Prediction of Lithium-ion Battery Thermal Runaway Propagation for Large Scale Applications Fire Hazard Quantification
Abstract
:1. Introduction
2. Numerical Modelling of Lithium-Ion Battery Thermal Runaway Propagation
2.1. Energy Balance of a Single Battery
2.2. Modelling of Thermal Decomposition Kinetics
2.2.1. Solid Electrolyte Interface (SEI) Breakdown
2.2.2. Reaction between Anode and Solvent
2.2.3. Electrolyte Decomposition
2.2.4. Cathode Breakdown
2.3. Heat Transfer Modelling for Simulation of Thermal Runaway Propagation in a Battery Module
3. Results and Discussion
3.1. Thermal Runaway of a Single Battery Initiated by Impact-Induced Short Circuit Propagation in a Battery Module
3.2. Thermal Runaway Propagation in a Battery Module
- Cell 2 and Cell 4;
- Cell 3 and Cell 7;
- Cell 6 and Cell 8.
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Buss, J. Automakers Need A Global Timetable For Phasing Out Internal-Combustion Engines. 2018. Available online: https://www.forbes.com/sites/oliverwyman/2018/03/27/automakers-need-a-global-timetable-for-phasing-out-internal-combustion-engines/#3808e5b223c3 (accessed on 19 June 2018).
- Randall, M. Tesla Flips the Switch on the Gigafactory. 2017. Available online: https://www.bloomberg.com/news/articles/2017-01-04/tesla-flips-the-switch-on-the-gigafactory?cmpid=socialflow-facebook-business&utm_content=business&utm_campaign=socialflow-organic&utm_source=facebook&utm_medium=social (accessed on 14 January 2017).
- Lu, L.; Han, X.; Li, J.; Hua, J.; Ouyang, M. A review on the key issues for lithium-ion battery management in electric vehicles. J. Power Sources 2013, 226, 272–288. [Google Scholar] [CrossRef]
- Behrmann, E.; Farchy, J.; Dodge, S. Hype Meets Reality as Electric Car Dreams Run Into Metal Crunch. 2018. Available online: https://www.bloomberg.com/graphics/2018-cobalt-batteries/ (accessed on 19 June 2018).
- Doughty, D.H. Battery Safety and Abuse Tolerance. In Handbook of Battery Materials; Daniel, C., Besenhard, J.O., Eds.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2011; pp. 905–938. [Google Scholar]
- Torabi, F.; Esfahanian, V. Study of Thermal–Runaway in Batteries I. Theoretical Study and Formulation. J. Electrochem. Soc. 2011, 158, A850–A858. [Google Scholar] [CrossRef]
- Kim, G.H.; Pesaran, A.; Smith, K. Thermal Abuse Modeling of Li-Ion Cells and Propagation in Modules. In Proceedings of the 4th International Symposium on Large Lithium Ion Battery Technology and Application, Tampa, FL, USA, 13–16 May 2008. [Google Scholar]
- Golubkov, A.W.; Fuchs, D.; Wagner, J.; Wiltsche, H.; Stangl, C.; Fauler, G.; Voitic, G.; Thaler, A.; Hacker, V. Thermal-runaway experiments on consumer Li-ion batteries with metal-oxide and olivin-type cathodes. RSC Adv. 2014, 4, 3633–3642. [Google Scholar] [CrossRef]
- Venugopal, G. Characterization of thermal cut-off mechanisms in prismatic lithium-ion batteries. J. Power Sources 2001, 101, 231–237. [Google Scholar] [CrossRef]
- Liu, X.; Stoliarov, S.I.; Denlinger, M.; Masias, A.; Snyder, K. Comprehensive calorimetry of the thermally-induced failure of a lithium ion battery. J. Power Sources 2015, 280, 516–525. [Google Scholar] [CrossRef]
- Larsson, F.; Mellander, B.E. Abuse by External Heating, Overcharge and Short Circuiting of Commercial Lithium-Ion Battery Cells. J. Electrochem. Soc. 2014, 161, A1611–A1617. [Google Scholar] [CrossRef]
- Lisbona, D.; Snee, T. A review of hazards associated with primary lithium and lithium-ion batteries. Process Saf. Environ. Prot. 2011, 89, 434–442. [Google Scholar] [CrossRef]
- Kim, G.H.; Pesaran, A.; Spotnitz, R. A three-dimensional thermal abuse model for lithium-ion cells. J. Power Sources 2007, 170, 476–489. [Google Scholar] [CrossRef]
- Zhang, Z.; Fouchard, D.; Rea, J.R. Differential scanning calorimetry material studies: Implications for the safety of lithium-ion cells. J. Power Sources 1998, 70, 16–20. [Google Scholar] [CrossRef]
- Richard, M.N.; Dahn, J.R. Accelerating Rate Calorimetry Study on the Thermal Stability of Lithium Intercalated Graphite in Electrolyte. J. Electrochem. Soc. 1999, 146, 2068–2077. [Google Scholar] [CrossRef]
- Biensan, P.; Simon, B.; Pérès, J.P.; de Guibert, A.; Broussely, M.; Bodet, J.M.; Perton, F. On safety of lithium-ion cells. J. Power Sources 1999, 81–82, 906–912. [Google Scholar] [CrossRef]
- Roth, E.P.; Nagasubramanian, G. Thermal Stability of Electrodes in Lithium-Ion Cells; Sandia National Laboratories: Albuquerque, NM, USA, 2000.
