On the Similarity and Differences Between Nano-Enhanced Laser-Induced Breakdown Spectroscopy and Nano-Enhanced Laser-Induced Plasma Spectroscopy in Laser-Induced Nanomaterials Plasma
Abstract
:1. Introduction
1.1. Plasma from the Thermodynamical Point of View
1.2. Plasma Spectroscopy (Optical Emission Spectroscopy—OES Technique)
1.3. Enhanced Emission from Plasmas Induced by Laser Interaction with Nanomaterials
2. Materials and Methods in NELIBS and NELIPS
3. Results
NELIPS | NELIBS | |
---|---|---|
| Pure nanomaterial [24,50,51,52,53,54,55,56]. | A thin layer of nanomaterial deposited on the surface of the analyzed sample [25,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49]. |
| From the pure nanomaterial. | From the analyzed sample material substrate [25,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49]. |
| Modeling of the enhanced emission from pure nanomaterials [24,50,51,52,53,54,55,56]. | Reduction in the limit of detection LOD of the LIBS–spectrochemical analytical technique [25,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49]. |
| Thermodynamics and plasma spectroscopy. | Foundations of electromagnetic theory and plasma spectroscopy [25,32,37,38,42,43]. |
|
| Suggested a resonance between the localized surface plasmons (LSPR) and the frequency of the incident laser light, which enhanced the coupling of laser energy to substrate materials [25,32,37,38,42,43]. |
|
|
|
|
|
|
|
| Extra-fine micro-analytical chemistry promotes the potential use of the LIBS technique in a wide variety of biological, industrial and material science applications [25,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49]. |
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
List of Symbols
Symbol | Meaning | Symbol | Meaning |
Electron density | Thermal conduction length | ||
Electron temperature | Coefficient of thermal conductivity | ||
Population density of atomic excited state | Density of bulk material | ||
Population density of ionic excited state | Total electric field intensity | ||
Population density of atomic ground state | Transverse electric | ||
Population density of ionic ground state | Transverse magnetic | ||
Atomic excitation temperature | Permittivity of free space | ||
Ionic temperature | Electronic charge | ||
Radiation temperature | Ionization energy | ||
K | Boltzmann constant | Laser irradiance | |
Speed of light in space | Emission spectral radiance (intensity) | ||
Plank’s constant | Reduction in ionization energy | ||
Electron mass | Exitation energy of ionic state | ||
Latent heat of vaporization | Exitation energy of atomic state | ||
Partition function of ionic ground state | Laser pulse duration time | ||
Partition function of atomic ground state | Specific heat at constant pressure | ||
Electron–atom collision frequency | Electron speed | ||
Statistical weight of state (j) | Statistical weight of ioized state (n) | ||
Reduction in ionization energy | Excitation energy of state (j) | ||
Transition probability of state (j) | Excitation energy of ionized state (n) | ||
Ag | Silver | Au | Gold |
