The Temperature Vegetation Dryness Index (TVDI) Based on Bi-Parabolic NDVI-Ts Space and Gradient-Based Structural Similarity (GSSIM) for Long-Term Drought Assessment Across Shaanxi Province, China (2000–2016)
Abstract
:1. Introduction
2. Study Area and Data
2.1. Study Area
2.2. Data
3. Methodology
3.1. The Technical Route
3.2. TVDI in Bi-Parabolic NDVI-Ts Space
3.3. Gradient-Based Structural Similarity (GSSIM)
3.4. Linear Regression Analysis
3.5. Pearson Correlation Analysis
4. Results
4.1. Spatio-Temporal Dynamic Changes of Drought
4.1.1. Scatter Plot of NDVI-Ts Space
4.1.2. Temporal and Spatial Evolution of Drought
4.2. Quantitative Analysis of Spatial Distribution of Drought
4.3. Relations between Filed Measured Soil Moisture, TVDI, and TVX
5. Discussion
5.1. Comparison between the TVDIc, TVDIt and TVX
5.1.1. Scatter Plots of Bi-Parabolic and Triangular NDVI-Ts Space
5.1.2. Dryness Map of TVDIc, TVDIt, and TVX
5.2. Comparison between the GSSIM and Linear Regression Analysis
5.3. The Reasons for Drought Status Variations
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Amani, M.; Salehi, B.; Mahdavi, S.; Masjedi, A.; Dehnavi, S. Temperature-Vegetation-soil Moisture Dryness Index (TVMDI). Remote Sens. Environ. 2017, 197, 1–14. [Google Scholar] [CrossRef]
- Liu, L.Y.; Liao, J.S.; Chen, X.Z.; Zhou, G.Y.; Su, Y.X.; Xiang, Z.Y.; Zhe, W.; Liu, X.D.; Li, Y.Y.; Wu, J.P.; et al. The Microwave Temperature Vegetation Drought Index (MTVDI) based on AMSR-E brightness temperatures for long-term drought assessment across China (2003–2010). Remote Sens. Environ. 2017, 199, 302–320. [Google Scholar] [CrossRef]
- Cao, X.; Feng, Y.; Wang, J. An improvement of the Ts-NDVI space drought monitoring method and its applications in the Mongolian plateau with MODIS, 2000–2012. Arab. J. Geosci. 2016, 9, 433. [Google Scholar] [CrossRef]
- Zhu, W.; Jia, S.; Lv, A. A time domain solution of the Modified Temperature Vegetation Dryness Index (MTVDI) for continuous soil moisture monitoring. Remote Sens. Environ. 2017, 200, 1–17. [Google Scholar] [CrossRef]
- Rouse, J., Jr.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring vegetation systems in the Great Plains with ERTS. NASA Spec. Publ. 1974, 351, 309. [Google Scholar]
- Richardson, A.J.; Wiegand, C.L. Distinguishing vegetation from soil background information. Photogramm. Eng. Remote Sens. 1977, 43, 1541–1552. [Google Scholar]
- Kogan, F.N. Application of vegetation index and brightness temperature for drought detection. Adv. Space Res. 1995, 15, 91–100. [Google Scholar] [CrossRef]
- Kogan, F.N. Droughts of the late 1980s in the United States as derived from NOAA polar-orbiting satellite data. Bull. Am. Meteorol. Soc. 1995, 76, 655–668. [Google Scholar] [CrossRef]
- Stevenm, Q.; Srinivasan, G. Evaluating the utility of the Vegetation Condition Index (VCI) for monitoring meteorological drought in Texas. Agric. For. Meteorol. 2010, 150, 330–339. [Google Scholar]
- Dutta, D.; Kundu, A.; Patel, N.R.; Saha, S.K.; Siddiqui, A.R. Assessment of agricultural drought in Rajasthan (India) using remote sensing derived Vegetation Condition Index (VCI) and Standardized Precipitation Index (SPI). Egypt. J. Remote Sens. Space Sci. 2015, 18, 53–63. [Google Scholar] [CrossRef]
