Assessing the Impact of BMPs on Water Quality and Quantity in a Flat Agricultural Watershed in Southern Ontario
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the Study Area
Data Collection
2.2. Data Preparation for Model Inputs
2.2.1. Digital Elevation Model (DEM)
2.2.2. Soil Data
2.2.3. Land Use and Land Management Datasets
2.2.4. Weather Datasets
2.3. SWAT Model Setup
2.4. Evaluation of BMP Scenarios
3. Challenges to Model Built-Up for the Flat Land Watershed (Wigle Creek Watershed)
4. Results and Discussion
4.1. Calibration of Flow, Sediment, and Phosphorus
4.1.1. Calibration of the Flow
4.1.2. Sediment Load Calibration
4.1.3. Phosphorus Load Calibration
4.2. Effectiveness of Existing BMPs
4.3. Effectiveness of Proposed BMPs
4.3.1. The Minimum Tillage Scenarios
4.3.2. The No Tillage Scenarios
4.3.3. Retiring Land Scenarios
Retire Pasture Scenario
Retire Forest Scenario
4.3.4. Cover Crop after Winter Wheat Scenarios
4.3.5. Vegetative Filter Strips Scenarios
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Daggupati, P.; Shukla, R.; Mekonnen, B.; Rudra, R.; Biswas, A.; Goel, P.K.; Prasher, S.; Yang, W. Hydrological responses to various land use, soil and weather inputs in Northern Lake Erie Basin in Canada. Water 2018, 10, 222. [Google Scholar] [CrossRef]
- Nurnberg, G.K.; Howell, T.; Palmer, M. Long-term impact of Central Basin hypoxia and internal phosphorus loading on north shore water quality in Lake Erie. Inland Waters 2019, 9, 362–373. [Google Scholar] [CrossRef]
- Isaac, B.N.; de Loë, R. Eutrophication and water quality policy discourse in the Lake Erie Basin. Water Altern. 2020, 13, 800–821. [Google Scholar]
- Jiang, B.; Mitsch, W.J.; Lenhart, C. Estimating the Importance of Hydrologic Conditions on Nutrient Retention and Plant Richness in a Wetlaculture Mesocosm Experiment in a Former Lake Erie Basin Swamp. Water 2021, 13, 2509. [Google Scholar] [CrossRef]
- Giri, S. Water quality prospective in Twenty First Century: Status of water quality in major river basins, contemporary strategies and impediments: A review. Environ. Pollut. 2021, 271, 116332. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Wang, R.; Guo, T.; Engel, B.A.; Flanagan, D.C.; Lee, J.G.; Li, S.; Pijanowski, B.C.; Collingsworth, P.D.; Wallace, C.W. Evaluating efficiencies and cost-effectiveness of best management practices in improving agricultural water quality using integrated SWAT and cost evaluation tool. J. Hydrol. 2019, 577, 123965. [Google Scholar] [CrossRef]
- Baker, B.H.; Kröger, R.; Prevost, J.D.; Pierce, T.; Ramirez-Avila, J.J.; Czarnecki, J.P.; Faust, D.; Flora, C. A field-scale investigation of nutrient and sediment reduction efficiencies of a low-technology best management practice: Low-grade weirs. Ecol. Eng. 2016, 91, 240–248. [Google Scholar] [CrossRef]
- Hassanzadeh, E.; Strickert, G.; Morales-Marin, L.; Noble, B.; Baulch, H.; Shupena-Soulodre, E.; Lindenschmidt, K.E. A framework for engaging stakeholders in water quality modeling and management: Application to the Qu’Appelle River Basin, Canada. J. Environ. Manag. 2019, 231, 1117–1126. [Google Scholar] [CrossRef]
