Multi-Scale Proposal Generation for Ship Detection in SAR Images
Abstract
:1. Introduction
- A ship generally has a different scattering characteristics from its surroundings;
- A ship generally has some components with strong scattering;
- There are edges between a ship and its surroundings;
- A ship generally has a closed contour.
- The generator obtains components of ships by superpixel algorithm, and explores ships by hierarchical grouping;
- The generator obtains proposals from the superpixels that contain at least one strong scattering component;
- The generator measures a proposal by the difference of the edge density between the inside and near the borders of the proposal;
- The generator measures a proposal by the completeness and the tightness of the contour.
2. Ship Proposal Generator
2.1. Framework
Algorithm 1: Hierarchical Grouping using Superpixels and Strong Scattering Components. |
2.2. Edges and Superpixels
2.3. Hierarchical Grouping
2.4. Proposal Scoring
2.4.1. Edge Scoring
2.4.2. Contour Scoring
3. Results
3.1. Evaluation of Four Procedures
3.1.1. Evaluation of Hierarchical Superpixels Grouping
Variation of Initial Superpixels Size
Hierarchical Superpixels Grouping versus Multi-scale Superpixels Segmentation
Hierarchical Superpixels Grouping versus Sliding Windows
3.1.2. Evaluation of Strong Scattering Components Information
3.1.3. Evaluation of Edges Scoring and Contours Scoring
3.1.4. Evaluation of Multi-Scale Ship Proposal Generation
3.2. Comparison with the State-of-the-Art Methods
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Huo, W.; Huang, Y.; Pei, J.; Zhang, Q.; Gu, Q.; Yang, J. Ship Detection from Ocean SAR Image Based on Local Contrast Variance Weighted Information Entropy. Sensors 2018, 18, 1196. [Google Scholar] [CrossRef] [PubMed]
- Song, S.; Xu, B.; Li, Z.; Yang, J. Ship Detection in SAR Imagery via Variational Bayesian Inference. IEEE Geosci. Remote Sens. Lett. 2016, 13, 319–323. [Google Scholar] [CrossRef]
- Liu, S.; Cao, Z.; Yang, H. Information theory-based target detection for high-resolution SAR image. IEEE Geosci. Remote Sens. Lett. 2016, 13, 404–408. [Google Scholar] [CrossRef]
- Leng, X.; Ji, K.; Xing, X.; Zhou, S.; Zou, H. Area Ratio Invariant Feature Group for Ship Detection in SAR Imagery. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 2376–2388. [Google Scholar] [CrossRef]
- Ao, W.; Xu, F.; Li, Y.; Wang, H. Detection and Discrimination of Ship Targets in Complex Background From Spaceborne ALOS-2 SAR Images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 536–550. [Google Scholar] [CrossRef]
- Wang, C.; Bi, F.; Zhang, W.; Chen, L. An intensity-space domain CFAR method for ship detection in HR SAR images. IEEE Geosci. Remote Sens. Lett. 2017, 14, 529–533. [Google Scholar] [CrossRef]
- Gao, G.; Shi, G. CFAR ship detection in nonhomogeneous sea clutter using polarimetric SAR data based on the notch filter. IEEE Trans. Geosci. Remote Sens. 2017, 55, 4811–4824. [Google Scholar] [CrossRef]
- Tian, S.; Wang, C.; Zhang, H. An improved nonparametric CFAR method for ship detection in single polarization synthetic aperture radar imagery. In Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 10–15 July 2016; pp. 6637–6640. [Google Scholar]