- Wang, Q.; Sun, J.; Yao, X.; Chen, C. Thermal stability of LiPF6/EC+DEC electrolyte with charged electrodes for lithium ion batteries. Thermochim. Acta 2005, 437, 12–16. [Google Scholar] [CrossRef]
- Wang, Q.S.; Sun, J.H.; Chen, C.H.; Zhou, X.M. Thermal properties and kinetics study of charged LiCoO2 by TG and C80 methods. J. Therm. Anal. Calorim. 2008, 92, 563–566. [Google Scholar] [CrossRef]
- MacNeil, D.D.; Dahn, J.R. Test of Reaction Kinetics Using Both Differential Scanning and Accelerating Rate Calorimetries As Applied to the Reaction of LixCoO2 in Non-aqueous Electrolyte. J. Phys. Chem. A 2001, 105, 4430–4439. [Google Scholar] [CrossRef]
- Mendoza-Hernandez, O.S.; Ishikawa, H.; Nishikawa, Y.; Maruyama, Y.; Umeda, M. Cathode material comparison of thermal runaway behavior of Li-ion cells at different state of charges including over charge. J. Power Sources 2015, 280, 499–504. [Google Scholar] [CrossRef]
- Feng, X.; Fang, M.; He, X.; Ouyang, M.; Lu, L.; Wang, H.; Zhang, M. Thermal runaway features of large format prismatic lithium ion battery using extended volume accelerating rate calorimetry. J. Power Sources 2014, 255, 294–301. [Google Scholar] [CrossRef]
- Doughty, D.H.; Pesaran, A.A. Vehicle Battery Safety Roadmap Guidance; National Renewable Energy Laboratory: Golden, CO, USA, 2012.
- Chen, W.C.; Wang, Y.W.; Shu, C.M. Adiabatic calorimetry test of the reaction kinetics and self-heating model for 18650 Li-ion cells in various states of charge. J. Power Sources 2016, 318, 200–209. [Google Scholar] [CrossRef]
- Jhu, C.Y.; Wang, Y.W.; Wen, C.Y.; Chiang, C.C.; Shu, C.M. Self-reactive rating of thermal runaway hazards on 18650 lithium-ion batteries. J. Therm. Anal. Calorim. 2011, 106, 159–163. [Google Scholar] [CrossRef]
- Jhu, C.Y.; Wang, Y.W.; Shu, C.M.; Chang, J.C.; Wu, H.C. Thermal explosion hazards on 18650 lithium ion batteries with a VSP2 adiabatic calorimeter. J. Hazard. Mater. 2011, 192, 99–107. [Google Scholar] [CrossRef]
- Jhu, C.Y.; Wang, Y.W.; Wen, C.Y.; Shu, C.M. Thermal runaway potential of LiCoO2 and Li(Ni1/3Co1/3Mn1/3)O2 batteries determined with adiabatic calorimetry methodology. Appl. Energy 2012, 100, 127–131. [Google Scholar] [CrossRef]
- Wen, C.Y.; Jhu, C.Y.; Wang, Y.W.; Chiang, C.C.; Shu, C.M. Thermal runaway features of 18650 lithium-ion batteries for LiFePO4 cathode material by DSC and VSP2. J. Therm. Anal. Calorim. 2012, 109, 1297–1302. [Google Scholar] [CrossRef]
- Lu, T.Y.; Chiang, C.C.; Wu, S.H.; Chen, K.C.; Lin, S.J.; Wen, C.Y.; Shu, C.M. Thermal hazard evaluations of 18650 lithium-ion batteries by an adiabatic calorimeter. J. Therm. Anal. Calorim. 2013, 114, 1083–1088. [Google Scholar] [CrossRef]
- Hatchard, T.D.; MacNeil, D.D.; Basu, A.; Dahn, J.R. Thermal Model of Cylindrical and Prismatic Lithium-Ion Cells. J. Electrochem. Soc. 2001, 148, A755–A761. [Google Scholar] [CrossRef]
- Lopez, C.F.; Jeevarajan, J.A.; Mukherjee, P.P. Characterization of Lithium-Ion Battery Thermal Abuse Behavior Using Experimental and Computational Analysis. J. Electrochem. Soc. 2015, 162, A2163–A2173. [Google Scholar] [CrossRef]
- Lee, C.H.; Bae, S.J.; Jang, M. A study on effect of lithium ion battery design variables upon features of thermal-runaway using mathematical model and simulation. J. Power Sources 2015, 293, 498–510. [Google Scholar] [CrossRef]
- Richard, M.N.; Dahn, J.R. Predicting electrical and thermal abuse behaviours of practical lithium-ion cells from accelerating rate calorimeter studies on small samples in electrolyte. J. Power Sources 1999, 79, 135–142. [Google Scholar] [CrossRef]
- Richard, M.N.; Dahn, J.R. Accelerating Rate Calorimetry Study on the Thermal Stability of Lithium Intercalated Graphite in Electrolyte. II. Modeling the Results and Predicting Differential Scanning Calorimeter Curves. J. Electrochem. Soc. 1999, 146, 2078–2084. [Google Scholar] [CrossRef]