- Rousseau, A.N.; Savary, S.; Hallema, D.W.; Gumiere, S.J.; Foulon, É. Modeling the effects of agricultural BMPs on sediments, nutrients, and water quality of the Beaurivage River watershed (Quebec, Canada). Can. Water Resour. J. 2013, 38, 99–120. [Google Scholar] [CrossRef]
- Porter, S.A.; Tomer, M.D.; Boomer, K.M.B.; James, D. Agricultural Conservation Planning Framework (ACPF) Toolbox. U.S. Department of Agriculture—Agricultural Research Service. 2015. Available online: https://data.nal.usda.gov/dataset/agricultural-conservation-planning-framework-acpf-toolbox (accessed on 11 November 2017). [CrossRef]
- Liu, Y.; Yang, W.; Leon, L.; Wong, I.; McCrimmon, C.; Dove, A.; Fong, P. Hydrologic modeling and evaluation of Best Management Practice scenarios for the Grand River watershed in Southern Ontario. J. Great Lakes Res. 2016, 42, 1289–1301. [Google Scholar] [CrossRef]
- Golmohammadi, G.; Prasher, S.O.; Madani, A.; Rudra, R.P.; Youssef, M.A. SWATDRAIN, a new model to simulate the hydrology of agricultural Lands, model development and evaluation. Biosyst. Eng. 2016, 141, 31–47. [Google Scholar] [CrossRef]
- Gupta, A.K.; Rudra, R.P.; Gharabaghi, B.; Goel, P.K.; Sebti, S.; Shukla, R.; Daggupati, P. A Modeling Approach for Evaluating Watershed-scale Water Quality Benefits of Vegetative Filter Strip-A Case Study in Ontario. Appl. Eng. Agric. 2019, 35, 271–281. [Google Scholar] [CrossRef]
- Leh, M.D.; Sharpley, A.N.; Singh, G.; Matlock, M.D. Assessing the impact of the MRBI program in a data limited Arkansas watershed using the SWAT model. Agric. Water Manag. 2018, 202, 202–219. [Google Scholar] [CrossRef]
- Arnold, J.G.; Moriasi, D.N.; Gassman, P.W.; Abbaspour, K.C.; White, M.J.; Srinivasan, R.; Santhi, C.; Harmel, R.D.; Van Griensven, A.; Van Liew, M.W.; et al. SWAT: Model use, calibration, and validation. Trans. ASABE 2012, 55, 1491–1508. [Google Scholar] [CrossRef]
- Bosch, N.S.; Allan, J.D.; Selegean, J.P.; Scavia, D. Scenario-testing of agricultural best management practices in Lake Erie watersheds. J. Great Lakes Res. 2013, 39, 429–436. [Google Scholar] [CrossRef]
- Qi, C.; Grunwald, S. GIS-based hydrologic modeling in the Sandusky watershed using SWAT. Trans. ASAE 2005, 48, 169–180. [Google Scholar] [CrossRef]
- Daggupati, P.; Yen, H.; White, M.J.; Srinivasan, R.; Arnold, J.G.; Keitzer, C.S.; Sowa, S.P. Impact of model development, calibration and validation decisions on hydrological simulations in West Lake Erie Basin. Hydrol. Process. 2015, 29, 5307–5320. [Google Scholar] [CrossRef]
- Yen, H.; White, M.J.; Arnold, J.G.; Keitzer, S.C.; Johnson, M.V.V.; Atwood, J.D.; Daggupati, P.; Herbert, M.E.; Sowa, S.P.; Ludsin, S.A.; et al. Western Lake Erie Basin: Soft-data-constrained, NHDPlus resolution watershed modeling and exploration of applicable conservation scenarios. Sci. Total Environ. 2016, 569, 1265–1281. [Google Scholar] [CrossRef]
- Dagnew, A.; Scavia, D.; Wang, Y.C.; Muenich, R.; Kalcic, M. Modeling phosphorus reduction strategies from the international St. Clair-Detroit River system watershed. J. Great Lakes Res. 2019, 45, 742–751. [Google Scholar] [CrossRef]
- Hu, Y.; Long, C.M.; Wang, Y.C.; Kerkez, B.; Scavia, D. Urban total phosphorus loads to the St. Clair-Detroit River system. J. Great Lakes Res. 2019, 45, 1142–1149. [Google Scholar] [CrossRef]