- Mcffters, S.K. The use of the normalized difference water index (NDWI) in the delineation of open water features. Int. J. Remote Sens. 1996, 17, 1425–1432. [Google Scholar] [CrossRef]
- Ghulam, A.; Li, Z.L.; Qin, Q.M. Exploration of the spectral space based on vegetation index and albedo for surface drought estimation. J. Appl. Remote Sens. 2007, 1, 341–353. [Google Scholar]
- Singh, R.P.; Roy, S.; Kogan, F. Vegetation and temperature condition indices from NOAA AVHRR data for drought monitoring over India. Int. J. Remote Sens. 2003, 24, 4393–4402. [Google Scholar] [CrossRef]
- Tian, M.; Wang, P.X.; Khan, J. Drought forecasting with vegetation temperature condition index using ARIMA models in the Guanzhong Plain. Remote Sens. 2016, 8, 690. [Google Scholar] [CrossRef]
- Zormand, S.; Jafari, R.; Koupaei, S.S. Assessment of PDI, MPDI and TVDI drought indices derived from MODIS Aqua/Terra Level 1B data in natural lands. Nat. Hazards 2017, 86, 757–777. [Google Scholar] [CrossRef]
- Goward, S.N.; Cruickhanks, G.D.; Hope, A.S. Observed relation between thermal emission and reflected spectral radiance of a complex vegetated landscape. Remote Sens. Environ. 1985, 18, 137–146. [Google Scholar] [CrossRef]
- Hope, A.S.; Petzold, D.E.; Goward, S.N.; Robert, M.R. Simulated relationship between spectral reflectance, thermal emissions and evapotranspiration of a soybean canopy. J. Am. Water Resour. Assoc. 1986, 22, 1011–1019. [Google Scholar] [CrossRef]
- Nemani, R.R.; Running, S.W. Estimation of regional surface resistance to evapotranspiration from NDVI and thermal IR AVHRR data. J. Appl. Meteorol. 1989, 28, 276–284. [Google Scholar] [CrossRef]
- Price, J.C. Using spatial context in satellite data to infer regional scale evapotranspiration. IEEE Tract. Geosci. Remote Sens. 1990, 28, 940–948. [Google Scholar] [CrossRef] [Green Version]
- Carlson, T.N.; Gillies, R.R.; Perry, E.M. A method to make use of thermal infrared temperature and NDVI measurements to infer surface soil water content and fractional vegetation cover. Remote Sens. Rev. 1994, 9, 161–173. [Google Scholar] [CrossRef]
- Goward, S.N.; Hope, A.S. Evapotranspiration from combined reflected solar and emitted terrestrial radiation Preliminary FIFE results from AVHRR data. Adv. Space Res. 1989, 9, 239–249. [Google Scholar] [CrossRef]
- Moran, M.; Clarke, T.; Inoue, Y.; Vidal, A. Estimating crop water deficit using the relation between surface-air temperature and spectral vegetation index. Remote Sens. Environ. 1994, 49, 246–263. [Google Scholar] [CrossRef]
- Sandholta, I.; Rasmussena, K.; Andersenb, J. A simple interpretation of the surface temperature/ vegetation index space for assessment of surface moisture status. Remote Sens. Environ. 2002, 79, 213–224. [Google Scholar] [CrossRef]
- Wang, P.X.; Li, X.W.; Gong, J.Y.; Song, C.H. Vegetation temperature condition index and its application for drought monitoring. In Proceedings of the International Geoscience and Remote Sensing Symposium, Sydney, Australia, 9–13 July 2001. [Google Scholar]
