8 × 104 | 4.71 × 10−50 | 0 |
Best | 509.214 | 8.43 × 10−9 | 3926.1054 | 0 | 0 | |
Average | 2510.0837 | 1.25 × 10−5 | 45,513.8954 | 7.15 × 10−52 | 0 | |
STD | 2577.5337 | 3.94 × 10−5 | 14,720.657 | 5.28 × 10−51 | 0 | |
f4 | Worst | 11.5859 | 5.38 × 10−6 | 91.3319 | 5.64 × 10−31 | 9.25 × 10−285 |
Best | 3.4959 | 7.05 × 10−8 | 5.0264 | 0 | 0 | |
Average | 7.0503 | 9.21 × 10−7 | 53.5678 | 6.78 × 10−33 | 9.33 × 10−287 | |
STD | 1.6733 | 1.10 × 10−6 | 28.4516 | 5.74 × 10−32 | 0 | |
f5 | Worst | 9.01 × 104 | 28.7558 | 28.7825 | 8.03 × 10−2 | 28.7644 |
Best | 20.0117 | 25. 2684 | 26.8084 | 1.77 × 10−4 | 27.7019 | |
Average | 3.01 × 103 | 27.0547 | 27.9666 | 2.42 × 10−2 | 28.3511 | |
STD | 1.54 × 104 | 7.30 × 10−1 | 4.81 × 10−1 | 1.64 × 10−2 | 3.06 × 10−1 | |
f6 | Worst | 0.050133 | 1.7605 | 1.4544 | 1.5722 × 10−3 | 0.60586 |
Best | 1.11762 × 10−4 | 7.9901 × 10−5 | 0.085123 | 2.0102 × 10−5 | 0.023603 | |
Average | 8.5796 × 10−3 | 0.75119 | 0.40004 | 1.3649 × 10−4 | 0.15755 | |
STD | 0.011305 | 0.40083 | 0.21512 | 1.7587 × 10−4 | 0.09308 | |
f7 | Worst | 5.4406 | 4.69 × 10−3 | 4.24 × 10−2 | 2.71 × 10−3 | 3.32 × 10−4 |
Best | 1.88 × 10−2 | 4.10 × 10−4 | 6.80 × 10−5 | 1.86 × 10−6 | 8.29 × 10−7 | |
Average | 1.28 × 10−1 | 2.00 × 10−3 | 3.92 × 10−3 | 7.01 × 10−4 | 8.41 × 10−5 | |
STD | 5.99 × 10−1 | 9.56 × 10−4 | 5.42 × 10−3 | 5.26 × 10−4 | 7.95 × 10−5 | |
f8 | Worst | −7057.4627 | −3004.6203 | −6769.8771 | −4853.5867 | −9392.9792 |
Best | −9801.355 | −7540.6924 | −1.26 × 104 | −1.26 × 104 | −1.26 × 104 | |
Average | −8604.4849 | −5763.6179 | −10,500.6792 | −8522.0113 | −12,219.0844 | |
STD | 606.3484 | 775. 7291 | 1800.849 | 2408.7056 | 708.0306 | |
f9 | Worst | 108.5314 | 20.0383 | 1.14 × 10−13 | 0 | 0 |
Best | 29.4845 | 5.68 × 10−14 | 0 | 0 | 0 | |
Average | 58.9817 | 2.9108 | 2.27 × 10−15 | 0 | 0 | |
STD | 16.6001 | 3.6237 | 1.38 × 10−14 | 0 | 0 | |
f10 | Worst | 2.123 | 1.47 × 10−13 | 7.99 × 10−15 | 8.88 × 10−16 | 8.88 × 10−16 |
Best | 4.43 × 10−3 | 7.55 × 10−14 | 8.88 × 10−16 | 8.88 × 10−16 | 8.88 × 10−16 | |
Average | 0.56194 | 1.01 × 10−13 | 4.70 × 10−15 | 8.88 × 10−16 | 8.88 × 10−16 | |
STD | 0.65389 | 1.57 × 10−14 | 2.49 × 10−15 | 0 | 0 | |
f11 | Worst | 0.21726 | 0.033534 | 0.21418 | 0 | 0 |
Best | 0.00144 | 0 | 0 | 0 | 0 | |
Average | 2.97 × 10−2 | 5.27 × 10−3 | 5.16 × 10−3 | 0 | 0 | |
STD | 3.24 × 10−2 | 9.03 × 10−3 | 3.01 × 10−2 | 0 | 0 | |
f12 | Worst | 1.3007 | 0.13785 | 7.82 × 10−2 | 0.1127 | 1.67 × 10−2 |
Best | 2.65 × 10−5 | 6.57 × 10−3 | 3.89 × 10−3 | 5.71 × 10−8 | 1.30 × 10−3 | |
Average | 0.1627 | 4.67 × 10−2 | 2.26 × 10−2 | 1.15 × 10−3 | 6.09 × 10−3 | |
