Modeling the Distributions of Brightness Temperatures of a Cropland Study Area Using a Model that Combines Fast Radiosity and Energy Budget Methods
Abstract
:1. Introduction
2. The RAPID-EB Model
2.1. Radiosity Model
2.2. Energy Budget Methods
2.3. Combination of RAPID and Energy Budget Methods
2.4. Model Inputs and Outputs
3. Materials and Methods
3.1. Experimental Site
3.2. Data Sets
3.2.1. Scene Generation
3.2.2. Meteorological Data
3.2.3. Component Properties
3.3. Evaluation for Temperature Distribution
3.4. Sensitivity to the LAI and Wind Speed
4. Discussion
4.1. Validation Issues
4.2. Potential Applications
- ➢
- By combining VNIR and TIR data, the light absorption and thermal distribution of plants can be simulated. This information can support analyses of the effects of meteorological conditions on the growth of vegetation. This approach can be applied to precision agriculture for a specific crop field.
- ➢
- Since surface temperatures are highly sensitive to environmental factors, the simulation results are of great value in developing a protocol for use in actual experiments. For instance, given the use of meteorological parameters in previous periods and a priori knowledge of the canopy structure and component properties, the simulated temperature distribution can be used as reference data for choosing the sampling number, area, and frequency. Recently, unmanned aerial vehicles (UAVs) have been widely used in remote sensing applications [58,59]. UAVs provide a means of rapidly collecting canopy structure information over large areas with the advantages of flexibility and low cost. A potential application of the RAPID-EB model can, therefore, be anticipated by combining the spatial information from a UAV and the temporal information from a portable automatic meteorological station to provide a comprehensive synthetic dataset.
- ➢
- This model can also be treated as a tool that can analyze observations collected over a range of temporal and spatial scales. In the validation process, the ‘true’ values for satellite-scale pixels are typically obtained via scaling from limited data measured in situ [8,60,61,62]. The RAPID-EB model can act as a platform to convert point data measured in situ to match observed pixel data. This model can, therefore, assist in understanding scale problems in remote sensing [63,64].
- ➢
- In addition, the RAPID-EB model can be treated as a data generator and may, therefore, be very useful in preliminary evaluations of other simple models or inversion algorithms. Although simulation discrepancies may appear, these datasets appear to be desirable for full sensitivity analyses under various conditions.
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Li, Z.L.; Tang, B.H.; Wu, H.; Ren, H.; Yan, G.; Wan, Z.; Trigo, I.F.; Sobrino, J.A. Satellite-derived land surface temperature: Current status and perspectives. Remote Sens. Environ. 2013, 131, 14–37. [Google Scholar] [CrossRef]
- Norman, J.M.; Kustas, W.P.; Humes, K.S. Source approach for estimating soil and vegetation energy fluxes in observations of directional radiometric surface temperature. Agric. For. Meteorol. 1995, 77, 263–293. [Google Scholar] [CrossRef]
- Gillespie, A.; Rokugawa, S.; Matsunaga, T.; Cothern, J.S.; Hook, S.; Kahle, A.B. A temperature and emissivity separation algorithm for advanced spaceborne thermal emission and reflection radiometer (ASTER) images. IEEE Trans. Geosci. Remote Sens. 1998, 36, 1113–1126. [Google Scholar] [CrossRef]