- Patel, N.R.; Anapashsha, R.; Kumar, S.; Saha, S.K.; Dadhwal, V.K. Assessing potential of MODIS derived temperature/vegetation condition index (TVDI) to infer soil moisture status. Int. J. Remote Sens. 2009, 30, 23–39. [Google Scholar] [CrossRef]
- Rahimzadeh-Bajgiran, P.; Omasa, K.; Shimizu, Y. Comparative evaluation of the Vegetation Dryness Index (VDI), the Temperature Vegetation Dryness Index (TVDI) and the improved TVDI (iTVDI) for water stress detection in semi-arid regions of Iran. Isprs J. Photogramm. Remote Sens. 2012, 68, 1–12. [Google Scholar] [CrossRef]
- Du, L.T.; Song, N.P.; Liu, K.; Hou, J.; Hu, Y.; Zhu, Y.G.; Wang, X.Y.; Wang, L.; Guo, Y.G. Comparison of Two Simulation Methods of the Temperature Vegetation Dryness Index (TVDI) for Drought Monitoring in Semi-Arid Regions of China. Remote Sens. 2017, 9, 177. [Google Scholar] [CrossRef]
- Patel, N.R.; Parida, B.R.; Venus, V.; Saha, S.K.; Dadhwal, V.K. Analysis of agricultural drought using vegetation temperature condition index (VTCI) from Terra/MODIS satellite data. Environ. Monit. Assess. 2012, 184, 7153. [Google Scholar] [CrossRef] [PubMed]
- Bai, X.J.; Wang, P.X.; Wang, H.S.; Xie, Y. An up-scaled vegetation temperature condition index retrieved from landsat data with trend surface analysis. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 3537–3546. [Google Scholar] [CrossRef]
- Shakya, N.; Yamaguchi, Y. Vegetation, water and thermal stress index for study of drought in Nepal and central northeastern India. Int. J. Remote Sens. 2010, 31, 903–912. [Google Scholar] [CrossRef]
- Gillies, R.R.; Carlson, T.N. Thermal remote sensing of surface soil water content with partial vegetation cover for incorporation into climate models. J. Appl. Meteorol. 1995, 34, 745–756. [Google Scholar] [CrossRef]
- Liu, Y.; Wu, L.X.; Yue, H. Biparabolic NDVI-Ts space and soil moisture remote sensing in an arid and semi arid area. Can. J. Remote Sens. 2015, 41, 159–169. [Google Scholar] [CrossRef]
- Bai, X.J.; Wang, P.X.; Xie, Y.; Wang, L.; He, P. Spatial distribution characteristics of droughts in Guanzhong Plain based on structural similarity. Trans. Chin. Soc. Agric. Mach. 2015, 46, 345–349. (In Chinese) [Google Scholar]
- Yang, C.L.; Kuang, K.Z.; Chen, G.H.; Xie, S.L. Gradient-based structural similarity for image quality assessment. J. South China Univ. Technol. (Nat. Sci. Ed.) 2006, 34, 23–25. (In Chinese) [Google Scholar]
- Chen, G.H.; Yang, C.L.; Xie, S.L. Gradient-based structural similarity for image quality assessment. IEEE Int. Conf. Image Process. 2007, 2, 2929–2932. [Google Scholar]
- Wang, Z.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image quality assessment: From error visibility to structural similarity. IEEE Trans. Image Process. 2004, 13, 600–612. [Google Scholar] [CrossRef] [PubMed]
- Prihodko, L.; Goward, S.N. Estimation of air temperature from remotely sensed surface observations. Remote Sens. Environ. 1997, 60, 335–346. [Google Scholar] [CrossRef]
- Qin, Q.; Ghulam, A.; Zhu, L.; Wang, L.; Li, J.; Nan, P. Evaluation of MODIS derived perpendicular drought index for estimation of surface dryness over northwestern China. Int. J. Remote Sens. 2008, 29, 1983–1995. [Google Scholar] [CrossRef]
