Mapping Cropland Abandonment in the Aral Sea Basin with MODIS Time Series
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Definition of Cropland Abandonment
2.3. Satellite Data and Preprocessing
2.4. Training and Testing Data
2.5. Ancillary Data
2.6. Mapping Abandoned Cropland
2.7. Accuracy Assessment
2.8. Analysis of the Spatial Patterns of Abandoned and Actively Cultivated Irrigated Cropland
3. Results
3.1. Classification Accuracies
3.2. Spatial Patterns of Abandoned Irrigated Cropland
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Alexandratos, N.; Bruinsma, J. World Agriculture: Towards 2030/2050—The 2012 Revision (Report); FAO: Rome, Italy, 2012. [Google Scholar]
- Erb, K.H.; Haberl, H.; Jepsen, M.R.; Kuemmerle, T.; Lindner, M.; Müller, D.; Verburg, P.H.; Reenberg, A. A conceptual framework for analysing and measuring land-use intensity. Curr. Opin. Environ. Sustain. 2013, 5, 464–470. [Google Scholar] [CrossRef] [PubMed]
- Sadras, V.O.; Cassman, K.G.G.; Grassini, P.; Hall, A.J.; Bastiaanssen, W.G.M.; Laborte, A.G.; Milne, A.E.; Sileshi, G.; Steduto, P. Yield Gap Analysis of Field Crops, Methods and Case Studies; FAO Water Reports 41; FAO: Rome, Italy, 2015. [Google Scholar]
- Foley, J.A.; Ramankutty, N.; Brauman, K.; Cassidy, E.S.; Gerber, J.S.; Johnston, M.; Mueller, N.D.; O’Connell, C.; Ray, D.K.; West, P.C.; et al. Solutions for a cultivated planet. Nature 2011, 478, 337–342. [Google Scholar] [CrossRef] [PubMed]
- Lobell, D.B.; Cassman, K.G.; Field, C.B.; Field, C.B. Crop Yield Gaps: Their Importance, Magnitudes, and Causes. Annu. Rev. Environ. Resour. 2009, 34, 179–204. [Google Scholar] [CrossRef]
- Qadir, M.; Noble, A.D.; Qureshi, A.S.; Gupta, R.K.; Yuldashev, T.; Karimov, A. Salt induced land and water degradation in the Aral Sea basin: A challenge to sustainable agriculture in Central Asia. Nat. Resour. Forum 2009, 33, 134–149. [Google Scholar] [CrossRef]
- Löw, F.; Fliemann, E.; Abdullaev, I.; Conrad, C.; Lamers, J.P.A. Mapping abandoned agricultural land in Kyzyl-Orda, Kazakhstan using satellite remote sensing. Appl. Geogr. 2015, 8, 377–390. [Google Scholar] [CrossRef]
- Dubovyk, O.; Menz, G.; Conrad, C.; Kan, E.; Machwitz, M.; Khamzina, A. Spatio-temporal analyses of cropland degradation in the irrigated lowlands of Uzbekistan using remote-sensing and logistic regression modeling. Environ. Monit. Assess. 2013, 185, 4775–4790. [Google Scholar] [CrossRef] [PubMed]
- Sommer, R.; Glazirina, M.; Yuldashev, T.; Otarov, A.; Ibraeva, M.; Martynova, L.; Bekenov, M.; Kholov, B.; Ibragimov, N.; Kobilov, R.; et al. Impact of climate change on wheat productivity in Central Asia. Agric. Ecosyst. Environ. 2013, 178, 78–99. [Google Scholar] [CrossRef]
- Horion, S.; Prishchepov, A.V.; Verbesselt, J.; de Beurs, K.; Tagesson, T.; Fensholt, R. Revealing turning points in ecosystem functioning over the Northern Eurasian agricultural frontier. Glob. Chang. Biol. 2016, 22, 2801–2817. [Google Scholar] [CrossRef] [PubMed]
- Pervez, S.M.; Budde, M.; Rowland, J. Mapping irrigated areas in Afghanistan over the past decade using MODIS NDVI. Remote Sens. Environ. 2014, 149, 155–165. [Google Scholar] [CrossRef]
- Bernauer, T.; Siegfried, T. Climate change and international water conflict in Central Asia. J. Peace Res. 2012, 49, 227–239. [Google Scholar] [CrossRef]
- Siegfried, T.; Bernauer, T.; Guiennet, R.; Sellars, S.; Robertson, A.W.; Mankin, J.; Bauer-Gottwein, P.; Yakovlev, A. Will climate change exacerbate water stress in Central Asia? Clim. Chang. 2012, 112, 881–899. [Google Scholar] [CrossRef]
- Ji, C. Central Asian Countries Initiative for Land Management Multicountry Partnership Framework Support Project Report; Asian Development Bank: Tashkent, Uzbekistan, 2008. [Google Scholar]
- Bekchanov, M.; Lamers, J.P.A. Economic costs of reduced irrigation water availability in Uzbekistan (Central Asia). Reg. Environ. Chang. 2016, 16, 2369–2387. [Google Scholar] [CrossRef]
- Prishchepov, A.V.; Müller, D.; Dubinin, M.; Baumann, M.; Radeloff, V.C. Determinants of agricultural land abandonment in post-Soviet European Russia. Land Use Policy 2013, 30, 873–884. [Google Scholar] [CrossRef]
- Ioffe, G.; Nefedova, T.; de Beurs, K.M. Land Abandonment in Russia: A Case Study of Two Regions. Eurasian Geogr. Econ. 2012, 53, 527–549. [Google Scholar] [CrossRef]
- Meyfroidt, P.; Schierhorn, F.; Prishchepov, A.V.; Müller, D.; Kuemmerle, T. Drivers, constraints and tradeoffs associated with recultivating abandoned cropland in Russia, Ukraine and Kazakhstan (in press). Glob. Environ. Chang. 2016, 37, 1–15. [Google Scholar] [CrossRef]
