GPR Survey on an Iron Mining Area after the Collapse of the Tailings Dam I at the Córrego do Feijão Mine in Brumadinho-MG, Brazil
Abstract
:1. Introduction
2. GPR Method
2.1. GPR Data Acquisition
2.2. GPR Data Processing
3. Results
3.1. GPR Profiles in Area 1
3.2. GPR Profiles in Area 2
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Cavallini, M. Mina Que Abriga Barragem em Brumadinho Responde por 2% da Produção da Vale; Veja Raio-X. Available online: https://g1.globo.com/economia/noticia/2019/01/28/mina-que-abriga-barragem-em-brumadinho-responde-por-2-da-producao-da-vale-veja-raio-x.ghtml (accessed on 28 January 2019).
- Figueiredo, M.A.; Varajão, A.F.D.C.; Fabris, J.D.; Loutfi, I.S.; Carvalho, A.P. Alteração superficial e pedogeomorfologia no sul do Complexo Bação–Quadrilátero Ferrífero (MG). Rev. Bras. Ciênc. Solo (Online) 2004, 28, 713–729. [Google Scholar] [CrossRef]
- Bizzi, L.A.; Schobbenhaus, C.; Gonçalves, J.H.; Baars, F.J.; Delgado, I.M.; Abram, M.B.; Leão Neto, R.; Matos, G.M.M.; Santos, J.O.S. Geologia, tectônica e recursos minerais do Brasil: Sistema de informações geográficas. Escala 1:2.500.000. Brasília [CD-ROM] 2001, CPRM, 4. [Google Scholar]
- Nitahara, A. Vale-Anuncia-Plano-Para-Novo-Padrao-de-Seguranca-Nas-Barragens. Available online: http://agenciabrasil.ebc.com.br/geral/noticia/2019-01/vale-anuncia-plano-para-novo-padrao-de-seguranca-nas-barragens (accessed on 1 March 2019).
- Jornal o Diário. Available online: http://www.jornalodiario.com.br/imprime.php?cid=179453&sid=550 (accessed on 4 March 2019).
- G1 Minas—Belo Horizonte. Available online: https://g1.globo.com/mg/minas-gerais/noticia/2019/03/25/sobe-para-214-o-numero-de-mortos-identificados-na-tragedia-de-brumadinho.ghtml (accessed on 27 March 2019).
- Dewi, R.K.; Kurniawan, A.; Taqwantara, R.F.; Iskandar, F.M.; Naufal, T.Z.; Widodo. Identification of buried victims in natural disaster with GPR method. AIP Conf. Proc. 2017, 1861, 30022. [Google Scholar]
- Sato, M. Near range radar and its application to near surface geophysics and disaster mitigation. J. Earth Sci. 2015, 26, 858–863. [Google Scholar] [CrossRef]
- Porsani, J.L. Ground Penetrating Radar (GPR): Proposta Metodológica de Emprego em Estudos Geológico-Geotécnicos Nas Regiões de Rio Claro e Descalvado–SP. Ph.D. Thesis, Instituto de Geociências e Ciências Exatas, UNESP, Campus de Rio Claro–SP, Brazil, 1999; 145p. [Google Scholar]
- Daniels, D.J. Ground Penetrating Radar. IET Radar, Sonar, Navigation and Avionics Series 15, 2nd ed.; Institution of Engineering and Technology: London, UK, 2007; p. 726. [Google Scholar]
- Jol, H.M. Ground Penetrating Radar: Theory and Applications, 1st ed.; Elsevier: Amsterdam, The Netherlands, 2009; 509p. [Google Scholar]
- Zeng, X.; McMechan, G.A. GPR characterization of buried tanks and pipes. Geophysics 1997, 62, 797–806. [Google Scholar] [CrossRef]
- Grandjean, G.; Gourry, J.C.; Bitri, A. Evaluation of GPR techniques for civil-engineering applications: Study on a test site. J. Appl. Geophys. 2000, 45, 141–156. [Google Scholar] [CrossRef]
- Porsani, J.L.; Sauck, W.A. Ground-penetrating radar profiles over multiple steel tanks: Artifact removal through effective data processing. Geophysics 2007, 72, J77–J83. [Google Scholar] [CrossRef]