- Stow, D.; Daeschner, S.; Hope, A.; Douglas, D.; Petersen, A.; Myneni, R.; Zhou, L.; Oechel, W. Variability of the seasonally integrated normalized difference vegetation index across the north slope of Alaska in the 1990s. Int. J. Remote Sen. 2003, 24, 1111–1117. [Google Scholar] [CrossRef]
- Eckert, S.; Hüsler, F.; Liniger, H.; Hodel, E. Trend analysis of MODIS NDVI time series for detecting land degradation and regeneration in Mongolia. J. Arid Environ. 2015, 113, 16–28. [Google Scholar] [CrossRef]
- Jiang, R.G.; Xie, J.C.; He, H.L.; Luo, J.G.; Zhu, J.W. Use of four drought indices for evaluating drought characteristics under climate change in Shaanxi, China: 1951–2012. Nat. Hazards 2015, 75, 2885–2903. [Google Scholar] [CrossRef]
- Holben, B. Characteristics of maximum-value composite images from temporal AVHRR data. Int. J. Remote Sens. 1986, 7, 1417–1434. [Google Scholar] [CrossRef] [Green Version]
- Coulter, L.L.; Stow, D.A.; Tsai, Y.H.; Ibanez, N.; Shih, H.C.; Kerr, A.; Benza, B.; Weeks, J.R.; Mensah, F. Classification and assessment of land cover and land use change in southern Ghana using dense stacks of Landsat 7 ETM+ imagery. Remote Sens. Environ. 2016, 184, 396–409. [Google Scholar] [CrossRef]
- Haß, E.; Frantz, D.; Mader, S.; Hill, J. Global analysis of the differences between the MODIS vegetation index compositing date and the actual acquisition date. IEEE Geosci. Remote Sens. Lett. 2017, 99, 1–5. [Google Scholar]
- Immerzeel, W.W.; Droogers, P.; Jong, S.M.D.; Bierkens, M.F.P. Large-scale monitoring of snow cover and runoff simulation in himalayan river basins using remote sensing. Remote Sens. Environ. 2009, 113, 40–49. [Google Scholar] [CrossRef]
- Adler, J.; Parmryd, I. Quantifying colocalization by correlation: The pearson correlation coefficient is superior to the mander's overlap coefficient. Cytom. Part A 2010, 77, 733. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Xie, H.; Guan, H.; Zhou, X. Different responses of MODIS-derived NDVI to root-zone soil moisture in semi-arid and humid regions. J. Hydrol. 2007, 340, 12–24. [Google Scholar] [CrossRef]
- Estreguil, C.; Lambin, E.F. Mapping forest-cover disturbances in Papua New Guinea with AVHRR data. J. Biogeogr. 1996, 23, 757–773. [Google Scholar] [CrossRef]
- Mcvicar, T.R.; Biencirth, P.N. Rapidly assessing the 1997 drought in Papua New Guinea using composite AVHRB imagery. Int. J. Remote Sens. 2001, 22, 2109–2128. [Google Scholar] [CrossRef]
- Zhang, H.; Gorelick, S.; Avisse, N.; Tilmant, A.; Rajsekhar, D.; Yoon, J. A new temperature-vegetation triangle algorithm with variable edges (TAVE) for satellite-based actual evapotranspiration estimation. Remote Sens. 2016, 8, 735. [Google Scholar] [CrossRef]
- Minacapilli, M.; Consoli, S.; Vanella, D.; Ciraolo, G.; Motisi, A. A time domain triangle method approach to estimate actual evapotranspiration: Application in a Mediterranean region using MODIS and MSG-SEVIRI products. Remote Sens. Environ. 2016, 174, 10–23. [Google Scholar] [CrossRef]
- Khan, J.; Wang, P.; Xie, Y.; Wang, L.; Li, L. Mapping MODIS LST NDVI imagery for drought monitoring in Punjab Pakistan. IEEE Access 2018, 6, 19898–19911. [Google Scholar] [CrossRef]