- Schierhorn, F.; Müller, D.; Beringer, T.; Prishchepov, A.V.; Kuemmerle, T.; Balmann, A. Post-Soviet cropland abandonment and carbon sequestration in European Russia, Ukraine, and Belarus. Glob. Biogeochem. Cycles 2013, 27, 1175–1185. [Google Scholar] [CrossRef]
- Khamzina, A.; Lamers, J.P.A.; Vlek, P.L.G. Conversion of degraded cropland to tree plantations for ecosystem and livelihood benefits. In Cotton, Water, Salts and Soums; Martius, C., Rudenko, I., Lamers, J.P.A., Vlek, P.L.G., Eds.; Springer: Dordrecht, The Netherlands, 2012; pp. 235–248. [Google Scholar]
- Lerman, Z.; Prikhodko, D.; Punda, I.; Sedi, D.; Serova, E.; Swinnen, J.; Sedik, D.; Serova, E.; Swinnen, J. Turkmenistan Agricultural Sector Review; FAO: Rome, Italy, 2012. [Google Scholar]
- Qadir, M.; Quillérou, E.; Nangia, V.; Murtaza, G.; Singh, M.; Thomas, R.J.; Drechsel, P.; Noble, A.D. Economics of salt-induced land degradation and restoration. Nat. Resour. Forum 2014, 38, 282–295. [Google Scholar] [CrossRef]
- Fritsch, S.; Conrad, C.; Dürbeck, T.; Schorcht, G. Mapping marginal land in Khorezm using GIS and remote sensing techniques. In Restructuring Land Allocation, Water Use and Agricultural Value Chains. Technologies, Policies and Practices for the Lower Amudarya Region; Lamers, J.P.A., Khamzina, A., Rudenko, I., Vlek, P.L.G., Eds.; Bonn University Press: Goettingen, Germany, 2014; pp. 167–178. [Google Scholar]
- Dubovyk, O.; Menz, G.; Conrad, C.; Lamers, J.P.A.; Lee, A.; Khamzina, A. Spatial targeting of land rehabilitation: A relational analysis of cropland productivity decline in arid Uzbekistan. Erdkunde 2013, 67, 167–181. [Google Scholar] [CrossRef]
- Prishchepov, A.V.; Radeloff, V.C.; Dubinin, M.; Alcantara, C. The effect of Landsat ETM/ETM+ image acquisition dates on the detection of agricultural land abandonment in Eastern Europe. Remote Sens. Environ. 2012, 126, 195–209. [Google Scholar] [CrossRef]
- Griffiths, P.; Kuemmerle, T.; Baumann, M.; Radeloff, V.C.; Abrudan, I.V.; Lieskovsky, J.; Munteanu, C.; Ostapowicz, K.; Hostert, P. Forest disturbances, forest recovery, and changes in forest types across the carpathian ecoregion from 1985 to 2010 based on landsat image composites. Remote Sens. Environ. 2014, 151, 72–88. [Google Scholar] [CrossRef]
- Radoux, J.; Chomé, G.; Jacques, D.C.; Waldner, F.; Bellemans, N.; Matton, N.; Lamarche, C.; D’Andrimont, R.; Defourny, P. Sentinel-2’s potential for sub-pixel landscape feature detection. Remote Sens. 2016, 8, 488. [Google Scholar] [CrossRef]
- Valero, S.; Morin, D.; Inglada, J.; Sepulcre, G.; Arias, M.; Hagolle, O.; Dedieu, G.; Bontemps, S.; Defourny, P.; Koetz, B. Production of a Dynamic Cropland Mask by Processing Remote Sensing Image Series at High Temporal and Spatial Resolutions. Remote Sens. 2016, 8, 55. [Google Scholar] [CrossRef]
- Alcantara, C.; Kuemmerle, T.; Prishchepov, A.V.; Radeloff, V.C. Mapping abandoned agriculture with multi-temporal MODIS satellite data. Remote Sens. Environ. 2012, 124, 334–347. [Google Scholar] [CrossRef]
- Estel, S.; Kuemmerle, T.; Alcantara, C.; Levers, C.; Prishchepov, A.V.; Hostert, P.; Alcántara, C.; Levers, C.; Prishchepov, A.V.; Hostert, P.; et al. Mapping farmland abandonment and recultivation across Europe using MODIS NDVI time series. Remote Sens. Environ. 2015, 163, 312–325. [Google Scholar] [CrossRef]
- Wardlow, B.D.; Egbert, S.L. Large-area crop mapping using time-series MODIS 250 m NDVI data: An assessment for the U.S. Central Great Plains. Remote Sens. Environ. 2008, 112, 1096–1116. [Google Scholar] [CrossRef]
- Hentze, K.; Thonfeld, F.; Menz, G. Evaluating Crop Area Mapping from MODIS Time-Series as an Assessment Tool for Zimbabwe’s “Fast Track Land Reform Programme”. PLoS ONE 2016, 11, e0156630. [Google Scholar] [CrossRef] [PubMed]
- Estel, S.; Kuemmerle, T.; Levers, C.; Baumann, M.; Hostert, P. Mapping cropland-use intensity across Europe using MODIS NDVI time series. Environ. Res. Lett. 2016, 11, 24015. [Google Scholar] [CrossRef]
- Klein, I.; Gessner, U.; Kuenzer, C. Regional land cover mapping and change detection in Central Asia using MODIS time-series. Appl. Geogr. 2012, 35, 219–234. [Google Scholar] [CrossRef]
- Alcantara, C.; Kuemmerle, T.; Baumann, M.; Bragina, E.V.; Griffiths, P.; Hostert, P.; Knorn, J.; Müller, D.; Prishchepov, A.V.; Sieber, A.; Radeloff, V.C. Mapping the extent of abandoned farmland in Central and Eastern Europe using MODIS time series satellite data. Environ. Res. Lett. 2013, 8, 35035. [Google Scholar] [CrossRef]