Spectral intensity of line emerged from nanomaterial | Spectral intensity of line emerged from bulk material | ||
Population density of ground state calculated for nanomaterial | Population density of ground satate calculated for bulk material | ||
A technique given in ref. [49] | Laser irradiance | ||
Diameter of nanoparticle | Sinal-to- noise ratio | ||
Electron temperature of plasma generated from nanomaterial | Electron density of plasma generated from nanomaterial | ||
Electron temperature of plasma generated from bulk material | Electron density of plasma generated from bulk material |
Appendix A
Appendix B
References
- Chen, F.F. Introduction to Plasma Physics and Controlled Fusion; Springer International Publishing: Cham, Switzerland, 2016. [Google Scholar] [CrossRef]
- Fujimoto, T. Plasma Spectroscopy. In Plasma Polarization Spectroscopy; Fujimoto, T., Iwamae, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2008; Volume 44, pp. 29–49. [Google Scholar] [CrossRef]
- Kunze, H.-J. Introduction to Plasma Spectroscopy; Springer Series on Atomic, Optical, and Plasma Physics; Springer: Berlin/Heidelberg, Germany, 2009; Volume 56. [Google Scholar] [CrossRef]
- Hora, H. Plasmas at High Temperature and Density Applications and Implications of Laser-Plasma Interaction; Lecture Notes in Physics Monographs; Softcover Reprint of the Original 1st ed. 1991; Springer: Berlin/Heidelberg, Germany, 2014; ISBN 9783662138564. [Google Scholar]
- Bellan, P.M. Fundamentals of Plasma Physics; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2006; ISBN 9780511160967. [Google Scholar]
- Linne, M. Spectroscopic Measurement An Introduction to the Fundamentals; An Elsevier Science Imprint; Elsevier: London, UK, 2002; ISBN 0-12-451071-X. [Google Scholar]
- Cremers, D.A.; Leon, J.R. Handbook of Laser-Induced Breakdown Spectroscopy, 1st ed.; Wiley: Hoboken, NJ, USA, 2013. [Google Scholar] [CrossRef]
- Konjević, N.; Dimitrijević, M.S.; Wiese, W.L. Experimental Stark Widths and Shifts for Spectral Lines of Neutral Atoms (A Critical Review of Selected Data for the Period 1976 to 1982). J. Phys. Chem. Ref. Data 1984, 13, 619–647. [Google Scholar] [CrossRef]
- Griem, H.R. Plasma Spectroscopy; McGrow-Hill, Inc.: New York, NY, USA, 1964. [Google Scholar]
- Zhang, S.; Wang, X.; He, M.; Jiang, Y.; Zhang, B.; Hang, W.; Huang, B. Laser-Induced Plasma Temperature. Spectrochim. Acta Part B At. Spectrosc. 2014, 97, 13–33. [Google Scholar] [CrossRef]
- Fikry, M.; Alhijry, I.A.; Aboulfotouh, A.M.; El Sherbini, A.M. Feasibility of Using Boltzmann Plots to Evaluate the Stark Broadening Parameters of Cu(I) Lines. Appl. Spectrosc. 2021, 75, 1288–1295. [Google Scholar] [CrossRef]
- Kramida, A.; Ralchenko, Y. NIST Atomic Spectra Database, NIST Standard Reference Database 78; National Institute of Standards and Technology: Gaithersburg, MD, USA, 1999. [Google Scholar] [CrossRef]
- Konjević, N. Plasma Broadening and Shifting of Non-Hydrogenic Spectral Lines: Present Status and Applications. Phys. Rep. 1999, 316, 339–401. [Google Scholar] [CrossRef]