STD | 0.24573 | 2.34 × 10−2 | 1.23 × 10−2 | 1.13 × 10−2 | 2.71 × 10−3 | |
f13 | Worst | 4.0927 | 1.3696 | 1.3048 | 0.023044 | 0.83937 |
Best | 2.77 × 10−4 | 1.02 × 10−1 | 9.94 × 10−2 | 1.60 × 10−6 | 1.04 × 10−1 | |
Average | 0.22425 | 0.63757 | 0.53971 | 4.74 × 10−3 | 0.38609 | |
STD | 0.55636 | 0.2552 | 0.26339 | 7.09 × 10−3 | 0.16402 | |
f14 | Worst | 0.998 | 12.6705 | 10.7632 | 12.6705 | 12.6705 |
Best | 0.998 | 0.998 | 0.998 | 0.998 | 0.998 | |
Average | 0.998 | 4.0933 | 2.8645 | 10.1041 | 8.2394 | |
STD | 2.24 × 10−15 | 4.0065 | 3.0543 | 4.295 | 4.7131 | |
f15 | Worst | 2.04 × 10−2 | 2.04 × 10−2 | 2.25 × 10−3 | 1.39 × 10−3 | 1.60 × 10−3 |
Best | 3.08 × 10−4 | 3.07 × 10−4 | 3.08 × 10−4 | 3.08 × 10−4 | 3.08 × 10−4 | |
Average | 3.17 × 10−3 | 5.85 × 10−3 | 7.48 × 10−4 | 3.87 × 10−4 | 4.47 × 10−4 | |
STD | 6.68 × 10−3 | 8.87 × 10−3 | 4.79 × 10−4 | 1.92 × 10−4 | 2.56 × 10−4 | |
f16 | Worst | −1.0316 | −1.0316 | −1.0316 | −1.0316 | −1.0316 |
Best | −1.0316 | −1.0316 | −1.0316 | −1.0316 | −1.0316 | |
Average | −1.0316 | −1.0316 | −1.0316 | −1.0316 | −1.0316 | |
STD | 1.53 × 10−15 | 3.78 × 10−8 | 1.42 × 10−9 | 4.44 × 10−8 | 9.87 × 10−12 | |
f17 | Worst | 0.39789 | 0.39791 | 0.39796 | 0.39789 | 0.39789 |
Best | 0.39789 | 0.39789 | 0.39789 | 0.39789 | 0.39789 | |
Average | 0.39789 | 0.39789 | 0.39789 | 0.39789 | 0.39789 | |
STD | 1.06 × 10−15 | 4.03 × 10−6 | 1.36 × 10−5 | 6.58 × 10−7 | 2.83 × 10−9 | |
f18 | Worst | 84 | 84 | 3.0005 | 3 | 3 |
Best | 3 | 3 | 3 | 3 | 3 | |
Average | 3.81 | 3.81 | 3 | 3 | 3 | |
STD | 8.1 | 8.1 | 8.06 × 10−5 | 1.52 × 10−6 | 4.81 × 10−10 | |
f19 | Worst | −3.8628 | −3.8549 | −3.8252 | −3.8618 | −3.8628 |
Best | −3.8628 | −3.8628 | −3.8628 | −3.8628 | −3.8628 | |
Average | −3.8628 | −3.8615 | −3.856 | −3.8627 | −3.8628 | |
STD | 6.30 × 10−15 | 2.41 × 10−3 | 8.30 × 10−3 | 1.11 × 10−4 | 1.50 × 10−6 | |
f20 | Worst | −3.0839 | −3.0222 | −2.0612 | −3.121 | −3.151 |
Best | −3.322 | −3.322 | −3.3219 | −3.322 | −3.322 | |
Average | −3.2647 | −3.253 | −3.2134 | −3.2639 | −3.2715 | |
STD | 7.23 × 10−2 | 8.29 × 10−2 | 1.72 × 10−1 | 6.96 × 10−2 | 6.25 × 10−2 | |
f21 | Worst | −2.6305 | −2.6302 | −0.88098 | −9.235 | −10.1531 |
Best | −10.1532 | −10.1531 | −10.153 | −10.1532 | −10.1532 | |
Average | −5.8962 | −9.0744 | −8.012 | −10.1432 | −10.1532 | |
STD | 3.4536 | 2.2781 | 2.7952 | 0.091737 | 1.64 × 10−5 | |
f22 | Worst | −1.8376 | −5.0876 | −1.8332 | −5.0877 | −10.4029 |
Best | −10.4029 | −10.4027 | −10.4018 | −10.4029 | −10.4029 | |
Average | −7.5483 | −10.2061 | −7.3723 | −10.3493 | −10.4029 | |