- Löw, F.; Conrad, C.; Michel, U. Decision fusion and non-parametric classifiers for land use mapping using multi-temporal RapidEye data. ISPRS J. Photogramm. Remote Sens. 2015, 108, 191–204. [Google Scholar] [CrossRef]
- Eklund, L.; Degerald, M.; Brandt, M.; Prishchepov, A.V.; Pilesjö, P. How conflict affects land use: agricultural activity in areas seized by the Islamic State. Environ. Res. Lett. 2017, 12, 54004. [Google Scholar] [CrossRef]
- Japan International Cooperation Agency (JICA). The Study on Regional Development in Karakalpakstan in the Republic of Uzbekistan (Progress Report); JICA: Chiyoda-Ku, Japan, 2010; Volume 130. [Google Scholar]
- Tischbein, B.; Manschadi, A.M.; Conrad, C.; Hornidge, A.; Bhaduri, A.; Hassan, M.U.; Lamers, J.P.A.; Awan, U.K.; Vlek, P.L.G. Adapting to water scarcity: constraints and opportunities for improving irrigation management in Khorezm, Uzbekistan. Water Sci. Technol. Water Supply 2013, 13, 337–348. [Google Scholar] [CrossRef]
- Löw, F.; Knöfel, P.; Conrad, C. Analysis of uncertainty in multi-temporal object-based classification. ISPRS J. Photogramm. Remote Sens. 2015, 105, 91–106. [Google Scholar] [CrossRef]
- Propastin, P.; Kappas, M.; Muratova, N.R. A remote sensing based monitoring system for discrimination between climate and human-induced vegetation change in Central Asia. Manag. Environ. Qual. Int. J. 2008, 19, 579–596. [Google Scholar] [CrossRef]
- De Beurs, K.M.; Wright, C.; Henebry, G. Dual scale trend analysis for evaluating climatic and anthropogenic effects on the vegetated land surface in Russia and Kazakhstan. Environ. Res. Lett. 2009, 4, 45012. [Google Scholar] [CrossRef]
- Shao, Y.; Lunetta, R.S. Comparison of support vector machine, neural network, and CART algorithms for the land-cover classification using limited training data points. ISPRS J. Photogramm. Remote Sens. 2012, 70, 78–87. [Google Scholar] [CrossRef]
- Lunetta, R.; Shao, Y. Monitoring agricultural cropping patterns across the Laurentian Great Lakes Basin using MODIS-NDVI data. Int. J. Appl. Earth Obs. Geoinf. 2010, 12, 81–88. [Google Scholar] [CrossRef]
- Vintrou, E.; Desbrosse, A.; Bégué, A.; Traoré, S.; Baron, C.; Lo Seen, D. Crop area mapping in West Africa using landscape stratification of MODIS time series and comparison with existing global land products. Int. J. Appl. Earth Obs. Geoinf. 2012, 14, 83–93. [Google Scholar] [CrossRef]
- Zhang, H.K.; Roy, D.P. Using the 500 m MODIS land cover product to derive a consistent continental scale 30 m Landsat land cover classification. Remote Sens. Environ. 2017, 197, 15–34. [Google Scholar] [CrossRef]
- Schneider, A.; Friedl, M.A.; Potere, D. A new map of global urban extent from MODIS satellite data. Environ. Res. Lett. 2009, 4, 44003. [Google Scholar] [CrossRef]
- Waldner, F.; Hansen, M.C.M.C.; Potapov, P.V.P.V.; Löw, F.; Newby, T.; Ferreira, S.; Defourny, P. National-scale cropland mapping based on spectral-temporal features and outdated land cover information. PLoS ONE 2017, 12, e0181911. [Google Scholar] [CrossRef] [PubMed]
- Strahler, A.H.; Boschetti, L.; Foody, G.M.; Friedl, M.A.; Hansen, M.C.; Herold, M.; Mayaux, P.; Morisette, J.T.; Stehman, S.V.; Woodcock, C.E. Global Land Cover Validation: Recommendations for Evaluation and Accuracy Assessment of Global Land Cover Maps. GOFC-GOLD Report No. 25; European Communities: Luxembourg, 2006. [Google Scholar]
- Herold, M.; Mayaux, P.; Woodcock, C.; Baccini, A.; Schmullius, C. Some challenges in global land cover mapping: An assessment of agreement and accuracy in existing 1 km datasets. Remote Sens. Environ. 2008, 112, 2538–2556. [Google Scholar] [CrossRef]
- Pflugmacher, D.; Krankina, O.N.; Cohen, W.B.; Friedl, M.A.; Sulla-Menashe, D.; Kennedy, R.E.; Nelson, P.; Loboda, T.V.; Kuemmerle, T.; Dyukarev, E.; et al. Comparison and assessment of coarse resolution land cover maps for Northern Eurasia. Remote Sens. Environ. 2011, 115, 3539–3553. [Google Scholar] [CrossRef]
- FAO The Aral Sea Basin. Available online: http://www.fao.org/nr/water/aquastat/basins/aral-sea/index.stm (accessed on 10 January 2018).
- Cowan, P.J. Geographic usage of the terms Middle Asia and Central Asia. J. Arid Environ. 2007, 69, 359–363. [Google Scholar] [CrossRef]
- Saiko, T.A.; Zonn, I.S. Irrigation expansion and dynamics of desertification in the Circum-Aral region of Central Asia. Appl. Geogr. 2000, 20, 349–367. [Google Scholar] [CrossRef]
- Bekchanov, M.; Ringler, C.; Bhaduri, A.; Jeuland, M. Optimizing irrigation efficiency improvements in the Aral Sea Basin. Water Resour. Econ. 2016, 13, 30–45. [Google Scholar] [CrossRef]
- FAO Aquastat. Available online: http://www.fao.org/nr/water/aquastat (accessed on 10 January 2018).