- Shao, H.; Yang, W.; Lindsay, J.; Liu, Y.; Yu, Z.; Oginskyy, A. An open source GIS-Based decision support system for watershed evaluation of best management practices. J. Am. Water Resour. Assoc. 2017, 53, 521–531. [Google Scholar] [CrossRef]
- Yang, W.; Liu, Y.; Ou, C.; Gabor, S. Examining water quality effects of riparian wetland loss and restoration scenarios in a southern Ontario watershed. J. Environ. Manag. 2016, 174, 26–34. [Google Scholar] [CrossRef] [PubMed]
- Golmohammadi, G.; Rudra, R.; Dickinson, T.; Goel, P.; Veliz, M. Predicting the temporal variation of flow contributing areas using SWAT. J. Hydrol. 2017, 547, 375–386. [Google Scholar] [CrossRef]
- Donmez, C.; Sari, O.; Berberoglu, S.; Cilek, A.; Satir, O.; Volk, M. Improving the Applicability of the SWAT Model to Simulate Flow and Nitrate Dynamics in a Flat Data-Scarce Agricultural Region in the Mediterranean. Water 2020, 12, 3479. [Google Scholar] [CrossRef]
- Schmalz, B.; Tavares, F.; Fohrer, N. Modelling hydrological processes in mesoscale lowland river basins with SWAT—Capabilities and challenges. Hydrol. Sci. J. 2008, 53, 989–1000. [Google Scholar] [CrossRef]
- Habeck, A.; Krysanova, V.; Hattermann, F. Integrated analysis of water quality in a mesoscale lowland basin. Adv. Geosci. 2005, 5, 13–17. [Google Scholar] [CrossRef]
- Al-Khafaji, M.S.; Al-Sweiti, F.H. Integrated impact of digital elevation model and land cover resolutions on simulated runoff by SWAT Model. Hydrol. Earth Syst. Sci. Discuss. 2017, 1–26. Available online: https://hess.copernicus.org/preprints/hess-2017-653/ (accessed on 11 November 2017).
- Singh, B. Modeling of Water Quality in Canard River Watershed. Master’s Thesis, University of Windsor (Canada), Windsor, ON, Canada, 2014. Available online: https://www.proquest.com/docview/1564441033?accountid=11233&parentSessionId=FchJBNfEwZXV2azsO97W852YVO2tigerIkq8EpJeCtg%3D (accessed on 11 November 2017).
- OMAFRA. LIDAR—Digital Terrain Model; Ontario Ministry of Agriculture, Food and Rural Affairs: Guelph, ON, Canada, 2013. Available online: https://omafra.gov.on.ca/english/ (accessed on 11 November 2017).
- Neitsch, S.L.; Arnold, J.G.; Kiniry, J.R.; Srinvasan, R.; Williams, J.R. Soil and Water Assessment Tool, Input/Output File Documentation, Version 2009; Texas A&M University: College Station, TX, USA, 2011. [Google Scholar]
- Moriasi, D.N.; Gitau, M.W.; Pai, N.; Daggupati, P. Hydrologic and water quality models: Performance measures and evaluation criteria. Trans. ASABE 2015, 58, 1763–1785. [Google Scholar]
- Nash, J.E.; Sutcliffe, J.V. River flow forecasting through conceptual models part I—A discussion of principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Santhi, C.; Arnold, J.G.; Williams, J.R.; Dugas, W.A.; Srinivasan, R.; Hauck, L.M. Validation of the swat model on a large river basin with point and nonpoint sources. J. Am. Water Resour. Assoc. 2021, 37, 1169–1188. [Google Scholar] [CrossRef]
- Kalin, L.; Hantush, M.M. Hydrologic modeling of an eastern Pennsylvania watershed with NEXRAD and rain gauge data. J. Hydrol. Eng. 2006, 11, 555–569. [Google Scholar] [CrossRef]
Data | Source | Description |
---|---|---|
DEM | OMAFRA | Digital elevation model (30 m × 30 m) |