STD | 3.5718 | 0.97141 | 3.0248 | 0.53148 | 1.46 × 10−5 | |
f23 | Worst | −2.4217 | −2.4216 | −1.6764 | −10.5254 | −10.5364 |
Best | −10.5364 | −10.5363 | −10.5362 | −10.5364 | −10.5364 | |
Average | −8.0599 | −10.1839 | −7.1367 | −10.5361 | −10.5364 | |
STD | 3.5863 | 1.5655 | 3.2759 | 1.11 × 10−3 | 1.06 × 10−5 |
References
- Chen, Y.; Cao, L.; Yue, Y. Hybrid Multi-Objective Chameleon Optimization Algorithm Based on Multi-Strategy Fusion and Its Applications. Biomimetics 2024, 9, 583. [Google Scholar] [CrossRef] [PubMed]
- Tang, C.; Li, W.; Han, T.; Yu, L.; Cui, T. Multi-Strategy Improved Harris Hawk Optimization Algorithm and Its Application in Path Planning. Biomimetics 2024, 9, 552. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Li, G.; Wang, X. Research on Trajectory Planning of Autonomous Vehicles in Constrained Spaces. Sensors 2024, 24, 5746. [Google Scholar] [CrossRef] [PubMed]
- Chu, L.; Wang, Y.; Li, S.; Guo, Z.; Du, W.; Li, J.; Jiang, Z. Intelligent Vehicle Path Planning Based on Optimized A* Algorithm. Sensors 2024, 24, 3149. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, Q. Complex Environment Based on Improved A* Algorithm Research on Path Planning of Inspection Robots. Processes 2024, 12, 855. [Google Scholar] [CrossRef]
- Zheng, W.; Huang, K.; Wang, C.; Liu, Y.; Ke, Z.; Shen, Q.; Qiu, Z. Research on 3D Path Planning of Quadrotor Based on Improved A* Algorithm. Processes 2023, 11, 334. [Google Scholar] [CrossRef]
- Huang, Y.; Zhao, S.; Zhao, S. Ship Trajectory Planning and Optimization via Ensemble Hybrid A* and Multi-Target Point Artificial Potential Field Model. J. Mar. Sci. Eng. 2024, 12, 1372. [Google Scholar] [CrossRef]
- Wang, Z.; Li, G. Research on Path Planning Algorithm of Driverless Ferry Vehicles Combining Improved A* and DWA. Sensors 2024, 24, 4041. [Google Scholar] [CrossRef]
- Zhang, Y.; Gao, F.; Zhao, F. Research on Path Planning and Tracking Control of Autonomous Vehicles Based on Improved RRT* and PSO-LQR. Processes 2023, 11, 1841. [Google Scholar] [CrossRef]
- Dong, Z.; Zhong, B.; He, J.; Gao, Z. Dual-Arm Obstacle Avoidance Motion Planning Based on Improved RRT Algorithm. Machines 2024, 12, 472. [Google Scholar] [CrossRef]
- Wu, T.; Zhang, Z.; Jing, F.; Gao, M. A Dynamic Path Planning Method for UAVs Based on Improved Informed-RRT* Fused Dynamic Windows. Drones 2024, 8, 539. [Google Scholar] [CrossRef]
- Ahn, S.; Oh, T.; Yoo, J. Collision Avoidance Path Planning for Automated Vehicles Using Prediction Information and Artificial Potential Field. Sensors 2024, 24, 7292. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Wei, W.; Gao, Y.; Wang, D.L.; Fan, Z. PQ-RRT*: An improved path planning algorithm for mobile robots. Expert Syst. Appl. 2020, 152, 113425. [Google Scholar] [CrossRef]
