Seasonal Variation of the Spatially Non-Stationary Association Between Land Surface Temperature and Urban Landscape
Abstract
:1. Introduction
2. Study Area and Data Sets
2.1. Wuhan, China
2.2. Data Sets
3. Methodology
3.1. The Retrieval of LST
3.2. The Selection and Retrieval of Landscape Indicators
3.3. Regression Modeling and Evaluation
4. Results
4.1. The Spatial Patterns of the LSTs
4.2. The Spatial Patterns of the Selected Indicators
4.3. Performace Summary the Three Regression Models
4.4. Seasonal Variation of the Non-Stationary Associations
5. Discussion
5.1. The Local Landscape Influence and Its Seasonal Variation
5.2. Integration with Planning Practice
5.3. The Limitations
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Peng, J.; Ma, J.; Liu, Q.; Liu, Y.; Hu, Y.; Li, Y.; Yue, Y. Spatial-Temporal Change of Land Surface Temperature across 285 Cities in China: An Urban-Rural Contrast Perspective. Sci. Total Environ. 2018, 635, 487–497. [Google Scholar] [CrossRef] [PubMed]
- Foley, J.A.; DeFries, R.; Asner, G.P.; Barford, C.; Bonan, G.; Carpenter, S.R.; Chapin, F.S.; Coe, M.T.; Daily, G.C.; Gibbs, H.K.; et al. Global Consequences of Land Use. Science 2005, 309, 570–574. [Google Scholar] [CrossRef] [Green Version]
- Grimm, N.B.; Faeth, S.H.; Golubiewski, N.E.; Redman, C.L.; Wu, J.; Bai, X.; Briggs, J.M.; Grimm, N. Global Change and the Ecology of Cities. Science 2008, 319, 756–760. [Google Scholar] [CrossRef] [PubMed]
- Fu, P.; Weng, Q. A Time Series Analysis of Urbanization Induced Land Use and Land Cover Change and Its Impact on Land Surface Temperature With Landsat Imagery. Remote Sens. Environ. 2016, 175, 205–214. [Google Scholar] [CrossRef]
- Liu, H.; Zhan, Q.; Yang, C.; Wang, J. Characterizing the Spatio-Temporal Pattern of Land Surface Temperature through Time Series Clustering: Based on the Latent Pattern and Morphology. Remote Sens. 2018, 10, 654. [Google Scholar] [CrossRef]
- Huang, S.; Taniguchi, M.; Yamano, M.; Wang, C.-H. Detecting Urbanization Effects on Surface and Subsurface Thermal Environment — A Case Study of Osaka. Sci. Total Environ. 2009, 407, 3142–3152. [Google Scholar] [CrossRef]
- Zhou, D.; Xiao, J.; Bonafoni, S.; Berger, C.; Deilami, K.; Zhou, Y.; Frolking, S.; Yao, R.; Qiao, Z.; Sobrino, J.A. Satellite Remote Sensing of Surface Urban Heat Islands: Progress, Challenges, and Perspectives. Remote Sens. 2019, 11, 48. [Google Scholar] [CrossRef]
- Patz, J.A.; Campbell-Lendrum, D.; Holloway, T.; Foley, J.A. Impact of Regional Climate Change on Human Health. Nat. Cell Boil. 2005, 438, 310–317. [Google Scholar] [CrossRef] [PubMed]
- Weng, Q. Thermal Infrared Remote Sensing for Urban Climate and Environmental Studies: Methods, Applications, and Trends. ISPRS J. Photogramm. Sens. 2009, 64, 335–344. [Google Scholar] [CrossRef]
- Fu, P.; Weng, Q. Temporal Dynamics of Land Surface Temperature From Landsat TIR Time Series Images. IEEE Geosci. Sens. Lett. 2015, 12, 1–5. [Google Scholar] [CrossRef]
- Tran, D.X.; Pla, F.; Latorre-Carmona, P.; Myint, S.W.; Caetano, M.; Kieu, H.V. Characterizing the Relationship Between Land Use Land Cover Change and Land Surface Temperature. ISPRS J. Photogramm. Sens. 2017, 124, 119–132. [Google Scholar] [CrossRef]