- Porsani, J.L.; Slob, E.; Lima, R.S.; Leite, D.N. Comparing detection and location performance of perpendicular and parallel broadside GPR antenna orientations. J. Appl. Geophys. 2010, 70, 1–8. [Google Scholar] [CrossRef]
- Porsani, J.L.; Ruy, Y.B.; Ramos, F.P.; Yamanouth, G.R.B. GPR applied to mapping utilities along the route of the Line 4 (yellow) subway tunnel construction in São Paulo City, Brazil. J. Appl. Geophys. 2012, 80, 25–31. [Google Scholar] [CrossRef]
- Santos, V.R.N.; Al-Nuaimy, W.; Porsani, J.L.; Hirata, N.S.T.; Alzubi, H.S. Spectral analysis of ground penetrating radar signals in concrete, metallic and plastic targets. J. Appl. Geophys. 2014, 100, 32–43. [Google Scholar] [CrossRef]
- Metwaly, M. Application of GPR technique for subsurface utility mapping: A case study from urban area of Holy Meca, Saudi Arabia. Measurement 2015, 60, 139–145. [Google Scholar] [CrossRef]
- Porsani, J.L.; Almeida, E.R.; Poluha, B.; Santos, V.R.N. GPR tomographic imaging of concrete tubes and steel/plastic tanks buried in IAG/USP geophysical test site, Brazil. Int. J. Geosci. 2017, 8, 647–658. [Google Scholar] [CrossRef]
- Porsani, J.L.; Poluha, B.; Santos, V.R.N. GPR profiles over plastic drums buried at the IAG/USP geophysical test site-I, São Paulo, Brazil: A controlled experiment applied to environmental studies. First Break 2018, 36, 65–70. [Google Scholar]
- Ukaegbu, I.K.; Gamage, K.A.A.; Aspinall, M.D. Nonintrusive depth estimation of buried radioactive wastes using ground penetrating radar and a gamma ray detector. Remote Sens. 2019, 11, 141. [Google Scholar] [CrossRef]
- Naval, V.S.; Santos-Assunção, S.; Pérez-Gracia, V. GPR clutter amplitude processing to detect shallow geological targets. Remote Sens. 2018, 10, 88. [Google Scholar] [CrossRef]
- Volkomirskaya, L.B.; Gulevich, O.A.; Varenkov, V.V.; Sakhterov, V.I. Requirements for the performance of a ground-penetrating radar system in searching for cavities. Russian Geol. Geophys. 2018, 59, 438–447. [Google Scholar] [CrossRef]
- Porsani, J.L.; Elis, V.R.; Hiodo, F.Y. Geophysical investigations for the characterization of fractured rock aquifers in Itu, SE Brazil. J. Appl. Geophys. 2005, 57, 119–128. [Google Scholar] [CrossRef]
- Porsani, J.L.; Sauck, W.A.; Souza, A.O., Jr. GPR for mapping fractures and as a guide for the extraction of ornamental granite from a quarry: A case study from southern Brazil. J. Appl. Geophys. 2006, 58, 177–187. [Google Scholar] [CrossRef]
- Martínez, J.; Montiel, V.; Rey, J.; Cañadas, F.; Vera, P. Utilization of integrated geophysical techniques to delineate the extraction of mining bench of ornamental rocks (marble). Remote Sens. 2017, 9, 1322. [Google Scholar] [CrossRef]
- Francke, J.; Utsi, V. Advances in long-range GPR systems and their applications to mineral exploration, geotechnical and static correction problems. First Break 2009, 27, 7. [Google Scholar]
- Porsani, J.L.; Malagutti Filho, W.; Elis, V.R.; Dourado, J.C.; Moura, H.P. The Use of GPR and VES in delineating a contamination plume in a landfill site: A case study in SE Brazil. J. Appl. Geophys. 2004, 55, 199–209. [Google Scholar] [CrossRef]
- Bertolla, L.; Porsani, J.L.; Soldovieri, F.; Catapano, I. GPR-4D monitoring a controlled LNAPL spill in a masonry tank at USP, Brazil. J. Appl. Geophys. 2014, 103, 237–244. [Google Scholar] [CrossRef]