- Lal, R.; Suleimenov, M.; Steward, B.A.; Hansen, D.O.; Doraiswamy, P. Climate Change and Terrestrial Carbon Sequestration in Central Asia, 1st ed.; Taylor & Francis: Leiden, The Netherlands, 2007. [Google Scholar]
- O’Hara, S.L. Irrigation and land degradation: implications for agriculture in Turkmenistan, central Asia. J. Arid Environ. 1997, 37, 165–179. [Google Scholar] [CrossRef]
- Conrad, C.; Lamers, J.P.A.; Ibragimov, N.; Löw, F.; Martius, C. Analysing irrigated crop rotation patterns in arid Uzbekistan by the means of remote sensing: A case study on post-Soviet agricultural land use. J. Arid Environ. 2016, 124, 150–159. [Google Scholar] [CrossRef]
- Levin, V. Analysis of Agrarian Policy, Management, Agricultural Products, Farming Systems and Income Acquisition Methods in Agriculture of Kyzylorda Region; Almaty, Kazakhstan, 2010. [Google Scholar]
- Kienzler, K. Improving the Nitrogen Use Efficiency and Crop Quality in the Khorezm Region, Uzbekistan. Ph.D. Thesis, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany, 2010. [Google Scholar]
- FAO Food and Agriculture Organization of the United Nations (FAOSTAT). Available online: http://faostat3.fao.org/faostat-gateway/go/to/home/E (accessed on 10 January 2018).
- Umirsakov, S.I.; Tautenov, I.A.; Dschamantikov, H.D.; Tochetova, L.A.; Wilhelm, M.A.; Schermagambetov, K.; Baibosinova, S.M.; Abildajeva, S. Recommendations on Conduction of Spring Field Campaign in Kyzyl-Orda Oblast; KazAgro Innovazia: Astana, Kazakhstan, 2011. (In Russian) [Google Scholar]
- Khalikov, B.; Tillaev, R.S. Practical Recommendations on Crop Rotations in Uzbekista; Uzbekistan Cotton Research Institute: Tashkent, Uzbekistan, 2006. [Google Scholar]
- Khalikov, B. New Crop Rotation Systems and Soil Fertility; Nosirlik Yogdusi Publishing House: Tashkent, Uzbekistan, 2010. [Google Scholar]
- Lerman, Z.; Csaki, C.; Feder, G. Agriculture in Transition: Land Policies and Evolving Farm Structures in Post-Soviet Countries. Lexington books; 2004. [Google Scholar]
- Didan, K. MOD13Q1 MODIS/Terra Vegetation Indices 16-Day L3 Global 250m SIN Grid V006; NASA EOSDIS Land Processes DAAC; NASA: College Park, MD, USA, 2015.
- Jonsson, P.; Eklundh, L. TIMESAT—A program for analyzing time-series of satellite sensor data. Comput. Geosci. 2004, 30, 833–845. [Google Scholar] [CrossRef]
- Jacquin, A.; Sheeren, D.; Lacombe, J. Vegetation cover degradation assessment in Madagascar savanna based on trend analysis of MODIS NDVI time seriese. Int. J. Appl. Earth Obs. Geoinf. 2010, 12, 3–10. [Google Scholar] [CrossRef]
- Löw, F.; Fliemann, E.; Narvaez Vallejo, A.; Biradar, C. Mapping Agricultural Production in the Fergana Valley Using Satellite Earth Observation—Project Report. Amman, Jordan, 2016. [Google Scholar]
- Löw, F.; Waldner, F.; Dubovyk, O.; Akramkhanov, A.; Prishchepov, A.V.; Lamers, J.P.A.; Biradar, C.M. A consolidated data set of cropland abandonment and recultivation for the Aral Sea Basin in Central Asia. Data 2018, in press. [Google Scholar]
- Löw, F.; Navratil, P.; Kotte, K.; Schöler, H.F.; Bubenzer, O. Remote sensing based analysis of landscape change in the desiccated seabed of the Aral Sea—A potential tool for assessing the hazard degree of dust and salt storms. Environ. Monit. Assess. 2013, 185, 8303–8319. [Google Scholar] [CrossRef] [PubMed]
- Machwitz, M.; Bloethe, J.; Klein, D.; Conrad, C.; Dech, S. Mapping of large irrigated areas in Central Asia using MODIS time series. In Proceedings of SPIE 7824, Remote Sensing for Agriculture, Ecosystems, and Hydrology XII, 782403; SPIE: Toulouse, France, 2010; Volume 49. [Google Scholar]
- Clark, M.L.; Aide, T.M.; Grau, H.R.; Riner, G. A scalable approach to mapping annual land cover at 250 m using MODIS time series data: A case study in the Dry Chaco ecoregion of South America. Remote Sens. Environ. 2010, 114, 2816–2832. [Google Scholar] [CrossRef]
- Müller, H.; Rufin, P.; Griffiths, P.; Barros Siqueira, A.J.; Hostert, P. Mining dense Landsat time series for separating cropland and pasture in a heterogeneous Brazilian savanna landscape. Remote Sens. Environ. 2015, 156, 490–499. [Google Scholar] [CrossRef]
- Wolfe, R.E.; Roy, D.P.; Vermote, E. MODIS land data storage, gridding, and compositing methodology: Level 2 grid. IEEE Trans. Geosci. Remote Sens. 2002, 36, 1324–1338. [Google Scholar] [CrossRef]
