Gravity Field Recovery Using High-Precision, High–Low Inter-Satellite Links
Abstract
:1. Introduction
2. Mission Concept
2.1. Observation Geometry
2.2. Instrumentation
3. Simulation Environment
4. Results
4.1. Gravity Field Retrieval Performance Due to Instrument Errors
4.2. Temporal Gravity Field Retrieval
5. Conclusions
6. Outlook
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Tapley, B.D.; Bettadpur, S.; Watkins, M.; Reigber, C. The gravity recovery and climate experiment experiment, mission overview and early results. Geophys. Res. Lett. 2004, 31, L09607. [Google Scholar] [CrossRef]
- Reigber, C.; Schwintzer, P.; Lühr, H. The CHAMP geopotential mission, in bollettino di geofisica teoretica ed applicata, 40/3-4, September–December 1999. In Proceedings of the Second Joint Meeting of the International Gravity and the International Geoid Commission, Trieste, Italy, 7–12 September 1998; pp. 285–289. [Google Scholar]
- Reigber, C.; Schwintzer, P.; Neumayer, K.H.; Barthelmes, F.; König, R.; Förste, C.; Balmino, G.; Biancale, R.; Lemoine, J.M.; Loyer, S.; et al. Earth gravity field model EIGEN-2. Adv. Space Res. 2003, 31, 1883–1888. [Google Scholar] [CrossRef]
- Xu, G. GPS. Theory, Algorithms and Applications; Springer: Berlin, Germany, 2003; ISBN 3-540-67812-3. [Google Scholar]
- Van den Ijssel, J.; Visser, P.; Patino Rodriguez, E. Champ precise orbit determination using GPS data. Adv. Space Res. 2003, 31, 1889–1895. [Google Scholar] [CrossRef]
- Baur, O. Greenland mass variation from time-variable gravity in the absence of GRACE. Geophys. Res. Lett. 2013, 40, 4289–4293. [Google Scholar] [CrossRef]
- Encarnação, J.T.; Arnold, D.; Bezděk, A.; Dahle, C.; Doornbos, E.; van den Ijssel, J.; Jäggi, A.; Mayer-Gürr, T.; Sebera, J.; Visser, P.; et al. Gravity field models derived from swarm GPS data. Earth Planets Space 2016, 68, 127. [Google Scholar] [CrossRef]
- Drinkwater, M.R.; Floberghagen, R.; Haagmans, R.; Muzi, D.; Popescu, A. GOCE: ESA’s first Earth explorer core mission. In Earth Gravity Field from Space—From Sensors to Earth Science, Space Sciences Series of ISSI; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2003; Volume 18, pp. 419–432. ISBN 1-4020-1408-2. [Google Scholar]
- Flechtner, F.; Neumayer, K.H.; Dahle, C.; Dobslaw, H.; Fagiolini, E.; Raimondo, J.C.; Günter, A. What can be expected from the GRACE-FO laser ranging interferometer for Earth science applications? Surv. Geophys. 2016, 37, 453–470. [Google Scholar] [CrossRef]
- Sheard, B.S.; Heinzel, G.; Danzmann, K.; Shaddock, D.; Kilpstein, W.; Folkner, W. Intersatelite laser ranging instrument for the GRACE follow-on mission. J. Geod. 2012, 86, 1083–1095. [Google Scholar] [CrossRef]
- Murböck, M.; Pail, R. Reducing non-tidal aliasing effects by future gravity satellite formations. In Earth on the Edge: Science for a Sustainable Planet; Rizos, C., Willis, P., Eds.; International Association of Geodesy Symposia; Springer: Berlin/Heidelberg, Germany, 2014; Volume 139, pp. 407–412. ISBN 978-3-642-37222-3. [Google Scholar]
- Visser, P. Designing Earth gravity field missions for the future: A case study. In Gravity, Geoid and Earth Observation, International Association of Geodesy Symposia; Mertikas, S., Ed.; Springer-Verlag: Berlin/Heidelberg, Germany, 2010; Volume 135, pp. 131–138. [Google Scholar]
- Visser, P.; Sneeuw, N.; Reubelt, T.; Losch, M.; van Dam, T. Space-borne gravimetric satellite constellations and ocean tides: Aliasing effects. Geophys. J. Int. 2010, 181, 789–805. [Google Scholar] [CrossRef]
- Wiese, D.N.; Nerem, R.S.; Han, S.C. Expected improvements in determining continental hydrology, ice mass variations, ocean bottom pressure signals, and earthquakes using two pairs of dedicated satellites for temporal gravity recovery. J. Geophys. Res. 2011. [Google Scholar] [CrossRef]