- Wang, Q.; Xiangli, W.; Teng, G.; Cui, X.; Wei, K. A Brief Review of Laser-Induced Breakdown Spectroscopy for Human and Animal Soft Tissues: Pathological Diagnosis and Physiological Detection. Appl. Spectrosc. Rev. 2021, 56, 221–241. [Google Scholar] [CrossRef]
- Grünberger, S.; Ehrentraut, V.; Eschlböck-Fuchs, S.; Hofstadler, J.; Pissenberger, A.; Pedarnig, J.D. Overcoming the Matrix Effect in the Element Analysis of Steel: Laser Ablation-Spark Discharge-Optical Emission Spectroscopy (LA-SD-OES) and Laser-Induced Breakdown Spectroscopy (LIBS). Anal. Chim. Acta 2023, 1251, 341005. [Google Scholar] [CrossRef]
- Senesi, G.S.; Tempesta, G.; Manzari, P.; Agrosì, G. An Innovative Approach to Meteorite Analysis by Laser-Induced Breakdown Spectroscopy. Geostand. Geoanalytic Res. 2016, 40, 533–541. [Google Scholar] [CrossRef]
- Jantzi, S.C.; Almirall, J.R. Characterization and Forensic Analysis of Soil Samples Using Laser-Induced Breakdown Spectroscopy (LIBS). Anal. Bioanal. Chem. 2011, 400, 3341–3351. [Google Scholar] [CrossRef]
- Fabre, C. Advances in Laser-Induced Breakdown Spectroscopy Analysis for Geology: A Critical Review. Spectrochim. Acta Part B At. Spectrosc. 2020, 166, 105799. [Google Scholar] [CrossRef]
- Khan, Z.H.; Ullah, M.H.; Rahman, B.; Talukder, A.I.; Wahadoszamen, M.; Abedin, K.M.; Haider, A.F.M.Y. Laser-Induced Breakdown Spectroscopy (LIBS) for Trace Element Detection: A Review. J. Spectrosc. 2022, 2022, 3887038. [Google Scholar] [CrossRef]
- Ismail, M.A.; Imam, H.; Elhassan, A.; Youniss, W.T.; Harith, M.A. LIBS Limit of Detection and Plasma Parameters of Some Elements in Two Different Metallic Matrices. J. Anal. At. Spectrom. 2004, 19, 489. [Google Scholar] [CrossRef]
- Gautier, C.; Fichet, P.; Menut, D.; Dubessy, J. Applications of the Double-Pulse Laser-Induced Breakdown Spectroscopy (LIBS) in the Collinear Beam Geometry to the Elemental Analysis of Different Materials. Spectrochim. Acta Part B At. Spectrosc. 2006, 61, 210–219. [Google Scholar] [CrossRef]
- Scaffidi, J.; Angel, S.M.; Cremers, D.A. Emission Enhancement Mechanisms in Dual-Pulse LIBS. Anal. Chem. 2006, 78, 24–32. [Google Scholar] [CrossRef]
- Rohwetter, P.; Yu, J.; Méjean, G.; Stelmaszczyk, K.; Salmon, E.; Kasparian, J.; Wolf, J.-P.; Wöste, L. Remote LIBS with Ultrashort Pulses: Characteristics in Picosecond and Femtosecond Regimes. J. Anal. At. Spectrom. 2004, 19, 437–444. [Google Scholar] [CrossRef]
- EL Sherbini, A.M.; Aboulfotouh, A.; Rashid, F.F.; Allam, S.H.; Dakrouri, A.E.; EL Sherbini, T.M. Observed Enhancement in LIBS Signals from Nano vs. Bulk ZnO Targets: Comparative Study of Plasma Parameters. World J. Nano Sci. Eng. 2012, 2, 181–188. [Google Scholar] [CrossRef]
- De Giacomo, A.; Gaudiuso, R.; Koral, C.; Dell’Aglio, M.; De Pascale, O. Nanoparticle-Enhanced Laser-Induced Breakdown Spectroscopy of Metallic Samples. Anal. Chem. 2013, 85, 10180–10187. [Google Scholar] [CrossRef]
- Feynman, R.P.; Robbins, J. The Pleasure of Finding Things Out: The Best Short Works of Richard P. Feynman; Helix Books; Perseus Books: Cambridge, MA, USA, 1999; ISBN 9780738201085. [Google Scholar]
- Asha, A.B.; Narain, R. Nanomaterials Properties. In Polymer Science and Nanotechnology; Elsevier: Amsterdam, The Netherlands, 2020; pp. 343–359. ISBN 9780128168066. [Google Scholar] [CrossRef]