- Liu, H.; Zhan, Q.; Yang, C.; Wang, J. The Multi-Timescale Temporal Patterns and Dynamics of Land Surface Temperature Using Ensemble Empirical Mode Decomposition. Sci. Total Environ. 2019, 652, 243–255. [Google Scholar] [CrossRef] [PubMed]
- Kalnay, E.; Cai, M. Impact of Urbanization and Land-Use Change on Climate. Nat. Cell Boil. 2003, 423, 528–531. [Google Scholar] [CrossRef] [PubMed]
- Peng, J.; Jia, J.; Liu, Y.; Li, H.; Wu, J. Seasonal Contrast of the Dominant Factors for Spatial Distribution of Land Surface Temperature in Urban Areas. Remote Sens. Environ. 2018, 215, 255–267. [Google Scholar] [CrossRef]
- Chen, X.-L.; Zhao, H.-M.; Li, P.-X.; Yin, Z.-Y. Remote Sensing Image-Based Analysis of the Relationship Between Urban Heat Island and Land use/Cover Changes. Remote Sens. Environ. 2006, 104, 133–146. [Google Scholar] [CrossRef]
- Du, S.; Xiong, Z.; Wang, Y.; Guo, L. Quantifying the Multilevel Effects of Landscape Composition and configuration on Land Surface Temperature. Remote Sens. Environ. 2016, 178, 84–92. [Google Scholar] [CrossRef]
- Berger, C.; Rosentreter, J.; Voltersen, M.; Baumgart, C.; Schmullius, C.; Hese, S. Spatio-Temporal Analysis of the Relationship Between 2D/3D Urban Site Characteristics and Land Surface Temperature. Remote Sens. Environ. 2017, 193, 225–243. [Google Scholar] [CrossRef]
- Peng, J.; Xie, P.; Liu, Y.; Ma, J. Urban Thermal Environment Dynamics and Associated Landscape Pattern Factors: A Case Study in the Beijing Metropolitan Region. Remote Sens. Environ. 2016, 173, 145–155. [Google Scholar] [CrossRef]
- Liu, Y.; Peng, J.; Wang, Y. Efficiency of Landscape Metrics Characterizing Urban Land Surface Temperature. Landsc. Urban Plan. 2018, 180, 36–53. [Google Scholar] [CrossRef]
- He, B.-J.; Zhao, Z.-Q.; Shen, L.-D.; Wang, H.-B.; Li, L.-G.; He, B.-J. An Approach to Examining Performances of cool/hot Sources in mitigating/Enhancing Land Surface Temperature under Different Temperature Backgrounds Based on Landsat 8 Image. Sustain. Cities Soc. 2019, 44, 416–427. [Google Scholar] [CrossRef]
- Chun, B.; Guldmann, J.-M. Impact of Greening on the Urban Heat Island: Seasonal Variations and Mitigation Strategies. Comput. Environ. Urban Syst. 2018, 71, 165–176. [Google Scholar] [CrossRef]
- Sun, R.; Lü, Y.; Yang, X.; Chen, L. Understanding the Variability of Urban Heat Islands from Local Background Climate and Urbanization. J. Clean. Prod. 2019, 208, 743–752. [Google Scholar] [CrossRef]
- Qiao, Z.; Tian, G.; Xiao, L. Diurnal and Seasonal Impacts of Urbanization on the Urban Thermal Environment: A Case Study of Beijing Using MODIS Data. ISPRS J. Photogramm. Sens. 2013, 85, 93–101. [Google Scholar] [CrossRef]
- Ayanlade, A. Seasonality in the Daytime and Night-Time Intensity of Land Surface Temperature in a Tropical City Area. Sci. Total. Environ. 2016, 557, 415–424. [Google Scholar] [CrossRef] [PubMed]
- Weng, Q.; Lu, D.; Schubring, J. Estimation of Land Surface temperature–vegetation Abundance Relationship for Urban Heat Island Studies. Remote Sens. Environ. 2004, 89, 467–483. [Google Scholar] [CrossRef]
