A Novel Method for Gas Turbine Condition Monitoring Based on KPCA and Analysis of Statistics T2 and SPE
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Siddiqui, M.E.; Almitani, K.H. Energy Analysis of the S-CO2 Brayton Cycle with Improved Heat Regeneration. Processes 2019, 7, 3. [Google Scholar] [CrossRef]
- Lee, H.G.; Huh, J.H. A Cost-Effective Redundant Digital Excitation Control System and Test Bed Experiment for Safe Power Supply for Process Industry 4.0. Sensors 2018, 7, 85. [Google Scholar] [CrossRef]
- Lu, F.; Ju, H.F.; Huang, J.Q. An improved extended Kalman filter with inequality constraints for aero engine health monitoring. Aerosp. Sci. Technol. 2016, 58, 36–47. [Google Scholar] [CrossRef]
- Zeng, L.; Long, W.; Li, Y.Y. Performance Degradation Diagnosis of Gas Turbine Based on Improved FUKF. J. Southwest Univ. 2018, 53, 873–878. [Google Scholar] [CrossRef]
- Gao, Z.W.; Ding, S.X.; Cecati, C. Real-time fault diagnosis and Fault-toulent Control. IEEE Trans. Ind. Electron. 2015, 62, 3752–3756. [Google Scholar] [CrossRef]
- Gao, Z.W.; Sheng, S.W. Real-time monitoring, prognosis, and resilient control for wind turbine systems. IEEE Trans. Ind. Electron. 2018, 116, 1–4. [Google Scholar] [CrossRef]
- Simani, S.; Farsoni, S.; Castaldi, P. Fault Diagnosis of a Wind Turbine Benchmark via Identified Fuzzy Models. IEEE Trans. Ind. Electron. 2015, 62, 3775–3782. [Google Scholar] [CrossRef]
- Sanchez, S.; Escobet, T.; Puig, V.; Odgaard, P.F. Fault Diagnosis of an Advanced Wind Turbine Benchmark Using Interval-Based ARRs and Observers. IEEE Trans. Ind. Electron. 2015, 62, 3783–3792. [Google Scholar] [CrossRef]
- Gao, Z.; Cecati, C.; Ding, S.X. A survey of fault diagnosis and fault-tolerant techniques—Part I: Fault diagnosis with model-based and signal-based approaches. IEEE Trans. Ind. Electron. 2015, 62, 3757–3767. [Google Scholar] [CrossRef]
- Gao, Z.; Cecati, C.; Ding, S.X. A Survey of Fault Diagnosis and Fault-tolerant Techniques—Part II: Fault diagnosis with knowledge-based and hybrid/active approaches. IEEE Trans. Ind. Electron. 2015, 62, 3768–3774. [Google Scholar] [CrossRef]
- Zhang, Y.; Bingham, C.M.; Gallimore, M. Fault Detection and Diagnosis Based on Extensions of PCA. Adv. Mil. Technol. 2013, 8, 1–15. [Google Scholar] [CrossRef]
- Zhu, J.L.; Ge, Z.Q.; Song, Z.H. HMM-Driven Robust Probabilistic Principal Component Analyzer for Dynamic Process Fault Classification. IEEE Trans. Ind. Electron. 2015, 62, 3814–3821. [Google Scholar] [CrossRef]
- Zhang, P. Aero Engine Fault Diagnostics Based on Kalman Filter. Ph.D. Thesis, Nanjing University of Aeronautics ans Astronautics, Nanjing, China, 2008. [Google Scholar]
- Vasile, P.; Ron, J.P.; Faisel, J.U.; Joseba, Q. Fault Diagnosis of An Industrial Gas Turbine Using Neuro-fuzzy Methods. World Congr. 2002, 35, 1630–1636. [Google Scholar] [CrossRef]
- Che, C.C.; Wang, H.W.; Ni, X.M.; Hong, J.Y. Fault Fusion Diagnosis of Aero-engine Based on Deep Learning. J. Beijing Univ. Aeronaut. Astronaut. 2018, 44, 621–628. [Google Scholar] [CrossRef]
- Tayarani-Bathaie, S.S.; Khorasani, K. Fault Detection and Isolation of Aero Engines Using a Bank of Neural Networks. Process Control 2015, 36, 22–41. [Google Scholar] [CrossRef]
- Lei, W.; Zhang, J.X.; Xie, S.S.; Ren, L.T.; Hu, J.H. Fault Estimation for Actuators in Aero engine Control System Based on Fault Decomposition. Fire Control Command Control 2014, 39, 127–130. [Google Scholar]
- Fuat, D.; Jose, A.R.; Ahmet, P. A strategy for Detection and Isolation of Sensor Failures and Process Upsets. Chemom. Intell. Lab. Syst. 2001, 55, 109–123. [Google Scholar]
- Wold, S. Exponentially weighted moving principal component analysis and projection to latent structures. Chemom. Intell. Lab. Syst. 1994, 21, 149–161. [Google Scholar] [CrossRef]
- Navi, M.; Meskin, N.; Davoodi, M. Sensor Fault Detection and Isolation of An Industrial Gas Turbine Using Partial Adaptive KPCA. J. Process Control 2015, 2, 37–48. [Google Scholar] [CrossRef]
