Variability of the Great Whirl and Its Impacts on Atmospheric Processes
Abstract
:1. Introduction
2. Data and Methods
2.1. Data
2.1.1. Satellite Altimeter Measured SLA Data
2.1.2. Satellite Remote Sensing SST Data
2.1.3. TMI Data
2.1.4. ERA-Interim Reanalysis Data
2.2. Methods
2.2.1. Eddy Automatic Detection.
2.2.2. Composite Analysis
2.2.3. 31 Point Bandpass Filter
3. Results
3.1. Mean State
3.1.1. Basic Characteristics
3.1.2. The Movement Pattern
3.2. Interannual Variations of the GW
3.2.1. Position
3.2.2. Lifetime
3.2.3. SST and SLA
3.2.4. Radius, Deformation, Normalized Vorticity, and EKE
3.3. Atmospheric Responses to the GW
3.3.1. Composite Results near the Sea Surface
3.3.2. Composite Results in the Vertical Direction
4. Summary and Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Schott, F.; Mccreary, J.P. The monsoon circulation of the Indian Ocean. Prog. Oceanogr. 2001, 51, 1–123. [Google Scholar] [CrossRef]
- Schott, F. Monsoon response of the Somali Current and associated upwelling. Prog. Oceanogr. 1983, 12, 357–381. [Google Scholar] [CrossRef]
- Swallow, J.C.; Fieux, M. Historical evidence for two gyres in the Somali Current. J. Mar. Res. 1982, 40, 747–755. [Google Scholar]
- Bruce, J.G. Eddies off the Somali Coast during the Southwest Monsoon. J. Geophys. Res.-Oceans 1979, 84, 7742–7748. [Google Scholar] [CrossRef]
- Bruce, J.; Fieux, M.; Gonella, J. A note on the continuance of the Somali eddy after the cessation of the Southwest monsoon. Oceanol. Acta 1981, 4, 7–9. [Google Scholar]
- Beal, L.M.; Donohue, K.A. The Great Whirl: Observations of its seasonal development and interannual variability. J. Geophys. Res.-Oceans 2013, 118, 1–13. [Google Scholar] [CrossRef]
- Beal, L.M.; Hormann, V.; Lumpkin, R.; Foltz, G.R. The Response of the Surface Circulation of the Arabian Sea to Monsoonal Forcing. J. Phys. Oceanogr. 2014, 43, 2008–2022. [Google Scholar] [CrossRef]
- McCreary, J.; Kundu, P. A numerical investigation of the Somali Current during the Southwest Monsoon. J. Mar. Res. 1988, 46, 25–58. [Google Scholar] [CrossRef]
- Jensen, T.G. Modeling the seasonal undercurrents in the Somali Current system. J. Geophys. Res.-Oceans 1991, 96, 22151–22167. [Google Scholar] [CrossRef]
- Vic, C.; Roullet, G.; Carton, X.; Capet, X. Mesoscale dynamics in the Arabian Sea and a focus on the Great Whirl life cycle: A numerical investigation using ROMS. J. Geophys. Res.-Oceans 2015, 119, 6422–6443. [Google Scholar] [CrossRef]
- Cao, Z.; Hu, R. Research on the interannual variability of the Great Whirl and the related mechanisms. J. Ocean Univ. China 2015, 14, 17–26. [Google Scholar] [CrossRef]
- Luther, M.E.; O’Brien, J.J. Modelling the Variability in the Somali Current. Elsevier Oceanogr. Ser. 1989, 50, 373–386. [Google Scholar] [CrossRef]
- Luther, M.E. Interannual variability in the Somali Current 1954–1976. Nonlinear Anal. 1999, 35, 59–83. [Google Scholar] [CrossRef]
- Wirth, A.; Willebrand, J.; Schott, F. Variability of the Great Whirl from Observations and Models; Deep-Sea Research Part II; Elsevier: Amsterdam, The Netherlands, 2002; Volume 49, pp. 1279–1295. [Google Scholar] [CrossRef]
- Vecchi, G.A.; Xie, S.P.; Fischer, A.S. Ocean–Atmosphere Covariability in the Western Arabian Sea. J. Clim. 2004, 17, 1213–1224. [Google Scholar] [CrossRef]
- Nonaka, M.; Xie, S.P. Covariations of Sea Surface Temperature and Wind over the Kuroshio and Its Extension: Evidence for Ocean-to-Atmosphere Feedback. J. Clim. 2003, 16, 1404–1413. [Google Scholar] [CrossRef]
- Mafimbo, A.J.; Reason, C.J.C. Air-sea interaction over the upwelling region of the Somali coast. J. Geophys. Res.-Oceans 2010, 115, 152–162. [Google Scholar] [CrossRef]