- Daras, I.; Pail, R. Treatment of temporal aliasing effects in the context of next generation satellite gravimetry missions. J. Geophys. Res. 2017, 122, 7343–7362. [Google Scholar] [CrossRef]
- Swenson, S.; Wahr, J. Post-processing removal of correlated errors in GRACE data. Geophys. Res. Lett. 2006. [Google Scholar] [CrossRef]
- Kusche, J. Approximate decorrelation and non-isotropic smoothing of time-variable GRACE-type gravity field models. J. Geod. 2007, 81, 733–749. [Google Scholar] [CrossRef]
- Werth, S.; Güntner, A.; Schmidt, R.; Kusche, J. Evaluation of GRACE filter tools from a hydrological perspective. Geophys. J. Int. 2009, 179, 1499–1515. [Google Scholar] [CrossRef]
- Horvath, A. Retrieving Geophysical Signals from Current and Future Satellite Gravity Missions. Ph.D. Thesis, Technische Universität München, Munich, Germany, 2017. [Google Scholar]
- Watkins, M.; Wiese, D.N.; Yuan, D.N.; Boening, C.; Landerer, F.W. Improved methods for observing Earth’s time variable mass distribution with GRACE using spherical cap mascons. J. Geophys. Res. Solid Earth 2015, 120, 2648–2671. [Google Scholar] [CrossRef]
- Bender, P.L.; Wiese, D.N.; Nerem, R.S. A possible dual-GRACE mission with 90 degree and 63 degree inclination orbits. In Proceedings of the Third International Symposium on Formation Flying, Missions and Technologies, Noordwijk, The Netherlands, 23–25 April 2008; pp. 1–6. [Google Scholar]
- Sharifi, M.A.; Sneeuw, N.; Keller, W. Gravity recovery capability of four generic satellite formations. In Proceedings of the 1st International Symposium of the International Gravity Field Sevice “Gravity Field of the Earth”, Istanbul, Turkey, 28 August–1 September 2007. [Google Scholar]
- Wiese, D.N.; Visser, P.; Nerem, R.S. Estimating low resolution gravity fields at short time intervals to reduce temporal aliasing errors. Adv. Space Res. 2011, 48, 1094–1107. [Google Scholar] [CrossRef]
- Hauk, M.; Pail, R. Treatment of ocean tide aliasing in the context of a next generation gravity field mission. Geophys. J. Int. 2018, 214, 345–365. [Google Scholar] [CrossRef]
- Pail, R.; Bamber, J.; Biancale, R.; Bingham, R.; Braitenberg, C.; Cazenave, A.; Eicker, A.; Flechtner, F.; Gruber, T.; Güntner, A.; et al. Mass variation observing system by high low inter-satellite links (MOBILE)—A mission proposal for ESA Earth Explorer 10. In Proceedings of the 20th EGU General Assembly, EGU2018, Vienna, Austria, 4–13 April 2018. [Google Scholar]
- Hauk, M.; Schlicht, A.; Pail, R.; Murböck, M. Gravity field recovery in the framework of a Geodesy and Time Reference in Space (GETRIS). Adv. Space Res. 2017, 59, 2032–2047. [Google Scholar] [CrossRef]
- Van Allen, J.A. Discovery of the magnetosphere. In History of Geophysics; Gillmor, C.S., Spreiter, J.R., Eds.; American Geophysical Union: Washington, DC, USA, 1997; Vol. 7, pp. 235–251. ISBN 978-0875902883. [Google Scholar]
- Illingworth, A.J.; Barker, H.W.; Beljaars, A.; Ceccaldi, M.; Chepfer, H.; Cole, J.; Delanoë, J.; Domenech, C.; Donovan, D.P.; Fukuda, S.; et al. The Earthcare satellite: The next step forward in global measurements of clouds, aerosols, precipitation and radiation. Bull. Am. Meteorol. Soc. 2015, 96, 1311–1332. [Google Scholar] [CrossRef]
- Spencer, R.L. Lageos—A geodynamics tool in the making. J. Geol. Educ. 1977, 25, 38–42. [Google Scholar] [CrossRef]
- Kucharski, D.; Kirchner, G.; Lim, H.C.; Koidl, F. Optical response of nanosatellite BLITS measured by the Graz 2 kHz SLR system. Adv. Space Res. 2011, 48, 1335–1340. [Google Scholar] [CrossRef]