- Joudeh, N.; Linke, D. Nanoparticle Classification, Physicochemical Properties, Characterization, and Applications: A Comprehensive Review for Biologists. J. Nanobiotechnol. 2022, 20, 262. [Google Scholar] [CrossRef]
- Campos, A.; Troc, N.; Cottancin, E.; Pellarin, M.; Weissker, H.-C.; Lermé, J.; Kociak, M.; Hillenkamp, M. Plasmonic Quantum Size Effects in Silver Nanoparticles Are Dominated by Interfaces and Local Environments. Nat. Phys. 2019, 15, 275–280. [Google Scholar] [CrossRef]
- Vollath, D.; Fischer, F.D.; Holec, D. Surface Energy of Nanoparticles—Influence of Particle Size and Structure. Beilstein J. Nanotechnol. 2018, 9, 2265–2276. [Google Scholar] [CrossRef]
- Li, S.; Meng Lin, M.; Toprak, M.S.; Kim, D.K.; Muhammed, M. Nanocomposites of Polymer and Inorganic Nanoparticles for Optical and Magnetic Applications. Nano Rev. 2010, 1, 5214. [Google Scholar] [CrossRef]
- Ohta, T.; Ito, M.; Kotani, T.; Hattori, T. Emission Enhancement of Laser-Induced Breakdown Spectroscopy by Localized Surface Plasmon Resonance for Analyzing Plant Nutrients. Appl. Spectrosc. 2009, 63, 555–558. [Google Scholar] [CrossRef]
- De Giacomo, A.; Gaudiuso, R.; Koral, C.; Dell’Aglio, M.; De Pascale, O. Nanoparticle Enhanced Laser Induced Breakdown Spectroscopy: Effect of Nanoparticles Deposited on Sample Surface on Laser Ablation and Plasma Emission. Spectrochim. Acta Part B At. Spectrosc. 2014, 98, 19–27. [Google Scholar] [CrossRef]
- De Giacomo, A.; Dell’Aglio, M.; Gaudiuso, R.; Koral, C.; Valenza, G. Perspective on the Use of Nanoparticles to Improve LIBS Analytical Performance: Nanoparticle Enhanced Laser Induced Breakdown Spectroscopy (NELIBS). J. Anal. At. Spectrom. 2016, 31, 1566–1573. [Google Scholar] [CrossRef]
- Koral, C.; De Giacomo, A.; Mao, X.; Zorba, V.; Russo, R.E. Nanoparticle Enhanced Laser Induced Breakdown Spectroscopy for Improving the Detection of Molecular Bands. Spectrochim. Acta Part B At. Spectrosc. 2016, 125, 11–17. [Google Scholar] [CrossRef]
- Gaudiuso, R.; Koral, C.; Dell’Aglio, M.; De Pascale, O.; De Giacomo, A. Fundamental Study and Analytical Applications of Nanoparticle-Enhanced Laser-Induced Breakdown Spectroscopy (NELIBS) of Metals, Semiconductors and Insulators. In Nano-Optics: Principles Enabling Basic Research and Applications; Di Bartolo, B., Collins, J., Silvestri, L., Eds.; Springer: Dordrecht, The Netherlands, 2017; pp. 505–506. ISBN 9789402408485. [Google Scholar]
- Dell’Aglio, M.; Alrifai, R.; De Giacomo, A. Nanoparticle Enhanced Laser Induced Breakdown Spectroscopy (NELIBS), a First Review. Spectrochim. Acta Part B At. Spectrosc. 2018, 148, 105–112. [Google Scholar] [CrossRef]
- Koral, C.; Dell’Aglio, M.; Gaudiuso, R.; Alrifai, R.; Torelli, M.; De Giacomo, A. Nanoparticle-Enhanced Laser Induced Breakdown Spectroscopy for the Noninvasive Analysis of Transparent Samples and Gemstones. Talanta 2018, 182, 253–258. [Google Scholar] [CrossRef]
- El Farash, A.; El Sherbini, A.; Helal, O.; El-Sherif, A. Enhanced Ti I Spectral Intensity Using NELIBS Technique. Eng. Sci. Milit. Techno. 2019, 3, 84–90. [Google Scholar] [CrossRef]