- Duveiller, G.; Baret, F.; Defourny, P. Crop specific green area index retrieval from MODIS data at regional scale by controlling pixel-target adequacy. Remote Sens. Environ. 2011, 115, 2686–2701. [Google Scholar] [CrossRef]
- Conrad, C.; Schönbrodt-Stitt, S.; Löw, F.; Sorokin, D.; Paeth, H. Cropping intensity in the Aral Sea Basin and its dependency from the runoff formation 2000-2012. Remote Sens. 2016, 8, 630. [Google Scholar] [CrossRef]
- Fischer, G.; Van Velthuizen, H.; Shah, M.; Nachtergaele, F. Global Agro-Ecological Assessment for Agriculture in the 21st Century : Methodology and Results; IIASA: Laxenburg, Austria, 2002. [Google Scholar]
- IIASA. FAO Global Agro-Ecological Zones (GAEZ v3.0); IIASA: Schloss Laxenburg, Austria, 2012. [Google Scholar]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Waske, B.; Braun, M. Classifier ensembles for land cover mapping using multitemporal SAR imagery. ISPRS J. Photogramm. Remote Sens. 2009, 64, 450–457. [Google Scholar] [CrossRef]
- Rodriguez-Galiano, V.F.; Ghimire, B.; Rogan, J.; Chica-Olmo, M.; Rigol-Sanchez, J.P. An assessment of the effectiveness of a random forest classifier for land-cover classification. ISPRS J. Photogramm. Remote Sens. 2012, 67, 93–104. [Google Scholar] [CrossRef]
- Rodriguez-Galiano, V.F.; Chica-Olmo, M.; Abarca-Hernandez, F.; Atkinson, P.M.; Jeganathan, C. Random forest classification of Mediterranean land cover using multi-seasonal imagery and multi-seasonal texture. Remote Sens. Environ. 2012, 121, 93–107. [Google Scholar] [CrossRef]
- Mountrakis, G.; Im, J.; Ogole, C. Support vector machines in remote sensing: A review. ISPRS J. Photogramm. Remote Sens. 2011, 66, 247–259. [Google Scholar] [CrossRef]
- Breiman, L.; Friedman, J.; Stone, C.J.; Olshen, R.A. Classification and Regression Trees; CRC Press: Boca Raton, FL, USA, 1984. [Google Scholar]
- Vapnik, V. The Nature of Statistical Learning Theory (Statistics for Engineering and Information Science), 2nd ed.; Jordan, M., Lauritzen, S.L., Lawless, J.F., Nair, V., Eds.; Springer: Berlin, German, 2000. [Google Scholar]
- Mathur, A.; Foody, G.M. Crop classification by support vector machine with intelligently selected training data for an operational application. Int. J. Remote Sens. 2008, 29, 2227–2240. [Google Scholar] [CrossRef]
- Pal, M.; Foody, G.M. Feature selection for classification of hyperspectral data by SVM. IEEE Trans. Geosci. Remote Sens. 2010, 48, 2297–2307. [Google Scholar] [CrossRef]
- Foody, G.M.; Mathur, A. Toward intelligent training of supervised image classifications: directing training data acquisition for SVM classification. Remote Sens. Environ. 2004, 93, 107–117. [Google Scholar] [CrossRef]
- Fauvel, M.; Chanussot, J.; Benediktsson, J.A. Decision fusion for the classification of urban remote sensing images. IEEE Trans. Geosci. Remote Sens. 2006, 2828–2838. [Google Scholar] [CrossRef]
- Policar, R. Ensemble based systems in decision making. IEEE Circuits Syst. Mag. 2006, 6, 21–45. [Google Scholar] [CrossRef]
- Waske, B.; van der Linden, S.; Benediktsson, J.A.; Rabe, A.; Hostert, P. Sensitivity of support vector machines to random feature selection in classification of hyperspectral data. IEEE Trans. Geosci. Remote Sens. 2010, 48, 2880–2889. [Google Scholar] [CrossRef]
- Loosvelt, L.; Peters, J.; Skriver, H. Impact of reducing polarimetric SAR input on the uncertainty of crop classifications based on the random forests algorithm. IEEE Trans. Geosci. Remote Sens. 2012, 50, 4185–4200. [Google Scholar] [CrossRef]
- Giacco, F.; Thiel, C.; Pugliese, L.; Scarpetta, S.; Marinaro, M. Uncertainty analysis for the classification of multispectral satellite images using SVMs and SOMs. IEEE Trans. Geosci. Remote Sens. 2010, 48, 3769–3779. [Google Scholar] [CrossRef]
- Löw, F.; Michel, U.; Dech, S.; Conrad, C. Impact of feature selection on the accuracy and spatial uncertainty of per-field crop classification using Support Vector Machines. ISPRS J. Photogramm. Remote Sens. 2013, 85, 102–119. [Google Scholar] [CrossRef]
- Karatzoglou, A.; Meyer, D.; Hornik, K. Support vector machines in R. J. Stat. Softw. 2006, 15, 1–28. [Google Scholar] [CrossRef]
- Congalton, R.G. A review of assessing the accuracy of classifications of remotely sensed data. Remote Sens. Environ. 1991, 37, 35–46. [Google Scholar] [CrossRef]