- Schäfer, W.; Flechtner, F.; Nothnagel, A.; Bauch, A.; Hugentobler, U. Geodetic Time Reference in Space (GETRIS); ESA Study AO/1-6311/2010/F/WE Final Report GETRIS-TIM-FR-0001; 2013. [Google Scholar]
- Iran Pour, S.; Reubelt, T.; Sneeuw, N.; Daras, I.; Murböck, M.; Gruber, T.; Pail, R.; Weigelt, M.; van Dam, T.; Visser, P.; et al. Assessment of Satellite Constellations for Monitoring the Variations in Earth Gravity Field—SC4MGV; ESA—ESTEC Contract No. AO/1-7317/12/NL/AF, Final Report; 2015. [Google Scholar]
- Daras, I.; Pail, R.; Murböck, M.; Yi, W. Gravity field processing with enhanced numerical precision for LL-SST missions. J. Geod. 2015, 89, 99–110. [Google Scholar] [CrossRef]
- Daras, I. Gravity Field Processing Towards Future LL-SST Satellite Missions. Ph.D. Thesis, Technische Universität München, Munich, Germany, 2016; pp. 23–39. [Google Scholar]
- Yi, W. The Earth’s Gravitational Field from GOCE. Ph.D. Thesis, Centre of Geodetic Earth System Research, Munich, Germany, 2012. [Google Scholar]
- Shampine, L.F.; Gordon, M.K. Computer Solution of Ordinary Differential Equations: The Initial Value Problem; W.H. Freeman: San Francisco, CA, USA, 1975. [Google Scholar]
- Schneider, M. Outline of a general orbit determination method. In Space Research IX, Proceedings of the Open Meetings of Working Groups (OMWG) on Physical Sciences of the 11th Plenary Meeting of the Committee on Space Research (COSPAR), Tokyo, Japan; Mitteilungen aus dem Institut für Astronomische und Physikalische Geodäsie, Nr. 51; Champion, K.S.W., Smith, P.A., Smith-Rose, R.L., Eds.; North Holland Publ. Company: Amsterdam, The Netherlands, 1969; pp. 37–40. [Google Scholar]
- Mayer-Gürr, T. Gravitationsfeldbestimmung aus der Analyse Kurzer Bahnbögen am Beispiel der Satellitenmissionen CHAMP und GRACE. Ph.D. Thesis, Rheinische Friedrich-Wilhelms-Universität zu Bonn, Bonn, Germany, 2006. [Google Scholar]
- Mayer-Gürr, T.; Jäggi, A.; Meyer, U.; Yoomin, J.; Susnik, A.; Weigelt, M.; van Dam, T.; Flechtner, F.; Gruber, C.; Günter, A.; et al. European gravity service for improved emergency management—Status and project highlights. In Proceedings of the EGU General Assembly, EGU 2016, Vienna, Austria, 17–22 April 2016. [Google Scholar]
- Mayer-Gürr, T.; Rieser, D.; Höck, E.; Brockmann, J.M.; Schuh, W.D.; Krasbutter, I.; Kusche, J.; Maier, S.; Krauss, S.; Hausleitner, W.; et al. The new combined satellite only model GOCO03s. In Proceedings of the IAG Symposium Gravity, Geoid and Height Systems, Venice, Italy, 9–12 October 2012. [Google Scholar]
- Dobslaw, H.; Bergmann-Wolf, I.; Dill, R.; Forootan, E.; Klemann, V.; Kusche, J.; Sasgen, I. The updated ESA Earth system model for future gravity mission simulation studies. J. Geod. 2015, 89, 505–513. [Google Scholar] [CrossRef]
- Savcenko, R.; Bosch, W. EOT11a-Empirical Ocean Tide Model from Multi-Mission Satellite Altimetry; DGFI Report No. 89; Deutsches Geodätisches Forschungsinstitut: München, Germany, 2012. [Google Scholar]
- Ray, R. A Global Ocean Tide Model from Topex/Poseidon Altimetry: Got99.2; NASA Technical Memorandum 209478; Goddard Space Flight Center: Greenbelt, Maryland, 1999. [Google Scholar]
- Siemes, C. Digital Filtering Algorithms for Decorrelation within Large Least Square Problems. Ph.D. Thesis, University of Bonn, Bonn, Germany, 2008. [Google Scholar]
- Pail, R.; Bruinsma, S.; Migliaccio, F.; Förste, C.; Goiginger, H.; Schuh, W.D.; Höck, E.; Reguzzoni, M.; Brockmann, J.M.; Abrikosov, O.; et al. First GOCE gravity field models derived by three different approaches. J. Geod. 2011, 85, 819–843. [Google Scholar] [CrossRef]