- Andersen, T.R.; Poulsen, S.E.; Thomsen, P.; Havas, K. Geological characterization in urban areas based on geophysical mapping: A case study from Horsens, Denmark. J. Appl. Geophys. 2018, 150, 338–349. [Google Scholar] [CrossRef]
- Steelman, C.M.; Klazingab, D.R.; Cahilla, A.G.; Endresb, A.L.; Parker, B.L. Monitoring the evolution and migration of a methane gas plume in an unconfined sandy aquifer using time-lapse GPR and ERT. J. Contam. Hydrol. 2017, 205, 12–24. [Google Scholar] [CrossRef]
- Rodrigues, S.I.; Porsani, J.L.; Santos, V.R.N.; De Blasis, P.A.D.; Giannini, P.C.F. GPR and inductive electromagnetic surveys applied in three coastal sambaqui (shell mounds) archaeological sites in Santa Catarina state, south Brazil. J. Archaeol. Sci. 2009, 36, 2081–2088. [Google Scholar] [CrossRef]
- Porsani, J.L.; Jangelme, G.M.; Kipnis, R. GPR survey at Lapa do Santo archaeological site, Lagoa Santa karstic region, Minas Gerais state, Brazil. J. Archaeol. Sci. 2010, 37, 1141–1148. [Google Scholar] [CrossRef]
- Porsani, J.L.; Kipnis, R.; Santos, V.R.N.; Almeida, E.R.; Fernandes, I. GPR tomography as support for an archaeological excavation in Aripuanã indigenous cemetery, Amazon region, Brazil. Int. J. Geosci. 2017, 8, 1264–1277. [Google Scholar] [CrossRef]
- Masini, N.; Capozzoli, L.; Chen, P.; Chen, F.; Romano, G.; Lu, P.; Tang, P.; Sileo, M.; Ge, Q.; Lasaponara, R. Towards an operational use of geophysics for archaeology in Henan (China): Methodological approach and results in Kaifeng. Remote Sens. 2017, 9, 809. [Google Scholar] [CrossRef]
- Panisova, J.; Murín, I.; Pašteka, R.; Haličková, J.; Brunčák, P.; Pohánka, V.; Papčo, J.; Milo, P. Geophysical fingerprints of shallow cultural structures from microgravity and GPR measurements in the Church of St. George, Svätý Jur, Slovakia. J. Appl. Geophys. 2016, 127, 102–111. [Google Scholar] [CrossRef]
- Martínez, J.; Rey, J.; Gutiérrez, L.M.; Novo, A.; Ortiz, A.J.; Alejo, M.; Galdón, J.M. Electrical resistivity imaging (ERI) and ground-penetrating radar (GPR) survey at the Giribaile site (upper Guadalquivir valley; southern Spain). J. Appl. Geophys. 2015, 123, 218–226. [Google Scholar] [CrossRef]
- Urban, T.M.; Leon, J.F.; Manning, S.W.; Fisher, K.D. High resolution GPR mapping of late bronze age architecture at Kalavasos-Ayios Dhimitrios, Cyprus. J. Appl. Geophys. 2014, 107, 129–136. [Google Scholar] [CrossRef]
- Almeida, E.R.; Porsani, J.L.; Catapano, I.; Gennarelli, G.; Soldovieri, F. Microwave tomography-enhanced GPR in forensic surveys: The case study of a tropical environment. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2016, 9, 115–124. [Google Scholar] [CrossRef]
- Cavalcanti, M.M.; Rocha, M.P.; Blum, M.L.B.; Borges, W.R. The forensic geophysical controlled research site of the University of Brasilia, Brazil: Results from methods GPR and electrical resistivity tomography. Forensic Sci. Int. 2018, 293, e101.e1–e101.e21. [Google Scholar] [CrossRef]
- Molina, C.M.; Pringle, J.K.; Saumett, M.; Evans, G.T. Geophysical monitoring of simulated graves with resistivity, magnetic susceptibility, conductivity and GPR in Colombia, South America. Forensic Sci. Int. 2016, 261, 106–115. [Google Scholar] [CrossRef]
