Land Subsidence in Chiayi, Taiwan, from Compaction Well, Leveling and ALOS/PALSAR: Aquaculture-Induced Relative Sea Level Rise
Abstract
:1. Introduction
2. Geological Settings and Data
2.1. Geological Settings
2.2. Data from Precision Leveling and Compaction Wells
2.3. SAR Images from ALOS over Chiayi
3. Method for Processing ALOS/PALSAR Images for Subsidence Determination
3.1. Processing ALOS/PALSAR Images by TCPInSAR
3.2. LOS-Projected Rates in the Up Direction
4. Results
4.1. Inland and Coastal Subsidence from Leveling: Understanding the Mechanism by Compaction Well Data
4.2. Chiayi Subsidence from InSAR
5. Discussion
5.1. Assessing the InSAR Result and Identifying Systematic Errors
5.1.1. Comparison between the InSAR and Leveling Results
5.1.2. InSAR’s Systematic Errors in Chiayi
5.2. Correcting the InSAR Result Using Rates from Leveling
5.3. A Detailed Aquaculture-Induced Subsidence over Fish Farm from the Corrected InSAR
5.4. Implication for Relative Sea Level Rise
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Taiwan Wikipedia. Available online: https://en.wikipedia.org/wiki/Taiwan (accessed on 4 October 2017).
- Hwang, C.; Hung, W.; Liu, C. Results of geodetic and geotechnical monitoring of subsidence for Taiwan High Speed Rail operation. Nat. Hazards 2008, 47, 1–16. [Google Scholar] [CrossRef]
- Hung, W.; Wang, C. Monitoring and Analyzing Subsidence of Taipei, Chiayi, Kaohsiung, and Pingtung Area in 2016; Report of Water Resource Agency; Water Resource Agency: Taipei, Taiwan, 2016; p. 588. (In Chinese) [Google Scholar]
- Hung, W.; Hwang, C.; Chang, C.; Yen, J.; Liu, C.; Yang, W. Monitoring severe subsidence in Taiwan by multi-sensors: Yunlin, the southern Choushui River Alluvial Fan. Earth Sci. Geol. 2010, 59, 1535–1548. [Google Scholar] [CrossRef]
- Hooper, A.; Zebker, H.; Segall, P.; Kampes, B. A new method for measuring deformation on volcanoes and other natural terrains using InSAR Persistent Scatterers. Geophys. Res. Lett. 2004, 31, 611–615. [Google Scholar] [CrossRef]
- Crosetto, M.; Monserrat, O.; Cuevas-González, M.; Devanthéry, N.; Crippa, B. Persistent Scatterer Interferometry: A review. ISPRS J. Photogramm. Remote Sens. 2016, 115, 78–89. [Google Scholar] [CrossRef]
- Kampes, B.M. Displacement Parameter Estimation Using Permanent Scatterer Interferometry. Ph.D. Thesis, Delft University of Technology, Delft, The Netherlands, 2005. [Google Scholar]
- Hooper, A. A multi-temporal InSAR method incorporating both persistent scatterer and small baseline approached. Geophys. Res. Lett. 2008, 35. [Google Scholar] [CrossRef]
- Zhang, L.; Ding, X.; Lu, Z. Modeling PSInSAR time series without phase unwrapping. IEEE Trans. Geosci. Remote Sens. 2011, 49, 547–556. [Google Scholar] [CrossRef]
- Zhang, L.; Lu, Z.; Ding, X.; Jung, H.S.; Feng, G.; Lee, C.W. Mapping ground surface deformation using temporarily coherent point SAR interferometry: Application to Los Angeles Basin. Remote Sens. Environ. 2012, 117, 429–439. [Google Scholar] [CrossRef]
- Tosi, L.; Teatini, P.; Strozzi, T.; Carbognin, L.; Brancolini, G.; Rizzetto, F. Ground surface dynamics in the northern Adriatic coastland over the two decades. Rendiconti Lincei 2010, 21, 115–129. [Google Scholar] [CrossRef]