- Ramasubramanian, S.; Muthukumaraswamy, S.A. On the Enhancement of Firefighting Robots using Path-Planning Algorithms. SN Comput. Sci. 2021, 2, 188. [Google Scholar] [CrossRef]
- Kumar, A.; Tiwari, S.; Majumder, A. A*-VG algorithm: A hybrid algorithm for the path planning of inspection robots. J. Braz. Soc. Mech. Sci. 2023, 45, 386. [Google Scholar] [CrossRef]
- Wang, N.; Xu, H.W.; Li, C.Z.; Yin, J. Hierarchical Path Planning of Unmanned Surface Vehicles: A Fuzzy Artificial Potential Field Approach. Int. J. Fuzzy Syst. 2021, 23, 1797–1808. [Google Scholar] [CrossRef]
- Dewangan, R.K.; Shukla, A.; Godfrey, W.W. A solution for priority-based multi-robot path planning problem with obstacles using ant lion optimization. Mod. Phys. Lett. B 2020, 34, 2050137. [Google Scholar] [CrossRef]
- Yuan, Q.; Sun, R.; Du, X. Path Planning of Mobile Robots Based on an Improved Particle Swarm Optimization Algorithm. Processes 2023, 11, 26. [Google Scholar] [CrossRef]
- Xu, L.; Cao, M.Y.; Song, B.Y. A new approach to smooth path planning of mobile robot based on quartic Bezier transition curve and improved PSO algorithm. Neurocomputing 2022, 473, 98–106. [Google Scholar] [CrossRef]
- Gao, R.L.; Zhou, Q.J.; Cao, S.X.; Jiang, Q. Apple-Picking Robot Picking Path Planning Algorithm Based on Improved PSO. Electronics 2023, 12, 1832. [Google Scholar] [CrossRef]
- Tian, S.S.; Li, Y.X.; Li, J.; Liu, G.F. Robot global path planning using PSO algorithm based on the interaction mechanism between leaders and individuals. J. Intell. Fuzzy Syst. 2020, 39, 4925–4933. [Google Scholar] [CrossRef]
- Huo, F.C.; Zhu, S.; Dong, H.L.; Ren, W.J. A new approach to smooth path planning of Ackerman mobile robot based on improved ACO algorithm and B-spline curve. Robot. Auton. Syst. 2024, 175, 104655. [Google Scholar] [CrossRef]
- Hou, Y.X.; Gao, H.B.; Wang, Z.J.; Du, C.S. Improved Grey Wolf Optimization Algorithm and Application. Sensors 2022, 22, 3810. [Google Scholar] [CrossRef]
- Zhang, Q.; Ning, X.C.; Li, Y.Y.; Pan, L.; Gao, R.; Zhang, L.Y. Path planning of patrol robot based on modified grey wolf optimizer. Robotica 2023, 41, 1947–1975. [Google Scholar] [CrossRef]
- Xu, W.; Hou, C.; Li, G.; Cui, C. Path Planning for Wall-Climbing Robots Using an Improved Sparrow Search Algorithm. Actuators 2024, 13, 370. [Google Scholar] [CrossRef]