- Wan, Z.; Li, Z.-L. A physics-based algorithm for retrieving land-surface emissivity and temperature from eos/modis data. IEEE Trans. Geosci. Remote Sens. 1997, 35, 980–996. [Google Scholar]
- Wan, Z.; Dozier, J. A generalized split-window algorithm for retrieving land-surface temperature from space. IEEE Trans. Geosci. Remote Sens. 1996, 34, 892–905. [Google Scholar]
- Masiello, G.; Serio, C.; De Feis, I.; Amoroso, M.; Venafra, S.; Trigo, I.F.; Watts, P. Kalman filter physical retrieval of surface emissivity and temperature from geostationary infrared radiances. Atmos. Meas. Tech. Dis. 2013, 6, 3613–3634. [Google Scholar] [CrossRef]
- Hulley, G.C.; Hughes, C.G.; Hook, S.J. Quantifying uncertainties in land surface temperature and emissivity retrievals from aster and modis thermal infrared data. J. Geophys. Res. Atmos. 2012, 117. [Google Scholar] [CrossRef]
- Li, H.; Sun, D.; Yu, Y.; Wang, H.; Liu, Y.; Liu, Q.; Du, Y.; Wang, H.; Cao, B. Evaluation of the viirs and modis lst products in an arid area of northwest china. Remote Sens. Environ. 2014, 142, 111–121. [Google Scholar] [CrossRef]
- Yu, Y.; Tarpley, D.; Privette, J.L.; Flynn, L.E.; Xu, H.; Chen, M.; Vinnikov, K.Y.; Sun, D.; Tian, Y. Validation of goes-r satellite land surface temperature algorithm using surfrad ground measurements and statistical estimates of error properties. IEEE Trans. Geosci. Remote Sens. 2012, 50, 704–713. [Google Scholar] [CrossRef]
- Masiello, G.; Serio, C.; Venafra, S.; Liuzzi, G.; Göttsche, F.; Trigo, I.F.; Watts, P. Kalman filter physical retrieval of surface emissivity and temperature from seviri infrared channels: A validation and intercomparison study. Atmos. Meas. Tech. 2015, 8, 2981–2997. [Google Scholar] [CrossRef]
- Blasi, M.G.; Liuzzi, G.; Masiello, G.; Serio, C.; Telesca, V.; Venafra, S. Surface parameters from SEVIRI observations through a Kalman filter approach: Application and evaluation of the scheme in Southern Italy. Tethys J. Weather Clim. West. Mediterr. 2016, 13, 3–10. [Google Scholar] [CrossRef]
- Bian, Z.; Xiao, Q.; Cao, B.; Du, Y.; Li, H.; Wang, H.; Liu, Q.; Liu, Q. Retrieval of leaf, sunlit soil, and shaded soil component temperatures using airborne thermal infrared multiangle observations. IEEE Trans. Geosci. Remote Sens. 2016, 54, 4660–4671. [Google Scholar] [CrossRef]
- Kimes, D.S. Effects of vegetation canopy structure on remotely sensed canopy temperatures. Remote Sens. Environ. 1980, 10, 165–174. [Google Scholar] [CrossRef]
- Lagouarde, J.-P.; Moreau, P.; Irvine, M.; Bonnefond, J.-M.; Voogt, J.A.; Solliec, F. Airborne experimental measurements of the angular variations in surface temperature over urban areas: Case study of marseille (France). Remote Sens. Environ. 2004, 93, 443–462. [Google Scholar] [CrossRef]
- Liang, S.; Fang, H.; Chen, M.; Shuey, C.J.; Walthall, C.; Daughtry, C.; Morisette, J.; Schaaf, C.; Strahler, A. Validating modis land surface reflectance and albedo products: Methods and preliminary results. Remote Sens. Environ. 2002, 83, 149–162. [Google Scholar] [CrossRef]
- Peng, J.; Liu, Q.; Wen, J.; Liu, Q.; Tang, Y.; Wang, L.; Dou, B.; You, D.; Sun, C.; Zhao, X.; et al. Multi-scale validation strategy for satellite albedo products and its uncertainty analysis. Sci. China Earth Sci. 2015, 58, 573–588. [Google Scholar] [CrossRef]