- Leng, X.; Ji, K.; Yang, K.; Zou, H. A bilateral CFAR algorithm for ship detection in SAR images. IEEE Geosci. Remote Sens. Lett. 2015, 12, 1536–1540. [Google Scholar] [CrossRef]
- Xiang, X.; Ji, K.; Zou, H.; Sun, J. A fast ship detection algorithm in SAR imagery for wide area ocean surveillance. In Proceedings of the 2012 IEEE Radar Conference (RADAR), Atlanta, GA, USA, 7–11 May 2012; pp. 570–574. [Google Scholar]
- Gao, G.; Gao, S.; He, J.; Li, G. Ship Detection Using Compact Polarimetric SAR Based on the Notch Filter. IEEE Trans. Geosci. Remote Sens. 2018, 56, 5380–5393. [Google Scholar] [CrossRef]
- Schwegmann, C.P.; Kleynhans, W.; Salmon, B.P. Synthetic aperture radar ship detection using Haar-like features. IEEE Geosci. Remote Sens. Lett. 2017, 14, 154–158. [Google Scholar] [CrossRef]
- Wang, W.; Ji, Y.; Lin, X. A novel fusion-based ship detection method from Pol-SAR images. Sensors 2015, 15, 25072–25089. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Chen, C. Ship detection for complex background SAR images based on a multiscale variance weighted image entropy method. IEEE Geosci. Remote Sens. Lett. 2017, 14, 184–187. [Google Scholar] [CrossRef]
- An, W.; Xie, C.; Yuan, X. An improved iterative censoring scheme for CFAR ship detection with SAR imagery. IEEE Trans. Geosci. Remote Sens. 2014, 52, 4585–4595. [Google Scholar]
- Hou, B.; Chen, X.; Jiao, L. Multilayer CFAR detection of ship targets in very high resolution SAR images. IEEE Geosci. Remote Sens. Lett. 2015, 12, 811–815. [Google Scholar]
- Li, T.; Liu, Z.; Xie, R.; Ran, L. An Improved Superpixel-Level CFAR Detection Method for Ship Targets in High-Resolution SAR Images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 184–194. [Google Scholar] [CrossRef]
- Pappas, O.; Achim, A.; Bull, D. Superpixel-Level CFAR Detectors for Ship Detection in SAR Imagery. IEEE Geosci. Remote Sens. Lett. 2018, 15, 1397–1401. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, H. PolSAR ship detection based on superpixel-level scattering mechanism distribution features. IEEE Geosci. Remote Sens. Lett. 2015, 12, 1780–1784. [Google Scholar] [CrossRef]
- He, J.; Wang, Y.; Liu, H.; Wang, N.; Wang, J. A Novel Automatic PolSAR Ship Detection Method Based on Superpixel-Level Local Information Measurement. IEEE Geosci. Remote Sens. Lett. 2018, 15, 384–388. [Google Scholar] [CrossRef]
- Liao, M.; Wang, C.; Wang, Y.; Jiang, L. Using SAR images to detect ships from sea clutter. IEEE Geosci. Remote Sens. Lett. 2008, 5, 194–198. [Google Scholar] [CrossRef]
- Gierull, C.H.; Sikaneta, I. A Compound-Plus-Noise Model for Improved Vessel Detection in Non-Gaussian SAR Imagery. IEEE Trans. Geosci. Remote Sens. 2018, 56, 1444–1453. [Google Scholar] [CrossRef]
- Gao, G.; Ouyang, K.; Luo, Y.; Liang, S.; Zhou, S. Scheme of parameter estimation for generalized gamma distribution and its application to ship detection in SAR images. IEEE Trans. Geosci. Remote Sens. 2017, 55, 1812–1832. [Google Scholar] [CrossRef]
- Sample Imagery. Available online: https://www.intelligence-airbusds.com/en/8262-sample-imagery (accessed on 4 March 2019).