- Oliveira, M.A.T.; Porsani, J.L.; Lima, G.L.; Jeske-Pieruschka, V.; Behling, H. Upper pleistocene to holocene peatland evolution in southern Brazilian highlands as depicted by radar stratigraphy, sedimentology and palynology. Quat. Res. 2012, 77, 397–407. [Google Scholar] [CrossRef]
- Rodrigues, S.I.; Porsani, J.L.; Giannini, P.C.F.; Fornari, M.; Atorre, T.; De Blasis, P.A.D.; Ruiz, D.M.G. Radar facies and sedimentological analysis: Study of sedimentary substrate from an archaeological site (shell mound), southern of Brazil. Holocene 2015, 1, 1–14. [Google Scholar]
- Forte, E.; Pipan, M.; Casabianca, D.; Di Cuia, R.; Riva, A. Imaging and characterization of a carbonate hydrocarbon reservoir analogue using GPR attributes. J. Appl. Geophys. 2012, 81, 76–87. [Google Scholar] [CrossRef]
- Tatum, D.I.; Francke, J. Constructing hydrocarbon reservoir analogues of aeolian systems using ground penetrating radar. J. Appl. Geophys. 2012, 81, 21–28. [Google Scholar] [CrossRef]
- Porsani, J.L.; Assine, M.L.; Moutinho, L. Application of GPR in the study of a modern alluvial megafan: The case of the Taquari River in Pantanal wetland, west-central Brazil. Subs. Sens. Tech. Appl. 2005, 6, 219–233. [Google Scholar] [CrossRef]
- Leandro, C.G.; Barboza, E.G.; Caron, F.; Jesus, F.A.N. GPR trace analysis for coastal depositional environments of southern Brazil. J. Appl. Geophys. 2019, 162, 1–12. [Google Scholar] [CrossRef]
- Rocha, T.B.; Fernandez, G.B.; Rodrigues, A. Registros de erosão e progradação revelados por radar de penetração do solo (GPR) na barreira regressiva pleistocênica do complexo deltaico do Rio Paraíba do Sul (RJ). Quat. Environ. Geosci. 2017, 8, 24–37. [Google Scholar] [CrossRef]
- Dix, C.H. Seismic velocities from surface measurements. Geophysics 1955, 20, 68–86. [Google Scholar] [CrossRef]
Profile | Start (m) | End (m) | |
---|---|---|---|
Area 1 | Profile 1 | 0 | 120 |
Anomaly 1, between 26 and 38 m Obs: The excavation found a concentration of iron ore | |||
Area 1 | Profile 2 | 0 | 123 |
Anomaly 1, position of 36 m Obs: The excavation found an accumulation of sand | |||
Area 2 | Profile 1 | 0 | 88 |
Anomaly 1 (A1), position of 18.5 m Anomaly 2 (A2), position of 22.3 m Anomaly 3 (A3), between 31 and 33 m Obs: The anomalies were not excavated | |||
Area 2 | Profile 2 | 0 | 86 |
Anomaly 1 (A1), between 48 and 54 m Anomaly 2 (A2), between 77.3 and 79 m Obs: The anomalies were not excavated |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Porsani, J.L.; Jesus, F.A.N.d.; Stangari, M.C. GPR Survey on an Iron Mining Area after the Collapse of the Tailings Dam I at the Córrego do Feijão Mine in Brumadinho-MG, Brazil. Remote Sens. 2019, 11, 860. https://doi.org/10.3390/rs11070860
Porsani JL, Jesus FANd, Stangari MC. GPR Survey on an Iron Mining Area after the Collapse of the Tailings Dam I at the Córrego do Feijão Mine in Brumadinho-MG, Brazil. Remote Sensing. 2019; 11(7):860. https://doi.org/10.3390/rs11070860
Chicago/Turabian StylePorsani, Jorge Luís, Felipe Augusto Nascimento de Jesus, and Marcelo Cesar Stangari. 2019. "GPR Survey on an Iron Mining Area after the Collapse of the Tailings Dam I at the Córrego do Feijão Mine in Brumadinho-MG, Brazil" Remote Sensing 11, no. 7: 860. https://doi.org/10.3390/rs11070860