- Duan, S.-B.; Li, Z.-L.; Tang, B.-H.; Wu, H.; Tang, R. Generation of a time-consistent land surface temperature product from modis data. Remote Sens. Environ. 2014, 140, 339–349. [Google Scholar] [CrossRef]
- Duan, S.-B.; Li, Z.-L.; Wang, N.; Wu, H.; Tang, B.-H. Evaluation of six land-surface diurnal temperature cycle models using clear-sky in situ and satellite data. Remote Sens. Environ. 2012, 124, 15–25. [Google Scholar] [CrossRef]
- Gastellu-Etchegorry, J.-P.; Demarez, V.; Pinel, V.; Zagolski, F. Modeling radiative transfer in heterogeneous 3-D vegetation canopies. Remote Sens. Environ. 1996, 58, 131–156. [Google Scholar] [CrossRef]
- Qin, W.; Gerstl, S.A. 3-D scene modeling of semidesert vegetation cover and its radiation regime. Remote Sens. Environ. 2000, 74, 145–162. [Google Scholar] [CrossRef]
- Liu, Q.H.; Huang, H.G.; Qin, W.H.; Fu, K.H.; Li, X.W. An extended 3-D radiosity-graphics combined model for studying thermal-emission directionality of crop canopy. IEEE Trans. Geosci. Remote Sens. 2007, 45, 2900–2918. [Google Scholar] [CrossRef]
- Widlowski, J.-L.; Mio, C.; Disney, M.; Adams, J.; Andredakis, I.; Atzberger, C.; Brennan, J.; Busetto, L.; Chelle, M.; Ceccherini, G.; et al. The fourth phase of the radiative transfer model intercomparison (RAMI) exercise: Actual canopy scenarios and conformity testing. Remote Sens. Environ. 2015, 169, 418–437. [Google Scholar] [CrossRef]
- Bhumralkar, C.M. Numerical experiments on the computation of ground surface temperature in an atmospheric general circulation model. J. Appl. Meteorol. 1975, 14, 1246–1258. [Google Scholar] [CrossRef]
- Norman, J. Modeling the complete crop canopy. In Modification of the Aerial Environment of Plants; American Society of Agricultural Engineers: St. Joseph, MI, USA, 1979; pp. 249–280. [Google Scholar]
- Tol, V.D.C.; Verhoef, W.; Timmermans, J.; Verhoef, A.; Su, Z. An integrated model of soil-canopy spectral radiances, photosynthesis, fluorescence, temperature and energy balance. Biogeosciences 2009, 6, 3109–3129. [Google Scholar]
- Smith, J.A.; Ballard, J.R.; Pedelty, J.A. Effect of three-dimensional canopy architecture on thermal infrared exitance. Opt. Eng. 1997, 36, 3093–3100. [Google Scholar]
- Bian, Z.; Du, Y.; Li, H.; Cao, B.; Huang, H.; Xiao, Q.; Liu, Q. Modeling the temporal variability of thermal emissions from row-planted scenes using a radiosity and energy budget method. IEEE Trans. Geosci. Remote Sens. 2017, 55, 6010–6026. [Google Scholar] [CrossRef]
- Huang, H.; Qin, W.; Liu, Q. Rapid: A radiosity applicable to porous individual objects for directional reflectance over complex vegetated scenes. Remote Sens. Environ. 2013, 132, 221–237. [Google Scholar] [CrossRef]
- Bhumralkar, C.M. Numerical Experiments on the Computation of Ground Surface Temperature in an Atmospheric Circulation Model; DTIC Document: Dayton, OH, USA, 1974. [Google Scholar]
- Wallace, J.; Verhoef, A. Modelling interactions in mixed-plant communities: Light, water and carbon dioxide. Leaf Dev. Canopy Growth 2000, 204, 250. [Google Scholar]
- Oliphant, A.J.; Grimmond, C.S.B.; Zutter, H.N.; Schmid, H.P.; Su, H.B.; Scott, S.L.; Offerle, B.; Randolph, J.C.; Ehman, J. Heat storage and energy balance fluxes for a temperate deciduous forest. Agric. For. Meteorol. 2004, 126, 185–201. [Google Scholar] [CrossRef]