- Marino, A.; Sanjuan-Ferrer, M.J.; Hajnsek, I.; Ouchi, K. Ship detection with spectral analysis of synthetic aperture radar: A comparison of new and well-known algorithms. Remote Sens. 2015, 7, 5416–5439. [Google Scholar] [CrossRef]
- Iervolino, P.; Guida, R.; Whittaker, P. A new GLRT-based ship detection technique in SAR images. In Proceedings of the 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Milan, Italy, 26–31 July 2015; pp. 3131–3134. [Google Scholar]
- Iervolino, P.; Guida, R. A novel ship detector based on the generalized-likelihood ratio test for SAR imagery. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 3616–3630. [Google Scholar] [CrossRef]
- Zhai, L.; Li, Y.; Su, Y. Inshore ship detection via saliency and context information in high-resolution SAR images. IEEE Geosci. Remote Sens. Lett. 2016, 13, 1870–1874. [Google Scholar] [CrossRef]
- Wang, S.; Wang, M.; Yang, S.; Jiao, L. New hierarchical saliency filtering for fast ship detection in high-resolution SAR images. IEEE Trans. Geosci. Remote Sens. 2017, 55, 351–362. [Google Scholar] [CrossRef]
- Yang, M.; Guo, C. Ship Detection in SAR Images Based on Lognormal ρ-Metric. IEEE Geosci. Remote Sens. Lett. 2018. [Google Scholar] [CrossRef]
- He, J.; Wang, Y.; Liu, H.; Wang, N. PolSAR ship detection using local scattering mechanism difference based on regression kernel. IEEE Geosci. Remote Sens. Lett. 2017, 14, 1725–1729. [Google Scholar] [CrossRef]
- Xu, L.; Zhang, H.; Wang, C.; Zhang, B.; Tian, S. Compact polarimetric SAR ship detection with m-δ decomposition using visual attention model. Remote Sens. 2016, 8, 751. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, M.H.; Xu, P.; Guo, Z.W. SAR ship detection using sea-land segmentation-based convolutional neural network. In Proceedings of the 2017 International Workshop on Remote Sensing with Intelligent Processing (RSIP), Shanghai, China, 18–21 May 2017; pp. 1–4. [Google Scholar]
- An, Q.; Pan, Z.; You, H. Ship Detection in Gaofen-3 SAR Images Based on Sea Clutter Distribution Analysis and Deep Convolutional Neural Network. Sensors 2018, 18, 334. [Google Scholar] [CrossRef] [PubMed]
- Kang, M.; Leng, X.; Lin, Z.; Ji, K. A modified faster R-CNN based on CFAR algorithm for SAR ship detection. In Proceedings of the 2017 International Workshop on Remote Sensing with Intelligent Processing (RSIP), Shanghai, China, 18–21 May 2017; pp. 1–4. [Google Scholar]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster r-cnn: Towards real-time object detection with region proposal networks. In Advances in Neural Information Processing Systems 28; Curran Associates, Inc.: Red Hook, NY, USA, 2015; pp. 91–99. [Google Scholar]
- Zhao, J.; Zhang, Z.; Yu, W.; Truong, T.K. A Cascade Coupled Convolutional Neural Network Guided Visual Attention Method for Ship Detection from SAR Images. IEEE Access 2018, 6, 50693–50708. [Google Scholar] [CrossRef]
- Jiao, J.; Zhang, Y.; Sun, H.; Yang, X.; Gao, X.; Hong, W.; Fu, K.; Sun, X. A Densely Connected End-to-End Neural Network for Multiscale and Multiscene SAR Ship Detection. IEEE Access 2018, 6, 20881–20892. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, C.; Zhang, H. Combining a single shot multibox detector with transfer learning for ship detection using sentinel-1 SAR images. Remote Sens. Lett. 2018, 9, 780–788. [Google Scholar] [CrossRef]
- Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.Y.; Berg, A.C. Ssd: Single shot multibox detector. In European Conference on Computer Vision; Springer: Berlin/Heidelberg, Germany, 2016; pp. 21–37. [Google Scholar]
- Huang, L.; Liu, B.; Li, B.; Guo, W.; Yu, W.; Zhang, Z.; Yu, W. OpenSARShip: A dataset dedicated to Sentinel-1 ship interpretation. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 195–208. [Google Scholar] [CrossRef]
- Li, J.; Qu, C.; Shao, J. Ship detection in SAR images based on an improved faster R-CNN. In Proceedings of the SAR in Big Data Era: Models, Methods and Applications (BIGSARDATA), Beijing, China, 13–14 November 2017; pp. 1–6. [Google Scholar]
- Song, S.; Xu, B.; Yang, J. Ship Detection in Polarimetric SAR Images via Variational Bayesian Inference. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 2819–2829. [Google Scholar] [CrossRef]
- Zhang, T.; Yang, Z.; Xiong, H. PolSAR Ship Detection Based on the Polarimetric Covariance Difference Matrix. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 3348–3359. [Google Scholar] [CrossRef]
- Shi, H.; Zhang, Q.; Bian, M.; Wang, H.; Wang, Z.; Chen, L.; Yang, J. A Novel Ship Detection Method Based on Gradient and Integral Feature for Single-Polarization Synthetic Aperture Radar Imagery. Sensors 2018, 18, 563. [Google Scholar] [CrossRef] [PubMed]
- Fan, W.; Zhou, F.; Tao, M.; Bai, X.; Shi, X.; Xu, H. An automatic ship detection method for PolSAR data based on K-Wishart distribution. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 2725–2737. [Google Scholar] [CrossRef]
- Uijlings, J.R.; Van De Sande, K.E.; Gevers, T.; Smeulders, A.W. Selective search for object recognition. Int. J. Comput. Vis. 2013, 104, 154–171. [Google Scholar] [CrossRef]
- Krähenbühl, P.; Koltun, V. Geodesic object proposals. In European Conference on Computer Vision; Springer: Berlin/Heidelberg, Germany, 2014; pp. 725–739. [Google Scholar]
- Rantalankila, P.; Kannala, J.; Rahtu, E. Generating object segmentation proposals using global and local search. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014; pp. 2417–2424. [Google Scholar]
- Alexe, B.; Deselaers, T.; Ferrari, V. What is an object? In Proceedings of the 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), San Francisco, CA, USA, 13–18 June 2010; pp. 73–80. [Google Scholar]
- Lu, C.; Liu, S.; Jia, J.; Tang, C.K. Contour box: Rejecting object proposals without explicit closed contours. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 2021–2029. [Google Scholar]
- Zitnick, C.L.; Dollár, P. Edge boxes: Locating object proposals from edges. In European Conference on Computer Vision; Springer: Berlin/Heidelberg, Germany, 2014; pp. 391–405. [Google Scholar]
- Hosang, J.; Benenson, R.; Dollár, P.; Schiele, B. What makes for effective detection proposals? IEEE Trans. Pattern Anal. Mach. Intell. 2016, 38, 814–830. [Google Scholar] [CrossRef] [PubMed]
- Dai, H.; Du, L.; Wang, Y.; Wang, Z. A modified CFAR algorithm based on object proposals for ship target detection in SAR images. IEEE Geosci. Remote Sens. Lett. 2016, 13, 1925–1929. [Google Scholar] [CrossRef]
- Feng, J.; Pi, Y.; Yang, J. SAR image superpixels by minimizing a statistical model and ratio of mean intensity based energy. In Proceedings of the 2013 IEEE International Conference on Communications Workshops (ICC), Budapest, Hungary, 9–13 June 2013; pp. 916–920. [Google Scholar]