- Xu, Y.; Sang, B.; Zhang, Y. Application of Improved Sparrow Search Algorithm to Path Planning of Mobile Robots. Biomimetics 2024, 9, 351. [Google Scholar] [CrossRef]
- Ouyang, C.; Zhu, D.; Wang, F. A Learning Sparrow Search Algorithm. Comput. Intell. Neurosci. 2021, 5, 3946958. [Google Scholar] [CrossRef]
- Zhang, J.X.; Li, L.W.; Zhang, H.L.; Wang, F.X.; Tian, Y.Y. A novel sparrow search algorithm with integrates spawning strategy. Cluster Comput. 2023, 27, 1753–1773. [Google Scholar] [CrossRef]
- Tang, A.D.; Zhou, H.; Han, T.; Xie, L. A Chaos Sparrow Search Algorithm with Logarithmic Spiral and Adaptive Step for Engineering Problems. CMES-Comp. Model. Eng. 2022, 130, 1–34. [Google Scholar] [CrossRef]
- Chen, D.N.; Zhao, J.D.; Huang, P.; Deng, X.N.; Lu, T.T. An improved sparrow search algorithm based on levy flight and opposition-based learning. Assembly Autom. 2022, 41, 697–713. [Google Scholar] [CrossRef]
- Yang, J.H.; Gao, S.S.; Zhao, X.H.; Li, G.; Gao, Z.H. Enhanced sparrow search algorithm based on improved game predatory mechanism and its application. Digit. Signal Process. 2024, 145, 104310. [Google Scholar] [CrossRef]
- Liu, L.S.; Liang, J.R.; Guo, K.Q.; Ke, C.Y.; He, D.W.; Chen, J. Dynamic Path Planning of Mobile Robot Based on Improved Sparrow Search Algorithm. Biomimetics 2023, 8, 182. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.M.; Liu, S.; Zhu, X.L.; You, X.M. Enhancing sparrow search algorithm with hybrid multi-strategy and its engineering applications. J. Intell. Fuzzy Syst. 2023, 45, 5601–5632. [Google Scholar] [CrossRef]
- Ma, J.; Hao, Z.Y.; Sun, W.J. Enhancing sparrow search algorithm via multi-strategies for continuous optimization problems. Inform. Process. Manag. 2022, 59, 102854. [Google Scholar] [CrossRef]
- Wang, Z.K.; Huang, X.Y.; Zhu, D.L. A Multistrategy-Integrated Learning Sparrow Search Algorithm and Optimization of Engineering Problems. Comput. Intell. Neurosci. 2022, 2022, 2475460. [Google Scholar] [CrossRef]
- Hu, L.W.; Wang, D.H. Research and Application of an Improved Sparrow Search Algorithm. Appl. Sci. 2024, 14, 3460. [Google Scholar] [CrossRef]
- Abbas, T.F.; Shabeeb, A.H. Path Planning, Obstacle Avoidanc Path Planning and Obstacle Avoidance of a Mobile Robot based on GWO Algorithm. Al-Khwarizmi Eng. J. 2022, 18, 13–28. [Google Scholar] [CrossRef]
- Li, J.; Chen, J.C.; Shi, J. Evaluation of new sparrow search algorithms with sequential fusion of improvement strategies. Comput. Ind. Eng. 2023, 182, 109425. [Google Scholar] [CrossRef]
- Wei, X.G.; Zhang, Y.M.; Zhao, Y.L. Evacuation Path Planning Based on the Hybrid Improved Sparrow Search Optimization Algorithm. Fire 2023, 6, 380. [Google Scholar] [CrossRef]