- Masson, V. A physically-based scheme for the urban energy budget in atmospheric models. Bound. Layer Meteorol. 2000, 94, 357–397. [Google Scholar] [CrossRef]
- Martilli, A.; Clappier, A.; Rotach, M.W. An urban surface exchange parameterisation for mesoscale models. Bound. Layer Meteorol. 2002, 104, 261–304. [Google Scholar] [CrossRef]
- Lemonsu, A.; Masson, V.; Shashua-Bar, L.; Erell, E.; Pearlmutter, D. Inclusion of vegetation in the town energy balance model for modelling urban green areas. Geosci. Model Dev. 2012, 5, 1377–1393. [Google Scholar] [CrossRef]
- Kanda, M.; Inagaki, A.; Miyamoto, T.; Gryschka, M.; Raasch, S. A new aerodynamic parametrization for real urban surfaces. Bound. Layer Meteorol. 2013, 148, 357–377. [Google Scholar] [CrossRef]
- Grimmond, C.S.B.; Oke, T.R. Aerodynamic properties of urban areas derived from analysis of surface form. J. Appl. Meteorol. 1999, 38, 1262–1292. [Google Scholar] [CrossRef]
- Huang, H. Rapid2: A 3D simulator supporting virtual remote sensing experiments. In Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 10–15 July 2016; pp. 3636–3639. [Google Scholar]
- Farquhar, G.V.; von Caemmerer, S.V.; Berry, J. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 1980, 149, 78–90. [Google Scholar] [CrossRef] [PubMed]
- Collatz, G.J.; Ribas-Carbo, M.; Berry, J. Coupled photosynthesis-stomatal conductance model for leaves of C4 plants. Funct. Plant Biol. 1992, 19, 519–538. [Google Scholar]
- Olioso, A.; Chauki, H.; Bergaoui, K.; Bertuzzi, P.; Chanzy, A.; Bessemoulin, P.; Clavet, J.-C. Estimation of energy fluxes from thermal infrared, spectral reflectances, microwave data and svat modeling. Phys. Chem. Earth Part B Hydrol. Oceans Atmos. 1999, 24, 829–836. [Google Scholar] [CrossRef]
- Wang, H.; Xiao, Q.; Li, H.; Du, Y.; Liu, Q. Investigating the impact of soil moisture on thermal infrared emissivity using aster data. IEEE Geosci. Remote Sens. Lett. 2015, 12, 294–298. [Google Scholar] [CrossRef]
- Berk, A.; Anderson, G.P.; Bernstein, L.S.; Acharya, P.K.; Dothe, H.; Matthew, M.W.; Adler-Golden, S.M.; Chetwynd, J.H., Jr.; Richtsmeier, S.C.; Pukall, B. Modtran 4 radiative transfer modeling for atmospheric correction. In Proceedings of the SPIE- The International Society for Optical Engineering, Denver, CO, USA, 20 October 1999; pp. 348–353. [Google Scholar]
- Li, X.; Cheng, G.; Liu, S.; Xiao, Q.; Ma, M.; Jin, R.; Che, T.; Liu, Q.; Wang, W.; Qi, Y. Heihe watershed allied telemetry experimental research (hiwater): Scientific objectives and experimental design. Bull. Am. Meteorol. Soc. 2013, 94, 1145–1160. [Google Scholar] [CrossRef]
- Xu, Z.; Liu, S.; Li, X.; Shi, S.; Wang, J.; Zhu, Z.; Xu, T.; Wang, W.; Ma, M. Intercomparison of surface energy flux measurement systems used during the hiwater-musoexe. J. Geophys. Res. Atmos. 2013, 118, 13140–13157. [Google Scholar] [CrossRef]
- Song, L.; Liu, S.; Zhang, X.; Zhou, J.; Li, M. Estimating and validating soil evaporation and crop transpiration during the hiwater-musoexe. IEEE Geosci. Remote Sens. Lett. 2015, 12, 334–338. [Google Scholar] [CrossRef]
- Zhong, B.; Peng, M.A.; Nie, A.H.; Yang, A.X.; Yao, Y.J.; Wenbo, L.; Zhang, H.; Liu, Q.H. Land cover mapping using time series HJ-1/CCD data. Sci. China Earth Sci. 2014, 57, 1790–1799. [Google Scholar] [CrossRef]