- Teatini, P.; Tosi, L.; Strozzi, T. Quantitative evidence that compaction of Holocene sediments drives the present land subsidence of the Po Delta, Italy. J. Geophys. Res. 2011, 116, B08407. [Google Scholar] [CrossRef]
- Higgins, S.; Overeem, I.; Tanaka, A.; Syvitski, J.P.M. Land subsidence at aquaculture facilities in the Yellow River delta, China. Geophys. Res. Lett. 2013, 40, 3898–3902. [Google Scholar] [CrossRef]
- Zhang, J.-Z.; Huang, H.-J.; Bi, H.-B. Land subsidence in the modern Yellow River Delta based on InSAR time series analysis. Nat. Hazards 2014, 75, 2385–2397. [Google Scholar] [CrossRef]
- Sun, Q.; Zhang, L.; Ding, X.; Hu, J.; Liang, H. Investigation of Slow-Moving Landslides from ALOS/PALSAR Images with TCPInSAR: A Case Study of Oso, USA. Remote Sens. 2015, 7, 72–88. [Google Scholar] [CrossRef]
- Jones, N. Fish Farms Cause Relative Sea-Level Rise. Nature 2013. [Google Scholar] [CrossRef]
- Ingebritsen, S.E.; Galloway, D.L. Coastal subsidence and relative sea level rise. Environ. Res. Lett. 2014, 9, 091002. [Google Scholar] [CrossRef]
- Church, J.A.; White, N.J. Sea-level rise from the late 19th to the early 21st century. Surv. Geophys. 2011, 32, 585–602. [Google Scholar] [CrossRef]
- Bamler, R. Interferometric stereo radargrammetry: Absolute height determination from ERSE-NVISAT interferograms. In Proceedings of the IEEE 2000 International Geoscience and Remote Sensing Symposium IGRASS’00 2000, Honolulu, HI, USA, 24–28 July 2000; pp. 742–745. [Google Scholar]
- Golub, G.; Kahan, W. Calculating the singular values and Pseudo-Inverse of a matrix. J. Soc. Ind. Appl. Math. Ser. B Numer. Anal. 1965, 2, 205–224. [Google Scholar] [CrossRef]
- Han, J. Principles and Practice of Ground Improvement; John Wiley and Sons: Hoboken, NJ, USA, 2015. [Google Scholar]
- Ezquerro, P.; Herrera, G.; Marchamalo, M.; Tomás, R.; Béjar-Pizarro, M.; Martínez, R. A quasi-elastic aquifer deformational behavior: Madrid aquifer case study. J. Hydrol. 2014, 519, 1192–1204. [Google Scholar] [CrossRef] [Green Version]
- Peng, M.; Shih, T. A Quality Assurance Approach for Land Subsidence Interpolation. Surv. Rev. 2002, 36, 568–581. [Google Scholar] [CrossRef]
- Yen, J.Y.; Chen, K.S.; Chang, C.P.; Boerner, W.M. Evaluation of earthquake potential and surface deformation by Differential Interferometry. Remote Sens. Environ. 2008, 112, 782–795. [Google Scholar] [CrossRef]
- Oliver-Cabrera, T.; Wdowinski, S. InSAR-based mapping of tidal inundation extent and amplitude in Louisiana coastal wetlands. Remote Sens. 2016, 8, 393. [Google Scholar] [CrossRef]
- Goldstein, R.M. Atmospheric limitations to repeat-track radar interferometry. Geophys. Res. Lett. 1995, 22, 2517–2520. [Google Scholar] [CrossRef]
- Zebker, H.A.; Rosen, P.A.; Hensley, S. Atmospheric effects in interferometric synthetic aperture radar surface deformation and topographic maps. J. Geophys. Res. 1997, 102, 7547–7563. [Google Scholar] [CrossRef]