- Geng, J.Q.; Sun, X.M.; Wang, H.H.; Bu, X.H.; Liu, D.H.; Li, F.; Zhao, Z.W. A modified adaptive sparrow search algorithm based on chaotic reverse learning and spiral search for global optimization. Neural Comput. Appl. 2023, 35, 24603–24620. [Google Scholar] [CrossRef]
- He, Y.; Wang, M.G. An improved chaos sparrow search algorithm for UAV path planning. Sci. Rep. 2024, 14, 366. [Google Scholar] [CrossRef] [PubMed]
- Xue, J.; Shen, B. A novel swarm intelligence optimization approach: Sparrow search algorithm. Syst. Sci. Control Eng. 2020, 8, 22–34. [Google Scholar] [CrossRef]
- Zhang, D.; Wang, Z.; Sun, F. Somersault Foraging and Elite Opposition-Based Learning Dung Beetle Optimization Algorithm. Appl. Sci. 2024, 14, 8624. [Google Scholar] [CrossRef]
- Xue, J.; Shen, B. Dung beetle optimizer: A new meta-heuristic algorithm for global optimization. J. Supercomput. 2022, 79, 7305–7336. [Google Scholar] [CrossRef]
- Shen, Q.; Zhang, D.; Xie, M.; He, Q. Multi-Strategy Enhanced Dung Beetle Optimizer and Its Application in Three-Dimensional UAV Path Planning. Symmetry 2023, 15, 1432. [Google Scholar] [CrossRef]
- Sang, W.; Yue, Y.; Zhai, K.; Lin, M. Research on AGV Path Planning Integrating an Improved A* Algorithm and DWA Algorithm. Appl. Sci. 2024, 14, 7551. [Google Scholar] [CrossRef]
- Li, J.; Liu, B.; Guo, D.; Gao, X.; Wang, P. An Improved RRT Path-Planning Algorithm Based on Vehicle Lane-Change Trajectory Data. World Electr. Veh. J. 2024, 15, 481. [Google Scholar] [CrossRef]
- Meng, X.; Fang, X. A UGV Path Planning Algorithm Based on Improved A* with Improved Artificial Potential Field. Electronics 2024, 13, 972. [Google Scholar] [CrossRef]
PSO | Learning factor ; initial inertia weight ; inertia weight at maximum evolution generation . |
GWO | Convergence factor a linearly decreases from 2 to 0 during the iteration process. |
WOA | Convergence factor a linearly decreases from 2 to 0 during the iteration process, b is a constant representing the shape of the spiral, b = 1. |
SSA | The proportion of discoverers in the population is set to about 20%. Safety value ST = 0.8. |
Obstacle Rate | Metric | SSA | ISSA | Decrease Percentage (%) | |
---|---|---|---|---|---|
10 × 10 | 10% | Path Length (m) | 14.4853 | 13.8998 | 4.04% |
Number of Turns | 5 | 4 | 20.00% | ||
Iteration | 4 | 17 | −352.00% | ||
15% | Path Length (m) | 14.4853 | 13.8995 | 4.04% | |
Number of Turns | 7 | 7 | 0% | ||
Iteration | 20 | 32 | −60.00% | ||
20% | Path Length (m) | 13.3137 | 12.7279 | 4.40% | |
Number of Turns | 3 | 0 | 100.00% | ||