- Cao, X.; Feng, Y.; Wang, J. Remote sensing monitoring the spatio-temporal changes of aridification in the Mongolian Plateau based on the general Ts-NDVI space, 1981–2012. J. Earth Syst. Sci. 2017, 126, 58. [Google Scholar] [CrossRef]
Drought Types and Proportion (%) | ||||||
---|---|---|---|---|---|---|
Very Wet | Wet | No Dry | Dry | Very Dry | Drought Affected Area | |
2000 | 1.31 | 12.01 | 43.32 | 35.75 | 7.19 | 42.94 |
2001 | 1.24 | 14.65 | 40.72 | 34.83 | 8.13 | 42.96 |
2002 | 0.66 | 13.16 | 56.52 | 24.27 | 5.05 | 29.32 |
2003 | 1.95 | 30.72 | 44.42 | 18.38 | 4.34 | 22.72 |
2004 | 1.15 | 13.65 | 53.03 | 26.78 | 5.07 | 31.84 |
2005 | 3.00 | 22.38 | 36.52 | 29.10 | 8.55 | 37.65 |
2006 | 1.66 | 30.65 | 35.94 | 25.83 | 5.55 | 31.38 |
2007 | 2.31 | 18.63 | 50.30 | 23.96 | 4.25 | 28.20 |
2008 | 2.20 | 29.94 | 47.53 | 15.62 | 4.29 | 19.91 |
2009 | 2.31 | 24.83 | 36.44 | 30.55 | 5.44 | 35.99 |
2010 | 3.35 | 22.80 | 36.02 | 33.08 | 4.58 | 37.66 |
2011 | 3.74 | 28.60 | 39.70 | 23.32 | 4.22 | 27.55 |
2012 | 2.42 | 28.90 | 37.55 | 27.37 | 3.37 | 30.75 |
2013 | 2.68 | 22.87 | 45.33 | 22.97 | 5.93 | 28.90 |
2014 | 1.95 | 28.69 | 52.42 | 14.66 | 1.85 | 16.50 |
2015 | 0.58 | 9.14 | 59.65 | 26.79 | 3.51 | 30.29 |
2016 | 1.28 | 22.22 | 48.56 | 24.25 | 3.28 | 27.54 |
Times | Drought Status | 2000–2005 | 2005–2011 | 2011–2016 | 2008–2015 | 2000–2016 | |
---|---|---|---|---|---|---|---|
GSSIM | |||||||
GSSIM ≤ 0.25 (mutation) | eased | 3.20 | 5.11 | 2.68 | 1.34 | 3.53 | |
aggravated | 2.22 | 2.87 | 3.04 | 3.44 | 1.81 | ||
0.25~0.65 (moderate change) | eased | 25.58 | 27.00 | 15.77 | 7.86 | 28.45 | |
aggravated | 14.27 | 13.29 | |||||
GSSIM > 0.65 (low change) | changed a little | 54.73 | 51.73 | 54.37 | 54.69 | 54.44 |
2000 | 2005 | 2008 | 2011 | 2015 | 2016 |
---|---|---|---|---|---|
0.5708 | 0.5372 | 0.4793 | 0.4910 | 0.5577 | 0.5117 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Yue, H. The Temperature Vegetation Dryness Index (TVDI) Based on Bi-Parabolic NDVI-Ts Space and Gradient-Based Structural Similarity (GSSIM) for Long-Term Drought Assessment Across Shaanxi Province, China (2000–2016). Remote Sens. 2018, 10, 959. https://doi.org/10.3390/rs10060959
Liu Y, Yue H. The Temperature Vegetation Dryness Index (TVDI) Based on Bi-Parabolic NDVI-Ts Space and Gradient-Based Structural Similarity (GSSIM) for Long-Term Drought Assessment Across Shaanxi Province, China (2000–2016). Remote Sensing. 2018; 10(6):959. https://doi.org/10.3390/rs10060959
Chicago/Turabian StyleLiu, Ying, and Hui Yue. 2018. "The Temperature Vegetation Dryness Index (TVDI) Based on Bi-Parabolic NDVI-Ts Space and Gradient-Based Structural Similarity (GSSIM) for Long-Term Drought Assessment Across Shaanxi Province, China (2000–2016)" Remote Sensing 10, no. 6: 959. https://doi.org/10.3390/rs10060959
APA StyleLiu, Y., & Yue, H. (2018). The Temperature Vegetation Dryness Index (TVDI) Based on Bi-Parabolic NDVI-Ts Space and Gradient-Based Structural Similarity (GSSIM) for Long-Term Drought Assessment Across Shaanxi Province, China (2000–2016). Remote Sensing, 10(6), 959. https://doi.org/10.3390/rs10060959