- Hung, W.C.; Hwang, C.; Chen, Y.A.; Chang, C.P.; Yen, J.Y.; Hooper, A.; Yang, C.Y. Surface deformation from persistent scatterers SAR interferometry and fusion with leveling data: A case study over the Choushui River Alluvial Fan, Taiwan. Remote Sens. Environ. 2011, 115, 957–967. [Google Scholar] [CrossRef]
- Liu, C.W.; Lin, K.H.; Kuo, Y.M. Application of factor analysis in the assessment of groundwater quality in a blackfoot disease area in Taiwan. Sci. Total Environ. 2003, 313, 77–89. [Google Scholar] [CrossRef]
- Erban, L.E.; Gorelick, S.M.; Zebker, H.A.; Fendorf, S. Release of arsenic to deep groundwater in the Mekong Delta, Vietnam, linked to pumping-induced land subsidence. Proc. Natl. Acad. Sci. USA 2013, 10, 13751–13756. [Google Scholar] [CrossRef] [PubMed]
- Food and Agriculture Organization (FAO). Fish to 2030: Prospects for Fisheries and Aquaculture; World Band Report; World Band Group: Washington, DC, USA, 2013; Volume 83177-GLB. [Google Scholar]
- Abidin, H.Z.; Djaja, R.; Darmawan, D.; Akbar, A.; Rajiyowiryono, H.; Sudibyo, Y.; Meilano, I.; Dasuma, M.A.; Kahar, J.; Subarya, C. Land subsidence of Jakarta (Indonesia) and its Geodetic Monitoring System. Nat. Hazards 2001, 23, 365–387. [Google Scholar] [CrossRef]
- Noppadol, P.W.; Giao, P.H.; Nutalaya, P. Land subsidence in Bangkok, Thailand. J. Environ. Geol. 2006, 82, 171–201. [Google Scholar]
- Ng, A.H.M.; Ge, L.L.; Li, X.J.; Abidin, H.Z.; Andreas, H.; Zhang, K. Mapping land subsidence in Jakarta, Indonesia using persistent scatterer interferometry (PSI) technique with ALOS PALSAR. International J. Appl. Earth Obs. Geoinform. 2012, 18, 232–242. [Google Scholar] [CrossRef]
Description | DSES | WLES | BDES | AHES |
---|---|---|---|---|
Time period | March 1997–August 2011 | April 1998–August 2011 | March 1997–August 2011 | November 2004–August 2011 |
Total compaction (cm) | 36.5 | 56.7 | 46.9 | 7.9 |
Number of magnetic rings | 24 | 24 | 24 | 26 |
Depth range of major compaction (m) | 47–282 | 0–300 | 10–275 | 0–185 |
Orbit\Track\Frame | Ascending\447\470 |
---|---|
Spatial Perpendicular Baselines boundary (m) | 1100 |
Temporal baselines upper boundary (day) | 900 |
Time Span | 4 March 2007–15 March 2011 |
No. of interferogram pairs | 29 |
TCPs | 687,736 |
Area (Km2) | 771 |
TCP point density (pixel/Km2) | 890 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hung, W.-C.; Hwang, C.; Chen, Y.-A.; Zhang, L.; Chen, K.-H.; Wei, S.-H.; Huang, D.-R.; Lin, S.-H. Land Subsidence in Chiayi, Taiwan, from Compaction Well, Leveling and ALOS/PALSAR: Aquaculture-Induced Relative Sea Level Rise. Remote Sens. 2018, 10, 40. https://doi.org/10.3390/rs10010040
Hung W-C, Hwang C, Chen Y-A, Zhang L, Chen K-H, Wei S-H, Huang D-R, Lin S-H. Land Subsidence in Chiayi, Taiwan, from Compaction Well, Leveling and ALOS/PALSAR: Aquaculture-Induced Relative Sea Level Rise. Remote Sensing. 2018; 10(1):40. https://doi.org/10.3390/rs10010040
Chicago/Turabian StyleHung, Wei-Chia, Cheinway Hwang, Yi-An Chen, Lei Zhang, Kuan-Hung Chen, Shiang-Hung Wei, Da-Ren Huang, and Shu-Han Lin. 2018. "Land Subsidence in Chiayi, Taiwan, from Compaction Well, Leveling and ALOS/PALSAR: Aquaculture-Induced Relative Sea Level Rise" Remote Sensing 10, no. 1: 40. https://doi.org/10.3390/rs10010040