- Congalton, R.G.; Green, K. Assessing the Accuracy of Remotely Sensed Data: Principles and Practices, 2nd ed.; CRC Press Inc.: Boca Raton, FL, USA, 2009; Volume 48. [Google Scholar]
- Olofsson, P.; Foody, G.M.; Herold, M.; Stehman, S.V.; Woodcock, C.E.; Wulder, M.A. Good practices for estimating area and assessing accuracy of land change. Remote Sens. Environ. 2014, 148, 42–57. [Google Scholar] [CrossRef]
- Foody, G.M. Classification accuracy comparison: Hypothesis tests and the use of confidence intervals in evaluations of difference, equivalence and non-inferiority. Remote Sens. Environ. 2009, 113, 1658–1663. [Google Scholar] [CrossRef]
- Tayyebi, A.; Pijanowski, B.C.; Linderman, M.; Gratton, C. Comparing three global parametric and local non-parametric models to simulate land use change in diverse areas of the world. Environ. Model. Softw. 2014, 59, 202–221. [Google Scholar] [CrossRef]
- Tayyebi, A.; Pijanowski, B.C. Modeling multiple land use changes using ANN, CART and MARS: Comparing tradeoffs in goodness of fit and explanatory power of data mining tools. Int. J. Appl. Earth Obs. Geoinf. 2014, 28, 102–116. [Google Scholar] [CrossRef]
- Fawcett, T. An introduction to ROC analysis. Pattern Recognit. Lett. 2006, 27, 861–874. [Google Scholar] [CrossRef]
- Olofsson, P.; Foody, G.M.; Stehman, S.V.; Woodcock, C.E. Making better use of accuracy data in land change studies: Estimating accuracy and area and quantifying uncertainty using stratified estimation. Remote Sens. Environ. 2013, 129, 122–131. [Google Scholar] [CrossRef]
- Card, D. Using know map category marginal frequencies to improve estimates of thematic map accuracy. Photogramm. Eng. Remote Sens. 1982, 48, 432–439. [Google Scholar]
- Stehman, S.V. Estimating the Kappa coefficient and its variance under stratified random sampling. Photogramm. Eng. Remote Sens. 1996, 62, 401–407. [Google Scholar]
- Moran, P.A.P. Notes on continuous stochastic phenomena. Biometrika 1950, 37, 17–23. [Google Scholar] [CrossRef] [PubMed]
- Anselin, L. Local indicators of spatial association—LISA. Geogr. Anal. 1995, 27, 93–115. [Google Scholar] [CrossRef]
- Lambert, M.-J.; Waldner, F.; Defourny, P. Cropland Mapping over Sahelian and Sudanian Agrosystems: A Knowledge-Based Approach Using PROBA-V Time Series at 100-m. Remote Sens. 2016, 8, 232. [Google Scholar] [CrossRef]
- Colditz, R.R.; López Saldaña, G.; Maeda, P.; Espinoza, J.A.; Tovar, C.M.; Hernández, A.V.; Benítez, C.Z.; Cruz López, I.; Ressl, R. Generation and analysis of the 2005 land cover map for Mexico using 250m MODIS data. Remote Sens. Environ. 2012, 123, 541–552. [Google Scholar] [CrossRef]
- Prishchepov, A.V.; Müller, D.; Butsic, V.; Radeloff, V.C. Sensitivity of Spatially Explicit Land-Use Logistic Regression Models to the Errors Land-Use Change Maps. Ph.D. Thesis, International Environmental Modelling and Software Society (iEMSs), Leipzig, Germany, 2012. [Google Scholar]
- Huang, C.; Davis, L.S.; Townshend, J.R.G. An assessment of support vector machines for land cover classification. Int. J. Remote Sens. 2002, 23, 725–749. [Google Scholar] [CrossRef]
- Waldner, F.; Jacques, D.C.; Löw, F. The impact of training class proportions on binary cropland classification. Remote Sens. Lett. 2017, 8, 1123–1132. [Google Scholar] [CrossRef]
- Müller, D.; Leitão, P.J.; Sikor, T. Comparing the determinants of cropland abandonment in Albania and Romania using boosted regression trees. Agric. Syst. 2013, 117, 66–77. [Google Scholar] [CrossRef]
- Smaliychuk, A.; Müller, D.; Prishchepov, A.V.; Levers, C.; Kruhlov, I.; Kuemmerle, T. Recultivation of abandoned agricultural lands in Ukraine: Patterns and drivers. Glob. Environ. Chang. 2016, 38, 70–81. [Google Scholar] [CrossRef]
- Waldner, F.; De Abelleyra, D.; Verón, S.R.; Zhang, M.; Wu, B.; Plotnikov, D.; Bartalev, S.; Lavreniuk, M.; Skakun, S.; Kussul, N.; et al. Towards a set of agrosystem-specific cropland mapping methods to address the global cropland diversity. Int. J. Remote Sens. 2016, 37, 3196–3231. [Google Scholar] [CrossRef] [Green Version]
- FAO-UNESCO Irrigation in Central Asia in Figures—AQUASTAT Survey 2012; FAO: Rome, Italy, 2013; p. 246.
- Prishchepov, A.V.; Radeloff, V.C.; Baumann, M.; Kuemmerle, T.; Müller, D. Effects of institutional changes on land use: Agricultural land abandonment during the transition from state-command to market-driven economies in post-Soviet Eastern Europe. Environ. Res. Lett. 2012, 7, 24021. [Google Scholar] [CrossRef]