Iteration | 73 | 5 | 93.15% | ||
20 × 20 | 10% | Path Length (m) | 28.6274 | 28.0416 | 2.05% |
Number of Turns | 6 | 5 | 16.67% | ||
Iteration | 4 | 42 | −950.00% | ||
15% | Path Length (m) | 29.2132 | 28.0416 | 4.01% | |
Number of Turns | 9 | 5 | 44.45% | ||
Iteration | 3 | 1 | 66.67% | ||
20% | Path Length (m) | 29.2132 | 28.6274 | 2.00% | |
Number of Turns | 12 | 5 | 58.33% | ||
Iteration | 47 | 7 | 85.11% | ||
30 × 30 | 10% | Path Length (m) | 42.7696 | 42.1838 | 1.37% |
Number of Turns | 9 | 8 | 11.11% | ||
Iteration | 14 | 27 | −92.86% | ||
15% | Path Length (m) | 43.3553 | 42.7696 | 1.35% | |
Number of Turns | 8 | 11 | −37.50% | ||
Iteration | 72 | 51 | 29.17% | ||
20% | Path Length (m) | 44.5269 | 43.9411 | 1.32% | |
Number of Turns | 15 | 10 | 33.33% | ||
Iteration | 2 | 63 | −3050.00% | ||
40 × 40 | 10% | Path Length (m) | 59.2548 | 58.0833 | 1.98% |
Number of Turns | 12 | 12 | 0% | ||
Iteration | 24 | 93 | −287.50% | ||
15% | Path Length (m) | 59.2548 | 58.0833 | 1.98% | |
Number of Turns | 20 | 18 | 10.00% | ||
Iteration | 300 | 50 | 83.33% | ||
20% | Path Length (m) | 59.2548 | 58.699 | 0.94% | |
Number of Turns | 14 | 15 | −7.14% | ||
Iteration | 3 | 11 | −266.67% |
Map | Obstacle Rate | Index | SSA | ISSA |
---|---|---|---|---|
10 × 10 | 0.1 | Minimum path length/m | 17.89949 | 17.89949 |
Maximum path length/m | 19.89949 | 17.89949 | ||
Average path length/m | 18.0003 | 17.89949 | ||
0.15 | Minimum path length/m | 23.48528 | 23.48528 | |
Maximum path length/m | 28.48528 | 25.89949 | ||
Average path length/m | 23.68922 | 23.49094 | ||
0.2 | Minimum path length/m | 28.38478 | 27.79899 | |
Maximum path length/m | 28.38478 | 28.38478 | ||
Average path length/m | 28.38478 | 27.80485 | ||
20 × 20 | 0.1 | Minimum path length/m | 39.45584 | 39.45584 |
Maximum path length/m | 43.69848 | 39.79899 | ||
Average path length/m | 39.47799 | 39.46545 | ||
0.15 | Minimum path length/m | 40.04163 | 40.04163 | |
Maximum path length/m | 49.35534 | 42.45584 | ||
Average path length/m | 40.06543 | 40.05612 | ||
0.2 | Minimum path length/m | 49.35534 | 45.69848 | |
Maximum path length/m | 56.76955 | 58.94113 | ||
Average path length/m | 49.39388 | 46.19976 | ||
30 × 30 | 0.1 | Minimum path length/m | 84.35534 | 84.35534 |
Maximum path length/m | 85.76955 | 86.18377 | ||
Average path length/m | 84.41756 | 84.37533 | ||
0.15 | Minimum path length/m | 106.8406 | 96.3259 | |
Maximum path length/m | 116.5685 | 114.4975 | ||
Average path length/m | 106.8795 | 98.13832 | ||
0.2 | Minimum path length/m | 110.669 | 99.25483 | |
Maximum path length/m | 130.9828 | 132.5685 | ||