- Chelton, D.B.; Schlax, M.; Freilich, H.H.; Milliff, R.F. Satellite measurements reveal persistent small-scale features in ocean winds. Science 2004, 303, 978–983. [Google Scholar] [CrossRef]
- Koseki, S.; Watanabe, M. Atmospheric boundary layer response to mesoscale SST anomalies in the Kuroshio Extension. J. Clim. 2010, 23, 2492–2507. [Google Scholar] [CrossRef]
- Frenger, I.; Gruber, N.; Knutti, R.; Münnich, M. Imprint of Southern Ocean eddies on winds, clouds and rainfall. Nat. Geosci. 2013, 6, 608–612. [Google Scholar] [CrossRef]
- Ma, J.; Xu, H.; Dong, C.; Lin, P.; Liu, Y. Atmospheric responses to oceanic eddies in the Kuroshio Extension region. J. Geophys. Res.-Atmos. 2015, 120, 6313–6330. [Google Scholar] [CrossRef]
- Ma, J.; Xu, H.; Dong, C. Seasonal variations in atmospheric responses to oceanic eddies in the Kuroshio Extension. Tellus A 2016, 68, 31563. [Google Scholar] [CrossRef]
- Seo, H.; Murtugudde, R.; Jochum, M.; Miller, A.J. Modeling of mesoscale coupled ocean-atmosphere interaction and its feedback to ocean in the western Arabian Sea. Ocean Model. 2008, 25, 120–131. [Google Scholar] [CrossRef]
- Seo, H. Distinct influence of air-sea interactions mediated by mesoscale sea surface temperature and surface current in the Arabian Sea. J. Clim. 2017, 30, 8061–8080. [Google Scholar] [CrossRef]
- Ducet, N.; Traon, P.Y.; Reverdin, G. Global high-resolution mapping of ocean circulation from TOPEX/Poseidon and ERS-1 and-2. J. Geophys. Res. 2000, 105, 19477–19498. [Google Scholar] [CrossRef]
- Reynolds, R.W.; Smith, T.M.; Liu, C.; Chelton, D.B.; Casey, K.S.; Michael, G. Daily high-resolution-blended analyses for sea surface temperature. J. Clim. 2007, 20, 5473–5496. [Google Scholar] [CrossRef]
- Sun, W.; Dong, C.; Tan, W.; He, Y. Statistical Characteristics of Cyclonic Warm-Core Eddies and Anticyclonic Cold-Core Eddies in the North Pacific Based on Remote Sensing Data. Remote Sens. 2019, 11, 208. [Google Scholar] [CrossRef]
- Wentz, F.J.; Gentemann, C.; Smith, D.; Chelton, D. Satellite measurements of sea surface temperature through clouds. Science 2000, 288, 847–850. [Google Scholar] [CrossRef]
- The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 2011, 137. [CrossRef]
- Nencioli, F.; Changming, D.; Dickey, T.; Washburn, L.; McWilliams, J.C. A Vector Geometry–Based Eddy Detection Algorithm and Its Application to a High-Resolution Numerical Model Product and High-Frequency Radar Surface Velocities in the Southern California Bight. J. Atmos. Ocean. Technol. 2010, 27, 564. [Google Scholar] [CrossRef]
- Subrahmanyam, B.; Robinson, I.S.; Rblundell, J.; Challenor, P. Indian Ocean Rossby waves observed in TOPEX/POSEIDON altimeter data and in model simulations. Int. J. Remote Sens. 2001, 22, 141–167. [Google Scholar] [CrossRef]
- Dong, C.; Lin, X.; Liu, Y.; Nencioli, F.; Chao, Y.; Guan, Y.; McWilliams, J.C. Three-dimensional oceanic eddy analysis in the Southern California Bight from a numerical product. J. Geophys. Res.-Oceans 2012, 117, 92–99. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.; Zhu, W.; Ma, J.; Ji, J.; Yang, J.; Dong, C. Variability of the Great Whirl and Its Impacts on Atmospheric Processes. Remote Sens. 2019, 11, 322. https://doi.org/10.3390/rs11030322
Wang S, Zhu W, Ma J, Ji J, Yang J, Dong C. Variability of the Great Whirl and Its Impacts on Atmospheric Processes. Remote Sensing. 2019; 11(3):322. https://doi.org/10.3390/rs11030322
Chicago/Turabian StyleWang, Sen, Weijun Zhu, Jing Ma, Jinlin Ji, Jingsong Yang, and Changming Dong. 2019. "Variability of the Great Whirl and Its Impacts on Atmospheric Processes" Remote Sensing 11, no. 3: 322. https://doi.org/10.3390/rs11030322
APA StyleWang, S., Zhu, W., Ma, J., Ji, J., Yang, J., & Dong, C. (2019). Variability of the Great Whirl and Its Impacts on Atmospheric Processes. Remote Sensing, 11(3), 322. https://doi.org/10.3390/rs11030322