- MacNeil, D.D.; Christensen, L.; Landucci, J.; Paulsen, J.M.; Dahn, J.R. An Autocatalytic Mechanism for the Reaction of LixCoO2 in Electrolyte at Elevated Temperature. J. Electrochem. Soc. 2000, 147, 970–979. [Google Scholar] [CrossRef]
- Feng, X.; He, X.; Ouyang, M.; Lu, L.; Wu, P.; Kulp, C.; Prasser, S. Thermal runaway propagation model for designing a safer battery pack with 25 Ah LiNixCoyMnzO2 large format lithium ion battery. Appl. Energy 2015, 154, 74–91. [Google Scholar] [CrossRef]
- Spotnitz, R.; Franklin, J. Abuse behavior of high-power, lithium-ion cells. J. Power Sources 2003, 113, 81–100. [Google Scholar] [CrossRef]
- Lamb, J.; Orendorff, C.J. Evaluation of mechanical abuse techniques in lithium ion batteries. J. Power Sources 2014, 247, 189–196. [Google Scholar] [CrossRef]
- Kim, G.H.; Pesaran, A. Analysis of Heat Dissipation in Li-Ion Cells & Modules for Modeling of Thermal Runaway. In Proceedings of the 3rd International Symposium on Large Lithium Ion Battery Technology and Application, Long Beach, CA, USA, 15 May 2007. [Google Scholar]
- Wilke, S.; Schweitzer, B.; Khateeb, S.; Al-Hallaj, S. Preventing thermal runaway propagation in lithium ion battery packs using a phase change composite material: An experimental study. J. Power Sources 2017, 340, 51–59. [Google Scholar] [CrossRef]
Specification | Value |
---|---|
Form Factor | Cylindrical 18,650 |
Diameter (mm) | 18 |
Length (mm) | 65 |
Nominal voltage (V) | 3.7 |
Maximum voltage (V) | 4.2 |
Minimum voltage (V) | 2.8 |
Chemistry | Lithium cobalt oxide cathode |
Graphite anode |
Property | Value | Reference |
---|---|---|
Specific heat capacity, Cp (J/kg.K) | 830 | [30] |
Volumetric mass of cathode (kg/m3) | 1.221 × 103 | [13] |
Volumetric mass of anode (kg/m3) | 6.104 × 102 | [13] |
Volumetric mass of electrolyte (kg/m3) | 4.069 × 102 | [13] |
Thermal emissivity, ε | 0.8 | [30] |
Components | Reaction Enthalpy (J/g) | Activation Energy (J/mol) | Frequency Factor (1/s) | References |
---|---|---|---|---|
Solid Electrolyte Interphase | 257 | 1.3508 × 105 | 1.667 × 1015 | [34] |
Anode | 1714 | 1.3508 × 105 | 2.5 × 1013 | [34] |
Cathode | 314 | 1.1495 × 105 | 1.75 × 109 | [35] |
Electrolyte | 155 | 1.7 × 105 | 2.5 × 1013 | [13] |
Thermal Resistance | Description | Thickness (m) | Thermal Conductivity (W/m.K) | Heat Transfer Coefficient (W/m2.K) | Reference |
---|---|---|---|---|---|
Rjr | Jellyroll (Axial) (Radial) | 0.0315 | 3.4 | - | [30] |
0.008 | |||||
Rcan | Canister | 0.001 | 14 | - | [30] |
Rh | Convective heat transfer resistance | - | - | 7.17 | [30] |
Peak heat release rate (W) | 2.25 × 105 |
Total heat release (J) | 2.75 × 104 |
Total heat release during short-circuit (J) | 1.5 × 104 |
Total heat release by SEI reaction (J) | 247.1 |
Total heat release by anode reaction (J) | 6.04 × 103 |
Total heat release by electrolyte reaction (J) | 466.1 |
Total heat release cathode reaction (J) | 5.76 × 103 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Md Said, M.S.; Mohd Tohir, M.Z. Prediction of Lithium-ion Battery Thermal Runaway Propagation for Large Scale Applications Fire Hazard Quantification. Processes 2019, 7, 703. https://doi.org/10.3390/pr7100703
Md Said MS, Mohd Tohir MZ. Prediction of Lithium-ion Battery Thermal Runaway Propagation for Large Scale Applications Fire Hazard Quantification. Processes. 2019; 7(10):703. https://doi.org/10.3390/pr7100703
Chicago/Turabian StyleMd Said, Mohamad Syazarudin, and Mohd Zahirasri Mohd Tohir. 2019. "Prediction of Lithium-ion Battery Thermal Runaway Propagation for Large Scale Applications Fire Hazard Quantification" Processes 7, no. 10: 703. https://doi.org/10.3390/pr7100703