Land use | Windshield survey report | Land use for years 2004 and 2006 |
Soil | Soil Landscapes of Canada (SLC) | Daily data (July 2016–July 2017) |
Precipitation | ‘Jack Miner’ Environment Canada weather station, lacunae filled from the ‘Harrow CDA’ station | Daily data (July 2016–July 2017) |
Crop/crop management | Essex Region Conservation Authority | List of crops grown: 2012–2016: from a 5-year survey 2016–2017 from a 2-year windshield survey |
Crop | Corn | Soybean | Winter Wheat | |
---|---|---|---|---|
Year | 1 | 1 | 1 | 2 |
Tilling | 25 October | 12 May | 24 October | |
Planting | 2 May | 15 May | 25 October | |
Fertilizer-I | 2 May | 15 May | 25 October | |
Fertilizer-II | 29 May | — | — | 25 April |
Harvest and kill | 20 October | 12 October | — | 20 July |
Year | Yield (kg ha−1) | |||||
---|---|---|---|---|---|---|
Winter Wheat | Soybeans | Corn | ||||
Obs. | Sim. | Obs. | Sim. | Obs. | Sim. | |
2012 | 4202 | 4038 | 2297 | 2863 | 6170 | 9985 |
2013 | — | — | 2745 | 2248 | 8812 | 6533 |
2014 | — | — | 2690 | 2434 | — | — |
2015 | — | — | 3194 | 2807 | 9492 | 9801 |
2016 | — | — | 2465 | 2742 | — | — |
BMP | SWAT Simulation | |||
---|---|---|---|---|
Description | Name | Type | Phase | BMPs Applied |
Minimum tillage | CurrMT | Current | Calibration | Current practice |
No-till | CurrNT | Current | Calibration | Current practice |
No BMP | Curr-BMP | Control | Post-calibration | None |
Minimum tillage | PropMT | Proposed | Post-calibration | Minimum tillage, and all croplands in watershed. |
No-tillage | PropNT | Proposed | Post-calibration | No till, and all croplands in watershed. |
Retire croplands to pasture | PropRTP | Proposed | Post-calibration | No agricultural management all crop land converted to pasture |
Retire croplands to forest | PropRTF | Proposed | Post-calibration | No agricultural management, and all crop land converted to forest |
Cover crop after winter wheat | PropCCWW | Proposed | Post-calibration | No agricultural management, oats planted late summer, and winter killed in January. |
Vegetative Filter Strips | PropVFS | Proposed | Post-calibration | No agricultural management, and vegetative filter strips are applied at the edge of all agricultural fields |
Calibrated Parameter | Sampling | Model Accuracy Statistics | |||||
---|---|---|---|---|---|---|---|
Type | Units | Start | End | Number | PBIAS (%) | R2 | Daily NSE |
Flow | m3 s−1 | January 2016 | May 2017 | 47 | 6.71 | 0.56 | 0.52 |
Sediment concentration | mg L−1 | January 2016 | December 2017 | 122 | −1.19 | 0.13 | 0.13 |
Sediment load (calculated) | ton | January 2016 | December 2017 | 47 | −15.94 | 0.31 | 0.30 |
Phosphorus (calculated) | kg | January 2016 | May 2017 | 47 | −82.57 | 0.17 | 0.08 |
Year | Average Flow (m3 s−1) | Sediment (ton) | Phosphorus (kg) |
---|---|---|---|
2016 | 0.157 | 527.5 | 239.2 |
2017 | 0.222 | 746.5 | 413.9 |
Existing BMPs Reductions (%) | ||||||
---|---|---|---|---|---|---|
Year | Season | Flow | TSS | P Organic | P Mineral | P Total |
2016 | Non-Growing | −0.47 | −1.01 | −4.69 | 0.70 | −2.57 |
Growing | 2.13 | 3.74 | 11.55 | 100.22 | 43.56 | |
Year | 0.25 | −0.11 | −4.07 | 3.66 | −1.05 | |
2017 | Non-Growing | 0.16 | 0.36 | −11.69 | 9.49 | −4.29 |