- Cheng, M.K.; Tapley, B.D. Seasonal variations in low degree zonal harmonics of the Earth’s gravity field from satellite laser ranging observation. J. Geophys. Res. 1999, 104, 2667–2681. [Google Scholar] [CrossRef]
- Zenner, L.; Gruber, T.; Jaeggi, A.; Beutler, G. Propagation of atmospheric model errors to gravity potential harmonics-impact on GRACE de-aliasing. Geophys. J. Int. 2010, 182, 797–807. [Google Scholar] [CrossRef]
- Han, S.; Jekeli, C.; Shum, C. Time-variable aliasing effects of ocean tides, atmosphere, and continental water mass on monthly mean GRACE gravity field. J. Geophys. Res. 2004, 109, B04403. [Google Scholar] [CrossRef]
- Thompson, P.; Bettadpur, S.; Tapley, B.D. Impact of short period, non-tidal, temporal mass variability on GRACE gravity estimates. Geophys. Res. Lett. 2004, 31, L06619. [Google Scholar] [CrossRef]
- Knudsen, P.; Andersen, O. Correcting GRACE gravity fields for ocean tide effects. Geophys. Res. Lett. 2002, 29, 1178. [Google Scholar] [CrossRef]
- Seo, K.W.; Wilson, C.R.; Han, S.C.; Waliser, D.E. Gravity recovery and climate experiment (GRACE) alias error from ocean tides. J. Geophys. Res. 2008, 113, B03405. [Google Scholar] [CrossRef]
- Flechtner, F. AOD1b Product Description Document for Product Releases 01 to 04; GRACE 327-750; GeoForschungszentrum Potsdam: Potsdam, Germany, 2007. [Google Scholar]
- Tiwari, V.M.; Wahr, J.; Swenson, S. Dwindling groundwater resources in northern India, from satellite gravity observations. Geophys. Res. Lett. 2009, 36, L18401. [Google Scholar] [CrossRef]
- Velicogna, I.; Sutterley, T.C.; van den Broeke, M.R. Regional acceleration in ice mass loss from Greenland and Antarctica using GRACE time-variable gravity data. Geophys. Res. Lett. 2014, 41, 8130–8137. [Google Scholar] [CrossRef]
Satellite | Altitude (km) | Inclination (Degree) | Revolutions/Nodal Days in One Repeat Orbit | Initial Mean Anomaly (Degree) |
---|---|---|---|---|
LEO 1 | 358 | 90 | 476/30 | 0 |
MEO 1 | 10.149 | 90 | 124/30 | 0 |
MEO 2 | 10.149 | 90 | 124/30 | 180 |
Low–low 1 | 467 | 89 | 412/27 | 53.21 |
Low–low 2 | 467 | 89 | 412/27 | 51.51 |
Model | “True” World | “Reference” World |
---|---|---|
Static gravity field model | GOCO03s | GOCO03s |
Non-tidal gravity field model | ESA AOHIS | - |
Ocean tide model | GOT4.7 | EOT11a |
Noise model | Laser interferometer | - |
Noise model | Accelerometer | - |
Noise model | Star camera | - |
Noise model | GNSS (orbit accuracy) | - |
Errors Included in Simulation | RMS Low–Low Pair (cm EWH) | RMS MOBILE (cm EWH) |
---|---|---|
Instrument errors up to SH degree 100 | ||
Orbit error (GNSS) | 1.58 | 0.13 |
Accelerometer + star camera | 4.18 | 0.51 |
Laser interferometer | 4.12 | 14.80 |
Temporal aliasing errors up to SH degree 50 | ||
AOHIS aliasing + instruments | 28.27 | 15.76 |
Ocean tide aliasing + instruments | 5.36 | 3.84 |
HIS aliasing + instruments | 5.13 | 2.12 |
HIS aliasing + instruments (ext. processing) | - | 1.29 |
Averaged AOHIS signal up to SH degree 50 | 4.06 | |
Averaged AOHIS signal up to SH degree 100 | 4.63 | |
Averaged HIS signal up to SH degree 50 | 3.35 | |
Averaged HIS signal up to SH degree 100 | 3.96 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hauk, M.; Pail, R. Gravity Field Recovery Using High-Precision, High–Low Inter-Satellite Links. Remote Sens. 2019, 11, 537. https://doi.org/10.3390/rs11050537
Hauk M, Pail R. Gravity Field Recovery Using High-Precision, High–Low Inter-Satellite Links. Remote Sensing. 2019; 11(5):537. https://doi.org/10.3390/rs11050537
Chicago/Turabian StyleHauk, Markus, and Roland Pail. 2019. "Gravity Field Recovery Using High-Precision, High–Low Inter-Satellite Links" Remote Sensing 11, no. 5: 537. https://doi.org/10.3390/rs11050537