- Kuemmerle, T.; Hostert, P.; Radeloff, V.C.; Linden, S.; Perzanowski, K.; Kruhlov, I. Cross-border Comparison of Post-socialist Farmland Abandonment in the Carpathians. Ecosystems 2008, 11, 614–628. [Google Scholar] [CrossRef]
- Nurbekov, A. Sustainable Agricultural Practices in the Drought Affected Region of Karakalpakstan (Phase II); Final Report of FAO/TCP/3102 (A); FAO: Tashkent, Uzbekistan, 2007. [Google Scholar]
- Robinett, D.; Miller, D.; Bedunah, D. Central Afghanistan Rangelands. Soc. Range Manag. 2008, 30, 2–12. [Google Scholar] [CrossRef]
- Anderson, K.; Swinnen, J. Distortions to Agricultural Incentives in Europe´s Transition Economies; Anderson, K., Swinnen, J., Eds.; The World Bank: Washington, DC, USA, 2008. [Google Scholar]
- Lerman, Z. Land reform, farm structure, and agricultural performance in CIS countries. China Econ. Rev. 2009, 20, 316–326. [Google Scholar] [CrossRef]
Country | Potential Private Ownership after 1990 * | Privatization Strategy * | Allocation Strategy * | Legal Attitude to Transferability after 1990 * | Relevant Legislation * | Agriculture, Value Added (% GDP) in 2014 ** | Share of Rural Population in 2014 ** |
---|---|---|---|---|---|---|---|
Kazakhstan | Household plots only | None | Shares | Use rights | Presidential Decree on Land Reform, Feb. 1994 | 4.7 | 47 |
Kyrgyzstan | All land | Distribution/conversion | Shares | Moratorium | Presidential Decree on Deepening Land and Agrarian Reform, Feb. 1994 Referendum, June 1998; Presidential Decree on Private Land Ownership, Oct. 1998 | 17.1 | 67 |
Tajikistan | None | None | Shares | Use rights | Land code, Dec. 1996; amended 1999 | 27.2 | 73 |
Turkmenistan | All land | None; virgin land to farmers | Leasehold | None | Constitution, May 1992 | No data | 50 |
Uzbekistan | None | None | Leasehold | None | None | 18.8 | 64 |
Afghanistan | Complex pattern of land management and tenure, shaped by conflict | 23.5 | 74 |
Province | Year-1 | Year-2 | Year-3 | Year-4 | Year-5 | Year-6 | Year-7 | Year-8 | Source | |
---|---|---|---|---|---|---|---|---|---|---|
Kazakhstan | ||||||||||
Kazalinsk | Rice | Rice | Fallow | Rice | Rice | Alfalfa | Alfalfa | Alfalfa | [63] | |
Kyzyl-Orda | Rice | Rice | Alfalfa | Alfalfa | Alfalfa | [60] | ||||
Uzbekistan | ||||||||||
Country wide | Cotton * | Cotton * | Cotton | Wheat ** | Wheat ** | [61,64] | ||||
Karakalpakstan *** | Wheat/Alfalfa | Alfalfa | Alfalfa | Cotton | Cotton | Cotton | Cotton | [38] | ||
* 2–3 years of cotton are recommended | [61,64] | |||||||||
** 1–2 years of wheat are recommended, instead of wheat also summer crops such as mung bean, soybean, maize, sunflower or vegetables are cultivated | [38] | |||||||||
*** Expert recommendation for Karakalpakstan; instead of cotton also rice could be cultivated | [38] |
Global Classifier | Stratified Classifier | ||
---|---|---|---|
Area under ROC | 0.840 | 0.867 | |
Overall accuracy | 0.811 | 0.879 | |
Lower 95% CI | 0.790 | 0.864 | |
Upper 95% CI | 0.831 | 0.892 | |
Active | User’s accuracy | 0.790 | 0.879 |
Producer’s accuracy | 0.877 | 0.924 | |
Abandoned | User’s accuracy | 0.840 | 0.877 |
Producer’s accuracy | 0.734 | 0.810 |
Country | Province | Overall Accuracy | UI | LI | AUC | Abandoned | Active | ||
---|---|---|---|---|---|---|---|---|---|
Producer | User | Producer | User | ||||||
Afghanistan | Badakhshan | 0.85 | 0.90 | 0.78 | 0.83 | 0.88 | 0.78 | 0.90 | 0.74 |
Badghis | 0.65 | 0.78 | 0.51 | 0.58 | 0.88 | 0.29 | 0.67 | 0.60 | |
Baghlan | 0.83 | 0.90 | 0.73 | 0.77 | 0.92 | 0.62 | 0.85 | 0.76 | |
Balkh | 0.70 | 0.77 | 0.63 | 0.63 | 0.87 | 0.39 | 0.72 | 0.63 | |
Bamyan | 1.00 | 1.00 | 0.66 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | |
Faryab | 0.59 | 0.69 | 0.49 | 0.54 | 0.87 | 0.22 | 0.60 | 0.56 | |
Jawzjan | 0.58 | 0.68 | 0.47 | 0.52 | 0.89 | 0.15 | 0.59 | 0.50 | |
Kunduz | 0.79 | 0.85 | 0.71 | 0.75 | 0.89 | 0.62 | 0.80 | 0.77 | |
Samangan | 0.74 | 0.83 | 0.64 | 0.71 | 0.94 | 0.48 | 0.71 | 0.86 | |
Sari Pul | 0.53 | 0.63 | 0.42 | 0.52 | 0.87 | 0.16 | 0.53 | 0.54 | |
Takhar | 0.85 | 0.90 | 0.78 | 0.83 | 0.89 | 0.77 | 0.90 | 0.75 | |
Kazakhstan | Qyzylorda | 0.96 * | 0.98 | 0.94 | 0.96 | 0.94 | 0.98 | 0.98 | 0.94 |
South Kazakhstan | 0.92 * | 0.95 | 0.89 | 0.93 | 0.90 | 0.95 | 0.96 | 0.87 | |