- Zhong, B.; Yang, A.; Nie, A.; Yao, Y.; Zhang, H.; Wu, S.; Liu, Q. Finer resolution land-cover mapping using multiple classifiers and multisource remotely sensed data in the heihe river basin. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 4973–4992. [Google Scholar] [CrossRef]
- Li, Y.; Huang, C.; Hou, J.; Gu, J.; Zhu, G.; Li, X. Mapping daily evapotranspiration based on spatiotemporal fusion of aster and modis images over irrigated agricultural areas in the heihe river basin, northwest china. Agric. For. Meteorol. 2017, 244, 82–97. [Google Scholar] [CrossRef]
- Jacquemoud, S.; Baret, F. Prospect: A model of leaf optical properties spectra. Remote Sens. Environ. 1990, 34, 75–91. [Google Scholar] [CrossRef]
- Baldridge, A.M.; Hook, S.J.; Grove, C.I.; Rivera, G. The aster spectral library version 2.0. Remote Sens. Environ. 2009, 113, 711–715. [Google Scholar] [CrossRef]
- Borel, C.C. Surface emissivity and temperature retrieval for a hyperspectral sensor. In Proceedings of the 1998 IEEE International Geoscience and Remote Sensing Symposium Proceedings, Seattle, WA, USA, 6–10 July 1998; pp. 546–549. [Google Scholar]
- Yamaguchi, Y.; Kahle, A.B.; Tsu, H.; Kawakami, T.; Pniel, M. Overview of advanced spaceborne thermal emission and reflection radiometer (ASTER). IEEE Trans. Geosci. Remote Sens. 1998, 36, 1062–1071. [Google Scholar] [CrossRef]
- Duffour, C.; Olioso, A.; Demarty, J.; Van der Tol, C.; Lagouarde, J.-P. An evaluation of scope: A tool to simulate the directional anisotropy of satellite-measured surface temperatures. Remote Sens. Environ. 2015, 158, 362–375. [Google Scholar] [CrossRef]
- Yang, K.; Wang, J. A temperature prediction-correction method for estimating surface soil heat flux from soil temperature and moisture data. Sci. China Ser. D Earth Sci. 2008, 51, 721–729. [Google Scholar] [CrossRef]
- Cowan, I. Stomatal behaviour and environment. Adv. Bot. Res. 1977, 4, 117–128. [Google Scholar]
- Lagouarde, J.-P.; Irvine, M.; Dupont, S. Atmospheric turbulence induced errors on measurements of surface temperature from space. Remote Sens. Environ. 2015, 168, 40–53. [Google Scholar] [CrossRef]
- Landier, L.; Lauret, N.; Yin, T.; Bitar, A.A.; Gastellu-Etchegorry, J.; Feigenwinter, C.; Parlow, E.; Mitraka, Z.; Chrysoulakis, N. Remote sensing studies of urban canopies: 3D radiative transfer modeling. In Sustainable Urbanization; Ergen, M., Ed.; InTech: Rijeka, Croatia, 2016; p. 10. [Google Scholar]
- Everaerts, J. The use of unmanned aerial vehicles (UAVS) for remote sensing and mapping. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2008, 37, 1187–1192. [Google Scholar]
- Colomina, I.; Molina, P. Unmanned aerial systems for photogrammetry and remote sensing: A review. ISPRS J. Photogramm. Remote Sens. 2014, 92, 79–97. [Google Scholar] [CrossRef]
- Liu, S.; Xu, Z.; Song, L.; Zhao, Q.; Ge, Y.; Xu, T.; Ma, Y.; Zhu, Z.; Jia, Z.; Zhang, F. Upscaling evapotranspiration measurements from multi-site to the satellite pixel scale over heterogeneous land surfaces. Agric. For. Meteorol. 2016, 230, 97–113. [Google Scholar] [CrossRef]
- Wu, X.; Wen, J.; Xiao, Q.; Liu, Q.; Peng, J.; Dou, B.; Li, X.; You, D.; Tang, Y.; Liu, Q. Coarse scale in situ albedo observations over heterogeneous snow-free land surfaces and validation strategy: A case of modis albedo products preliminary validation over northern china. Remote Sens. Environ. 2016, 184, 25–39. [Google Scholar] [CrossRef]