- Chen, S.G.; Wu, X.J.; Yin, H.F. KPCA Method Based on Within-class Auxiliary Training Samples and Its Application to Pattern Classification. Pattern Anal. Appl. 2016, 3, 749–767. [Google Scholar] [CrossRef]
- Alain, R. Variable Selection Using SVM-based Criteria. J. Mach. Learn. Res. 2003, 3, 1357–1370. [Google Scholar] [CrossRef]
- Jiang, W.L.; Wu, S.X.; Liu, S.Y. Exponentially Weighted Dynamic Kernel Principal Component Analysis Algorithm and Its Application in Fault Diagnosis. J. Mech. Eng. 2011, 47, 63–67. [Google Scholar] [CrossRef]
- Zhang, K.Y.; Li, Z.G.; Li, J. Effect of gas turbine endwall misalignment with slashface leakage on the blade endwall aerothermal performance. Int. J. Heat Mass Transf. 2018, 131, 1247–1259. [Google Scholar] [CrossRef]
- Dewallef, P.; Romessis, C.; Leonard, O.; Mathioudakis, K. Combining classification techniques with Kalman filters for aircraft engine diagnostics. J. Eng. Gas Turbines Power 2006, 128, 595–603. [Google Scholar] [CrossRef]
- Huang, M.Y.; Dey, S. Stability of Kalman filtering with Markovian packet losses. Automatica 2007, 43, 598–607. [Google Scholar] [CrossRef]
- Chen, Y. Gas Path Fault Diagnosis for Turbojet Engine Based on Nonlinear Model. Ph.D. Thesis, Nanjing University of Aeronautics and Astronautics, Nanjing, China, 2014. [Google Scholar]
- Zhang, P.; Huang, J.Q. SRUKF Research on Aero engine for Gas Path Component Fault Diagnosis. J. Aeros. Power 2008, 23, 169–172. [Google Scholar]
- Kurzke, J. Gas turbine cycle design methodology: A comparison of parameter variation with numerical optimization. J. Eng. Gas Turbines Power 1999, 121, 6–11. [Google Scholar] [CrossRef]
- Lu, F.; Huang, J.Q. Contracted Kalman Filter Estinmation for Turbofan Engine Gas-path Health. Control Theory Appl. 2012, 29, 1543–1550. [Google Scholar] [CrossRef]
- Zeng, L.; Long, W. Prediction Method of Metal Content of Aero Engine Lubricating Oil Based on SVR. J. Sichuan Univ. 2016, 48, 161–164. [Google Scholar] [CrossRef]
Efficiency of LPC | 0.868 | Pressure ratio of LPC | 3.8 |
Efficiency of HPC | 0.878 | Pressure ratio of HPC | 4.474 |
Fuel low calorific value | 42,900 | Total temperature of combustor outlet | 1600 K |
Efficiency of HPR | 0.98 | Efficiency of LPR | 0.98 |
Combustion chamber efficiency | 0.98 | Engine room air entrainment coefficient | 0.01 |
Cooling parameter of HPT | 0.03 | Efficiency of HPT | 0.89 |
Cooling parameter of LPT | 0.01 | Efficiency of LPT | 0.91 |
Design speed of LPR | 10,000 (r/m) | Design Speed of HPR | 16,000 (r/m) |
Sensitivity | FLPC | FHPC | FLPT | FHPT | |
---|---|---|---|---|---|
Sensitivity of measured parameters to statistics | CT2_T25 | 0.3239 | 0.0397 | 0.037 | 0.0279 |
CT2_T3 | 0.0045 | 0.6043 | 0.0215 | 0.0133 | |
CT2_T45 | 0.0144 | 0.0789 | 0.0584 | 0.1764 | |
CT2_T5 | 0.005 | 0.0248 | 0.2073 | 0.0177 | |
CT2_P25 | 0.6271 | 0.063 | 0.0554 | 0.0448 | |
CT2_P3 | 0.0042 | 0.1014 | 0.0246 | 0.0195 | |
CT2_P45 | 0.0156 | 0.0739 | 0.0713 | 0.6866 | |
CT2_P5 | 0.0049 | 0.014 | 0.5244 | 0.0138 | |
CSPE_T25 | 0.1250 | 0.1249 | 0.1249 | 0.1249 | |
CSPE_T3 | 0.1249 | 0.125 | 0.1249 | 0.1249 | |
CSPE_T45 | 0.1249 | 0.1249 | 0.1249 | 0.125 | |
CSPE_T5 | 0.1249 | 0.1249 | 0.125 | 0.1249 | |
CSPE_P25 | 0.1250 | 0.1249 | 0.1249 | 0.1249 | |
CSPE_P3 | 0.1249 | 0.125 | 0.1249 | 0.1249 | |
CSPE_P45 | 0.1249 | 0.1249 | 0.1249 | 0.125 | |
CSPE_P5 | 0.1249 | 0.1249 | 0.1245 | 0.1249 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zeng, L.; Long, W.; Li, Y. A Novel Method for Gas Turbine Condition Monitoring Based on KPCA and Analysis of Statistics T2 and SPE. Processes 2019, 7, 124. https://doi.org/10.3390/pr7030124
Zeng L, Long W, Li Y. A Novel Method for Gas Turbine Condition Monitoring Based on KPCA and Analysis of Statistics T2 and SPE. Processes. 2019; 7(3):124. https://doi.org/10.3390/pr7030124
Chicago/Turabian StyleZeng, Li, Wei Long, and Yanyan Li. 2019. "A Novel Method for Gas Turbine Condition Monitoring Based on KPCA and Analysis of Statistics T2 and SPE" Processes 7, no. 3: 124. https://doi.org/10.3390/pr7030124