Kyrgyzstan | Batken | 0.94 | 0.97 | 0.87 | 0.93 | 0.95 | 0.90 | 0.96 | 0.88 |
Jalal-Abad | 0.97 | 0.99 | 0.93 | 0.97 | 0.96 | 0.98 | 0.99 | 0.89 | |
Naryn | 0.90 | 0.95 | 0.83 | 0.89 | 0.91 | 0.88 | 0.97 | 0.71 | |
Osh | 0.90 | 0.95 | 0.83 | 0.89 | 0.91 | 0.88 | 0.97 | 0.71 | |
Tajikistan | Dushanbe | 0.90 | 0.95 | 0.83 | 0.94 | 0.88 | 1.00 | 1.00 | 0.61 |
Gorno-Badakhshan | 0.84 | 0.90 | 0.76 | 0.82 | 0.87 | 0.76 | 0.88 | 0.74 | |
Khatlon | 0.79 | 0.85 | 0.73 | 0.74 | 0.85 | 0.63 | 0.87 | 0.58 | |
Leninabad | 0.93 | 0.96 | 0.90 | 0.92 | 0.95 | 0.88 | 0.95 | 0.88 | |
Turkmenistan | Ashgabat | 0.85 * | 0.88 | 0.82 | 0.85 | 0.96 | 0.74 | 0.81 | 0.94 |
Chardzhou | 0.87 * | 0.89 | 0.85 | 0.86 | 0.95 | 0.76 | 0.85 | 0.92 | |
Mary | 0.85 * | 0.88 | 0.82 | 0.84 | 0.95 | 0.72 | 0.81 | 0.92 | |
Balkan | 0.95 * | 0.97 | 0.93 | 0.95 | 0.95 | 0.96 | 0.96 | 0.94 | |
Tashauz | 0.96 * | 0.99 | 0.92 | 0.96 | 0.96 | 0.96 | 0.99 | 0.86 | |
Uzbekistan | Andijon | 0.93 | 0.96 | 0.88 | 0.93 | 0.94 | 0.91 | 0.93 | 0.92 |
Bukhoro | 0.97 * | 0.99 | 0.92 | 0.97 | 0.96 | 0.97 | 0.99 | 0.89 | |
Ferghana | 0.93 | 0.96 | 0.89 | 0.92 | 0.95 | 0.90 | 0.94 | 0.92 | |
Jizzakh | 0.96 * | 0.98 | 0.95 | 0.96 | 0.95 | 0.98 | 0.98 | 0.95 | |
Karakalpakstan | 0.94 * | 0.97 | 0.90 | 0.93 | 0.98 | 0.88 | 0.93 | 0.96 | |
Kashkadarya | 0.98 | 1.00 | 0.95 | 0.99 | 0.97 | 1.00 | 1.00 | 0.96 | |
Khorezm | 0.97 * | 0.99 | 0.92 | 0.97 | 0.97 | 0.97 | 0.99 | 0.93 | |
Namangan | 0.94 | 0.96 | 0.92 | 0.94 | 0.93 | 0.96 | 0.97 | 0.91 | |
Navoi | 0.94 * | 0.96 | 0.90 | 0.93 | 0.96 | 0.91 | 0.94 | 0.93 | |
Samarkand | 0.92 * | 0.96 | 0.86 | 0.90 | 0.94 | 0.86 | 0.94 | 0.86 | |
Sirdaryo | 0.70 | 0.78 | 0.61 | 0.60 | 0.84 | 0.35 | 0.77 | 0.46 | |
Surkhandarya | 0.91 | 0.95 | 0.86 | 0.91 | 0.93 | 0.89 | 0.94 | 0.87 | |
Tashkent | 0.94 * | 0.97 | 0.91 | 0.94 | 0.97 | 0.90 | 0.93 | 0.96 | |
Median | 0.91 | 0.95 | 0.85 | 0.91 | 0.94 | 0.88 | 0.94 | 0.87 | |
Average | 0.86 | 0.91 | 0.80 | 0.85 | 0.93 | 0.77 | 0.88 | 0.81 |
Country | Province | Proportion Abandoned | 95% Confidence Interval |
---|---|---|---|
Afghanistan | Badakhshan | 0.08 | 0.009 |
Badghis | 0.14 | 0.004 | |
Baghlan | 0.09 | 0.002 | |
Balkh | 0.16 | 0.001 | |
Bamyan | 0.08 | <0.001 | |
Faryab | 0.09 | 0.009 | |
Jawzjan | 0.23 | 0.002 | |
Kunduz | 0.12 | 0.002 | |
Samangan | 0.05 | <0.001 | |
Sari Pul | 0.15 | 0.002 | |
Takhar | 0.09 | 0.001 | |
Kazakhstan | Qyzylorda | 0.49 | <0.001 |
South Kazakhstan | 0.20 | 0.001 | |
Kyrgyzstan | Batken | 0.14 | 0.001 |
Jalal-Abad | 0.15 | 0.004 | |
Naryn | 0.15 | <0.001 | |
Osh | 0.12 | 0.011 | |
Tajikistan | Dushanbe | 0.03 | 0.002 |
Gorno-Badakhshan | 0.05 | <0.001 | |
Khatlon | 0.09 | 0.001 | |
Leninabad | 0.11 | <0.001 | |
Turkmenistan | Ashgabat | 0.10 | <0.001 |
Chardzhou | 0.12 | <0.001 | |
Mary | 0.12 | <0.001 | |
Balkan | 0.26 | <0.001 | |
Tashauz | 0.14 | 0.001 | |
Uzbekistan | Andijon | 0.05 | <0.001 |
Bukhoro | 0.14 | 0.001 | |
Ferghana | 0.05 | <0.001 | |
Jizzakh | 0.11 | <0.001 | |
Karakalpakstan | 0.40 | 0.001 | |
Kashkadarya | 0.16 | 0.001 | |
Khorezm | 0.09 | 0.001 | |
Namangan | 0.07 | <0.001 | |
Navoi | 0.18 | 0.001 | |
Samarkand | 0.09 | 0.002 | |
Sirdaryo | 0.06 | 0.002 | |
Surkhandarya | 0.08 | 0.006 | |
Tashkent | 0.06 | <0.001 | |
Median | 0.11 | 0.001 | |
Average | 0.13 | 0.002 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Löw, F.; Prishchepov, A.V.; Waldner, F.; Dubovyk, O.; Akramkhanov, A.; Biradar, C.; Lamers, J.P.A. Mapping Cropland Abandonment in the Aral Sea Basin with MODIS Time Series. Remote Sens. 2018, 10, 159. https://doi.org/10.3390/rs10020159
Löw F, Prishchepov AV, Waldner F, Dubovyk O, Akramkhanov A, Biradar C, Lamers JPA. Mapping Cropland Abandonment in the Aral Sea Basin with MODIS Time Series. Remote Sensing. 2018; 10(2):159. https://doi.org/10.3390/rs10020159
Chicago/Turabian StyleLöw, Fabian, Alexander V. Prishchepov, François Waldner, Olena Dubovyk, Akmal Akramkhanov, Chandrashekhar Biradar, and John P. A. Lamers. 2018. "Mapping Cropland Abandonment in the Aral Sea Basin with MODIS Time Series" Remote Sensing 10, no. 2: 159. https://doi.org/10.3390/rs10020159
APA StyleLöw, F., Prishchepov, A. V., Waldner, F., Dubovyk, O., Akramkhanov, A., Biradar, C., & Lamers, J. P. A. (2018). Mapping Cropland Abandonment in the Aral Sea Basin with MODIS Time Series. Remote Sensing, 10(2), 159. https://doi.org/10.3390/rs10020159