- Tang, H.; Hao, X.; Hu, X. Spectral Enhancement Effect of LIBS Based on the Combination of Au Nanoparticles with Magnetic Field. Optik 2019, 179, 1129–1133. [Google Scholar] [CrossRef]
- Palásti, D.J.; Albrycht, P.; Janovszky, P.; Paszkowska, K.; Geretovszky, Z.; Galbács, G. Nanoparticle Enhanced Laser Induced Breakdown Spectroscopy of Liquid Samples by Using Modified Surface-Enhanced Raman Scattering Substrates. Spectrochim. Acta Part B At. Spectrosc. 2020, 166, 105793. [Google Scholar] [CrossRef]
- De Giacomo, A.; Alrifai, R.; Gardette, V.; Salajková, Z.; Dell’Aglio, M. Nanoparticle Enhanced Laser Ablation and Consequent Effects on Laser Induced Plasma Optical Emission. Spectrochim. Acta Part B At. Spectrosc. 2020, 166, 105794. [Google Scholar] [CrossRef]
- De Giacomo, A.; Dell’Aglio, M. Nanoparticle-Enhanced Laser Induced Breakdown Spectroscopy (NELIBS) on Biological Samples. In Laser-Induced Breakdown Spectroscopy in Biological, Forensic and Materials Sciences; Galbács, G., Ed.; Springer International Publishing: Cham, Switzerland, 2022; pp. 205–222. ISBN 9783031145018. [Google Scholar]
- Khan, M.R.; Haq, S.U.; Abbas, Q.; Nadeem, A. Improvement in Signal Sensitivity and Repeatability Using Copper Nanoparticle-Enhanced Laser-Induced Breakdown Spectroscopy. Spectrochim. Acta Part B At. Spectrosc. 2022, 195, 106507. [Google Scholar] [CrossRef]
- Awan, R.A.; Siraj, K.; Haq, S.U.; Abbas, Q.; Rahim, M.S.A.; Younas, Q.; Fareed, S.; Ahsen, R.; Ahmad, Z.; Irshad, M.; et al. Laser Induced Breakdown Spectroscopy of Aluminum Incorporated with Metallic Nanoparticles. Opt. Quant. Electron. 2023, 55, 73. [Google Scholar] [CrossRef]
- Jamil, S.; Liaqat, U.; Ahmed, N.; Ahmed, R.; Umar, Z.A.; Baig, M.A. The Role of Nanoparticles Concentration in the Emission Intensity Enhancement of the Laser-Produced Aluminum Plasma. Phys. B Condens. Matter 2022, 627, 413620. [Google Scholar] [CrossRef]
- Dell’Aglio, M.; Di Franco, C.; De Giacomo, A. Different Nanoparticle Shapes for Nanoparticle-Enhanced Laser-Induced Breakdown Spectroscopy: Nanosphere and Nanorod Effects. J. Anal. At. Spectrom. 2023, 38, 766–774. [Google Scholar] [CrossRef]
- Dell’Aglio, M.; Mallardi, A.; Gaudiuso, R.; Giacomo, A.D. Plasma Parameters During Nanoparticle-Enhanced Laser-Induced Breakdown Spectroscopy (NELIBS) in the Presence of Nanoparticle–Protein Conjugates. Appl. Spectrosc. 2023, 77, 1253–1263. [Google Scholar] [CrossRef]
- Safi, A.; Landis, J.E.; Adler, H.G.; Khadem, H.; Eseller, K.E.; Markushin, Y.; Honarparvaran, S.; De Giacomo, A.; Melikechi, N. Enhancing Biomarker Detection Sensitivity through Tag-Laser Induced Breakdown Spectroscopy with NELIBS. Talanta 2024, 271, 125723. [Google Scholar] [CrossRef]
- Rashid, F.F.; ELSherbini, A.M.; Al-Muhamady, A. Strong Emission from Nano-Iron Using Laser-Induced Breakdown Spectroscopy Technique. Appl. Phys. A 2014, 115, 1395–1399. [Google Scholar] [CrossRef]
- EL Sherbini, A.M.; Galil, A.A.; Allam, S.H.; EL Sherbini, T.M. Nanomaterials Induced Plasma Spectroscopy. J. Phys. Conf. Ser. 2014, 548, 012031. [Google Scholar] [CrossRef]