Growing | 0.99 | 1.23 | 0.00 | −0.04 | −0.03 | |
Year | 0.41 | 0.58 | −11.12 | 8.45 | −4.01 |
BMP Imposed | Year | Season | |||||
---|---|---|---|---|---|---|---|
Flow | TSS | Phosphorus | |||||
Organic | Mineral | Total | |||||
PropMT | 2016 | Non-growing | 1.99 | 2.71 | −50.17 | −25.9 | −40.59 |
Growing | 0.37 | −0.17 | −40.61 | −28.32 | −36.17 | ||
Year | 1.58 | 2.16 | −49.82 | −25.97 | −40.43 | ||
2017 | Non-growing | 0.54 | 0.53 | −46.18 | −12.25 | −34.35 | |
Growing | 0.5 | 0.57 | −3.55 | −3.87 | −3.74 | ||
Year | 0.54 | 0.55 | −44.08 | −11.38 | −32.21 | ||
PropNT | 2016 | Non-growing | 2.24 | 4.00 | −65.87 | −42.29 | −56.55 |
Growing | 0.34 | −0.02 | −64.01 | −48.41 | −58.38 | ||
Year | 1.77 | 3.22 | −65.79 | −42.47 | −56.61 | ||
2017 | Non-growing | 0.46 | 1.30 | −64.24 | −32.54 | −53.19 | |
Growing | 0.41 | 0.48 | −3.66 | −4.11 | −3.94 | ||
Year | 0.45 | 1.11 | −61.27 | −29.54 | −49.75 | ||
PropRTP | 2016 | Non-growing | −23.73 | −82.45 | −80.59 | −48.99 | −68.1 |
Growing | 19.81 | −65.79 | −63.9 | −17.32 | −47.08 | ||
Year | −12.23 | −79.26 | −80.01 | −48.03 | −67.41 | ||
2017 | Non-growing | −31.77 | −84.03 | −80.24 | −35.01 | −64.48 | |
Growing | 36.41 | −67.42 | −9.97 | 10.22 | 1.24 | ||
Year | −12.48 | −80.15 | −76.81 | −30.14 | −59.87 | ||
PropRTF | 2016 | Non-growing | −27.53 | −83.61 | −83.43 | −63.89 | −75.71 |
Growing | 25.39 | −63.11 | −68.53 | −46.45 | −60.55 | ||
Year | −13.62 | −79.7 | −82.91 | −63.38 | −75.21 | ||
2017 | Non-growing | −37.03 | −85.77 | −87.85 | −62.72 | −79.09 | |
Growing | 40.94 | −66.58 | −8.59 | 10.12 | 1.8 | ||
Year | −14.86 | −81.29 | −83.98 | −54.9 | −73.42 | ||
PropCCWW | 2016 | Non-growing | −0.36 | −0.2 | −2.41 | −2.42 | −2.41 |
Growing | −3.22 | −4.01 | −0.49 | 0.08 | −0.28 | ||
Year | −1.14 | −0.93 | −2.28 | −2.33 | −2.34 | ||
2017 | Non-growing | −1.31 | −2.24 | −3.56 | −3.14 | −3.41 | |
Growing | −0.8 | −0.71 | −0.01 | 0.01 | 0 | ||
Year | −1.17 | −1.86 | −3.38 | −2.79 | −3.17 | ||
PropVFS | 2016 | Non-growing | 0 | −73.54 | −45.56 | −33.01 | −40.6 |
Growing | 0 | −73.57 | −35.48 | −23.43 | −31.14 | ||
Year | 0 | −73.55 | −45.2 | −32.72 | −40.3 | ||
2017 | Non-growing | 0 | −73.73 | −43.26 | −30.77 | −38.9 | |
Growing | 0 | −73.46 | −1.91 | −1.91 | −1.91 | ||
Year | 0 | −73.66 | −41.24 | −27.68 | −36.31 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miele, P.; Shukla, R.; Prasher, S.; Rudra, R.P.; Daggupati, P.; Goel, P.K.; Stammler, K.; Gupta, A.K. Assessing the Impact of BMPs on Water Quality and Quantity in a Flat Agricultural Watershed in Southern Ontario. Resources 2023, 12, 142. https://doi.org/10.3390/resources12120142
Miele P, Shukla R, Prasher S, Rudra RP, Daggupati P, Goel PK, Stammler K, Gupta AK. Assessing the Impact of BMPs on Water Quality and Quantity in a Flat Agricultural Watershed in Southern Ontario. Resources. 2023; 12(12):142. https://doi.org/10.3390/resources12120142
Chicago/Turabian StyleMiele, Peter, Rituraj Shukla, Shiv Prasher, Ramesh Pal Rudra, Prasad Daggupati, Pradeep Kumar Goel, Katie Stammler, and Anand Krishna Gupta. 2023. "Assessing the Impact of BMPs on Water Quality and Quantity in a Flat Agricultural Watershed in Southern Ontario" Resources 12, no. 12: 142. https://doi.org/10.3390/resources12120142