- Hulley, G.C.; Hook, S.J. Generating consistent land surface temperature and emissivity products between aster and modis data for earth science research. IEEE Trans. Geosci. Remote Sens. 2011, 49, 1304–1315. [Google Scholar] [CrossRef]
- Li, X.; Strahler, A.H.; Friedl, M.A. A conceptual model for effective directional emissivity from nonisothermal surfaces. IEEE Trans. Geosci. Remote Sens. 1999, 37, 2508–2517. [Google Scholar]
- Li, X.; Wang, J.; Strahler, A. Scale effects and scaling-up by geometric-optical model. In Proceedings of the IEEE 1999 International Geoscience and Remote Sensing Symposium, Hamburg, Germany, 28 June–2 July 1999; pp. 1875–1877. [Google Scholar]
Parameter | Leaf (Maize) | Soil | Wall | Roof |
---|---|---|---|---|
N | 1.518 | - | - | - |
Cab (µg/cm²) | 58 | - | - | - |
Cw (g/cm²) | 0.013 | - | - | - |
Cm (g/cm²) | 0.003662 | - | - | - |
Emissivity Band 10 (8.29 ) | 0.982 | 0.940 | 0.983 | 0.909 |
Emissivity Band 11 (8.63 ) | 0.983 | 0.952 | 0.946 | 0.887 |
Emissivity Band 12 (9.07 ) | 0.976 | 0.947 | 0.869 | 0.870 |
Emissivity Band 13 (10.66 ) | 0.968 | 0.972 | 0.885 | 0.912 |
Emissivity Band 14 (11.32 ) | 0.979 | 0.975 | 0.895 | 0.923 |
Band 10 | Band 11 | Band 12 | Band 13 | Band 14 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Date | R2 | RMSE (°C) | R2 | RMSE (°C) | R2 | RMSE (°C) | R2 | RMSE (°C) | R2 | RMSE (°C) |
0710 | 0.76 | 1.34 | 0.74 | 1.41 | 0.70 | 1.52 | 0.74 | 1.44 | 0.75 | 1.33 |
0802 | 0.72 | 1.58 | 0.73 | 1.45 | 0.72 | 1.37 | 0.73 | 1.51 | 0.73 | 1.55 |
All | Maize | Building | |||||
---|---|---|---|---|---|---|---|
Case | RMSE (°C) | Bias (°C) | RMSE (°C) | Bias (°C) | RMSE (°C) | Bias (°C) | |
0710 | --- | 1.33 | −0.28 | 1.14 | −0.19 | 2.11 | −1.16 |
LAI − 0.5 | 1.36 | 0.48 | |||||
LAI + 0.5 | 1.26 | −0.54 | |||||
u − 0.5 | 1.34 | 0.01 | 1.21 | −0.02 | 1.89 | 0.66 | |
u + 0.5 | 1.69 | −0.90 | 1.41 | −0.73 | 3.15 | −2.52 | |
0802 | --- | 1.29 | 0.01 | 1.20 | −0.08 | 1.73 | 0.78 |
LAI − 0.5 | 1.46 | 0.57 | |||||
LAI + 0.5 | 1.37 | −0.33 | |||||
u − 0.5 | 4.10 | 3.09 | 3.45 | 2.54 | 7.93 | 7.73 | |
u + 0.5 | 1.37 | −0.29 | 1.19 | −0.24 | 2.42 | −1.73 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bian, Z.; Cao, B.; Li, H.; Du, Y.; Huang, H.; Xiao, Q.; Liu, Q. Modeling the Distributions of Brightness Temperatures of a Cropland Study Area Using a Model that Combines Fast Radiosity and Energy Budget Methods. Remote Sens. 2018, 10, 736. https://doi.org/10.3390/rs10050736
Bian Z, Cao B, Li H, Du Y, Huang H, Xiao Q, Liu Q. Modeling the Distributions of Brightness Temperatures of a Cropland Study Area Using a Model that Combines Fast Radiosity and Energy Budget Methods. Remote Sensing. 2018; 10(5):736. https://doi.org/10.3390/rs10050736
Chicago/Turabian StyleBian, Zunjian, Biao Cao, Hua Li, Yongming Du, Huaguo Huang, Qing Xiao, and Qinhuo Liu. 2018. "Modeling the Distributions of Brightness Temperatures of a Cropland Study Area Using a Model that Combines Fast Radiosity and Energy Budget Methods" Remote Sensing 10, no. 5: 736. https://doi.org/10.3390/rs10050736
APA StyleBian, Z., Cao, B., Li, H., Du, Y., Huang, H., Xiao, Q., & Liu, Q. (2018). Modeling the Distributions of Brightness Temperatures of a Cropland Study Area Using a Model that Combines Fast Radiosity and Energy Budget Methods. Remote Sensing, 10(5), 736. https://doi.org/10.3390/rs10050736