Average path length/m | 111.9271 | 100.2721 | ||
40 × 40 | 0.1 | Minimum path length/m | 165.1249 | 165.1249 |
Maximum path length/m | 178.6102 | 165.1249 | ||
Average path length/m | 165.1788 | 165.1249 | ||
0.15 | Minimum path length/m | 161.196 | 141.2965 | |
Maximum path length/m | 161.196 | 144.468 | ||
Average path length/m | 161.196 | 141.5692 | ||
0.2 | Minimum path length/m | 226.5807 | 219.8823 | |
Maximum path length/m | 252.066 | 231.5097 | ||
Average path length/m | 227.6108 | 223.412 |
Map | Obstacle Rate | Traversal Order | Number of Turning Points | ||
---|---|---|---|---|---|
SSA | ISSA | SSA | ISSA | ||
10 × 10 | 0.1 | [1, 2, 3, 4, 5, 6] | [1, 2, 3, 4, 5, 6] | 9 | 9 |
0.15 | [1, 2, 4, 3, 5, 7, 6] | [1, 2, 4, 3, 5, 7, 6] | 12 | 12 | |
0.2 | [1, 5, 7, 6, 3, 2, 4, 8] | [1, 2, 5, 7, 6, 3, 4, 8] | 13 | 12 | |
20 × 20 | 0.1 | [1, 2, 3, 4, 5, 6] | [1, 2, 3, 4, 5, 6] | 13 | 13 |
0.15 | [1, 2, 3, 4, 5, 6, 7] | [1, 2, 3, 4, 5, 6, 7] | 18 | 18 | |
0.2 | [1, 3, 5, 2, 4, 6, 7, 8] | [1, 5, 3, 2, 4, 6, 7, 8] | 20 | 18 | |
30 × 30 | 0.1 | [5, 6, 3, 2, 1, 4] | [4, 1, 2, 3, 6, 5] | 18 | 13 |
0.15 | [1, 2, 3, 5, 6, 7, 4] | [1, 2, 3, 4, 7, 6, 5] | 24 | 22 | |
0.2 | [1, 2, 3, 6, 7, 8, 5, 4] | [1, 3, 2, 4, 5, 8, 7, 6] | 29 | 26 | |
40 × 40 | 0.1 | [4, 1, 5, 3, 2, 6] | [2, 3, 6, 5, 1, 4] | 26 | 25 |
0.15 | [1, 3, 2, 5, 4, 6, 7] | [1, 4, 2, 3, 5, 6, 7] | 41 | 37 | |
0.2 | [3, 1, 7, 4, 2, 5, 6, 8] | [3, 5, 4, 6, 8, 7, 1, 2] | 52 | 37 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, K.; Chen, Y.; Zhang, X.; Ge, Y.; Zhang, X.; Li, L.; Guo, C. Improved Sparrow Search Algorithm Based on Multistrategy Collaborative Optimization Performance and Path Planning Applications. Processes 2024, 12, 2775. https://doi.org/10.3390/pr12122775
Xu K, Chen Y, Zhang X, Ge Y, Zhang X, Li L, Guo C. Improved Sparrow Search Algorithm Based on Multistrategy Collaborative Optimization Performance and Path Planning Applications. Processes. 2024; 12(12):2775. https://doi.org/10.3390/pr12122775
Chicago/Turabian StyleXu, Kunpeng, Yue Chen, Xuanshuo Zhang, Yizheng Ge, Xu Zhang, Longhai Li, and Ce Guo. 2024. "Improved Sparrow Search Algorithm Based on Multistrategy Collaborative Optimization Performance and Path Planning Applications" Processes 12, no. 12: 2775. https://doi.org/10.3390/pr12122775
APA StyleXu, K., Chen, Y., Zhang, X., Ge, Y., Zhang, X., Li, L., & Guo, C. (2024). Improved Sparrow Search Algorithm Based on Multistrategy Collaborative Optimization Performance and Path Planning Applications. Processes, 12(12), 2775. https://doi.org/10.3390/pr12122775