- El Sherbini, A.M.; Parigger, C.G. Wavelength Dependency and Threshold Measurements for Nanoparticle-Enhanced Laser-Induced Breakdown Spectroscopy. Spectrochim. Acta Part B At. Spectrosc. 2016, 116, 8–15. [Google Scholar] [CrossRef]
- El Sherbini, A.M.; Parigger, C.G. Nano-Material Size Dependent Laser-Plasma Thresholds. Spectrochim. Acta Part B At. Spectrosc. 2016, 124, 79–81. [Google Scholar] [CrossRef]
- El Sherbini, A.M.; El Sherbini, A.E.; Parigger, C.G. Measurement of Electron Density from Stark-Broadened Spectral Lines Appearing in Silver Nanomaterial Plasma. Atoms 2018, 6, 44. [Google Scholar] [CrossRef]
- Sherbini, A.M.E.; Sherbini, A.E.E.; Parigger, C.G.; Sherbini, T.M.E. Nano-Particle Enhancement of Diagnosis with Laser-Induced Plasma Spectroscopy. J. Phys. Conf. Ser. 2019, 1253, 012002. [Google Scholar] [CrossRef]
- El Sherbini, A.M.; Hagrass, M.M.; Rizk, M.R.M.; El-Badawy, E.A. Plasma Ignition Threshold Disparity between Silver Nanoparticle-Based Target and Bulk Silver Target at Different Laser Wavelengths. Plasma Sci. Technol. 2019, 21, 015502. [Google Scholar] [CrossRef]
Species | Proper Distribution | Proper Expression |
---|---|---|
Atoms | Boltzmann | |
Electrons | Maxwell | |
Ions | Saha–Boltzmann | |
Radiation | Planck |
Electron Density | State of Equilibrium | Conditions on Temperatures | Applicable Distribution Functions |
---|---|---|---|
Complete Thermodynamical Equilibrium (CTE) | Boltzmann; Saha–Boltzmann Maxwell; Planck | ||
Local Thermodynamical Equilibrium (LTE) | Boltzmann; Saha–Boltzmann Maxwell | ||
Partial Local Thermodynamical Equilibrium (PLTE) | Boltzmann Maxwell | ||
Corona State (Equilibrium) | None of these distribution functions is applicable, and collisional–radiative modeling should be constructed. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sherbini, A.E.; Aboulfotouh, A.; Sherbini, T.E. On the Similarity and Differences Between Nano-Enhanced Laser-Induced Breakdown Spectroscopy and Nano-Enhanced Laser-Induced Plasma Spectroscopy in Laser-Induced Nanomaterials Plasma. Quantum Beam Sci. 2025, 9, 1. https://doi.org/10.3390/qubs9010001
Sherbini AE, Aboulfotouh A, Sherbini TE. On the Similarity and Differences Between Nano-Enhanced Laser-Induced Breakdown Spectroscopy and Nano-Enhanced Laser-Induced Plasma Spectroscopy in Laser-Induced Nanomaterials Plasma. Quantum Beam Science. 2025; 9(1):1. https://doi.org/10.3390/qubs9010001
Chicago/Turabian StyleSherbini, Ashraf EL, AbdelNasser Aboulfotouh, and Tharwat EL Sherbini. 2025. "On the Similarity and Differences Between Nano-Enhanced Laser-Induced Breakdown Spectroscopy and Nano-Enhanced Laser-Induced Plasma Spectroscopy in Laser-Induced Nanomaterials Plasma" Quantum Beam Science 9, no. 1: 1. https://doi.org/10.3390/qubs9010001
APA StyleSherbini, A. E., Aboulfotouh, A., & Sherbini, T. E. (2025). On the Similarity and Differences Between Nano-Enhanced Laser-Induced Breakdown Spectroscopy and Nano-Enhanced Laser-Induced Plasma Spectroscopy in Laser-Induced Nanomaterials Plasma. Quantum Beam Science, 9(1), 1. https://doi.org/10.3390/qubs9010001