- Fjortoft, R.; Lopes, A.; Marthon, P.; Cubero-Castan, E. An optimal multiedge detector for SAR image segmentation. IEEE Trans. Geosci. Remote Sens. 1998, 36, 793–802. [Google Scholar] [CrossRef] [Green Version]
- Deledalle, C.A.; Tupin, F.; Denis, L. A non-local approach for SAR and interferometric SAR denoising. In Proceedings of the 2010 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Honolulu, HI, USA, 25–30 July 2010; pp. 714–717. [Google Scholar]
Methods | AUC | ABO Score | Average Proposals | |
---|---|---|---|---|
Multi-scale Superpixels Segmentation | 0.53 | 0.68632 | 2031 | |
0.54 | 0.69810 | 12,603 | ||
0.51 | 0.64609 | 862 | ||
0.49 | 0.62862 | 1208 | ||
Multi-scale Sliding Windows | 0.21 | 0.50069 | 5891 | |
0.22 | 0.51710 | 2295 | ||
0.18 | 0.45826 | 3882 | ||
0.14 | 0.44292 | 1208 | ||
Without Strong Scattering Components Information | 0.53 | 0.64150 | 1146 | |
0.55 | 0.69891 | 2288 | ||
Without Edges Scoring | 0.54 | 0.63142 | 260 | |
0.57 | 0.69363 | 869 | ||
Without Contours Scoring | 0.46 | 0.63121 | 261 | |
0.46 | 0.70291 | 869 | ||
Proposed method | 0.55 | 0.62785 | 261 | |
0.58 | 0.70334 | 868 |
Methods | k | Large Ships | Middle Ships | Small Ships | ||||||
---|---|---|---|---|---|---|---|---|---|---|
ABO | AUC | Best Recall | ABO | AUC | Best Recall | ABO | AUC | Best Recall | ||
Multi Scale Sliding Windows | 0.32 | 0.01 | 0.07 | 0.53 | 0.22 | 0.61 | 0.55 | 0.24 | 0.61 | |
0.53 | 0.28 | 0.62 | 0.53 | 0.28 | 0.62 | 0.49 | 0.20 | 0.40 | ||
Multi-scale Superpixels Segmentation | 0.54 | 0.20 | 0.50 | 0.73 | 0.51 | 0.92 | 0.71 | 0.60 | 0.92 | |
0.69 | 0.33 | 0.82 | 0.72 | 0.54 | 0.91 | 0.67 | 0.58 | 0.86 | ||
Proposed Method | 15 | 0.57 | 0.32 | 0.60 | 0.65 | 0.59 | 0.81 | 0.63 | 0.58 | 0.75 |
0.69 | 0.37 | 0.84 | 0.73 | 0.61 | 0.93 | 0.68 | 0.61 | 0.84 |
Methods | Large Ships | Middle Ships | Small Ships | All Ships | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
ABO | AUC | Best Recall | ABO | AUC | Best Recall | ABO | AUC | Best Recall | ABO | AUC | Best Recall | |
Saliency Filtering [29] | 0.44 | 0.39 | 0.40 | 0.56 | 0.62 | 0.64 | 0.46 | 0.40 | 0.44 | 0.51 | 0.46 | 0.49 |
LCVIWE [1] | 0.44 | 0.44 | 0.44 | 0.43 | 0.44 | 0.44 | 0.14 | 0.05 | 0.05 | 0.33 | 0.18 | 0.18 |
ITBTD [3] | 0.41 | 0.29 | 0.32 | 0.36 | 0.13 | 0.16 | 0.25 | 0.06 | 0.08 | 0.32 | 0.09 | 0.12 |
Objectness Learning [54] | 0.53 | 0.07 | 0.37 | 0.53 | 0.14 | 0.45 | 0.54 | 0.21 | 0.52 | 0.52 | 0.18 | 0.49 |
Proposed Method | 0.75 | 0.41 | 0.94 | 0.74 | 0.64 | 0.94 | 0.67 | 0.59 | 0.81 | 0.70 | 0.59 | 0.85 |
Methods | Saliency Filtering | LCVIWE | ITBTD | Objectness Learning | Proposed Method |
---|---|---|---|---|---|
Time | 0.43492s | 0.01195s | 1.62894s | 15.99199s | 1.34954s |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, N.; Cao, Z.; Cui, Z.; Pi, Y.; Dang, S. Multi-Scale Proposal Generation for Ship Detection in SAR Images. Remote Sens. 2019, 11, 526. https://doi.org/10.3390/rs11050526
Liu N, Cao Z, Cui Z, Pi Y, Dang S. Multi-Scale Proposal Generation for Ship Detection in SAR Images. Remote Sensing. 2019; 11(5):526. https://doi.org/10.3390/rs11050526
Chicago/Turabian StyleLiu, Nengyuan, Zongjie Cao, Zongyong Cui, Yiming Pi, and Sihang Dang. 2019. "Multi-Scale Proposal Generation for Ship Detection in SAR Images" Remote Sensing 11, no. 5: 526. https://doi.org/10.3390/rs11050526
APA StyleLiu, N., Cao, Z., Cui, Z., Pi, Y., & Dang, S. (2019). Multi-Scale Proposal Generation for Ship Detection in SAR Images. Remote Sensing, 11(5), 526. https://doi.org/10.3390/rs11050526