- Song, J.; Du, S.; Feng, X.; Guo, L. The Relationships Between Landscape Compositions and Land Surface Temperature: Quantifying Their Resolution Sensitivity With Spatial Regression Models. Landsc. Urban Plan. 2014, 123, 145–157. [Google Scholar] [CrossRef]
- Wang, J.; Qingming, Z.; Guo, H.; Jin, Z. Characterizing the Spatial Dynamics of Land Surface temperature–impervious Surface Fraction Relationship. Int. J. Appl. Earth Obs. Geoinf. 2016, 45, 55–65. [Google Scholar] [CrossRef]
- Yin, C.; Yuan, M.; Lu, Y.; Huang, Y.; Liu, Y. Effects of Urban Form on the Urban Heat Island Effect Based on Spatial Regression Model. Sci. Total Environ. 2018, 634, 696–704. [Google Scholar] [CrossRef]
- Fotheringham, A.S.; Brunsdon, C.; Charlton, M. Geographically Weighted Regression—The Analysis of Spatially Varying Relationships; John Wiley & Sons Ltd.: West Sussex, UK, 2002. [Google Scholar]
- Goodchild, M.F. The Validity and Usefulness of Laws in Geographic Information Science and Geography. Ann. Assoc. Am. Geogr. 2004, 94, 300–303. [Google Scholar] [CrossRef] [Green Version]
- Anselin, L. Thirty Years of Spatial Econometrics. Pap. Reg. Sci. 2010, 89, 3–25. [Google Scholar] [CrossRef]
- Murakami, D.; Lu, B.; Harris, P.; Brunsdon, C.; Charlton, M.; Nakaya, T.; Griffith, D.A. The Importance of Scale in Spatially Varying Coefficient Modeling. Ann. Am. Assoc. Geogr. 2018, 109, 50–70. [Google Scholar] [CrossRef]
- Foody, G. Geographical Weighting As a Further Refinement to Regression Modelling: An Example Focused on the NDVI–rainfall Relationship. Remote Sens. Environ. 2003, 88, 283–293. [Google Scholar] [CrossRef]
- Wang, Q.; Ni, J.; Tenhunen, J. Application of a Geographically-Weighted Regression Analysis to Estimate Net Primary Production of Chinese Forest Ecosystems. Ecol. Biogeogr. 2005, 14, 379–393. [Google Scholar] [CrossRef]
- Tu, J.; Xia, Z.-G. Examining Spatially Varying Relationships Between Land Use and Water Quality Using Geographically Weighted Regression I: Model Design and Evaluation. Sci. Total Environ. 2008, 407, 358–378. [Google Scholar] [CrossRef]
- Li, C.; Zhao, J.; Xu, Y. Examining Spatiotemporally Varying Effects of Urban Expansion and the Underlying Driving Factors. Sustain. Cities Soc. 2017, 28, 307–320. [Google Scholar] [CrossRef]
- Li, S.; Zhao, Z.; Miaomiao, X.; Wang, Y. Investigating Spatial Non-Stationary and Scale-Dependent Relationships Between Urban Surface Temperature and Environmental Factors Using Geographically Weighted Regression. Environ. Model. Softw. 2010, 25, 1789–1800. [Google Scholar] [CrossRef]
- Su, Y.-F.; Foody, G.M.; Cheng, K.-S. Spatial Non-Stationarity in the Relationships Between Land Cover and Surface Temperature in an Urban Heat Island and Its Impacts on Thermally Sensitive Populations. Landsc. Urban Plan. 2012, 107, 172–180. [Google Scholar] [CrossRef]
- Sun, R.; Xie, W.; Chen, L. A Landscape Connectivity Model to Quantify Contributions of Heat Sources and Sinks in Urban Regions. Landsc. Urban Plan. 2018, 178, 43–50. [Google Scholar] [CrossRef]
- Zhao, C.; Jensen, J.; Weng, Q.; Weaver, R. A Geographically Weighted Regression Analysis of the Underlying Factors Related to the Surface Urban Heat Island Phenomenon. Remote Sens. 2018, 10, 1428. [Google Scholar] [CrossRef]
- Tobler, W.R. A Computer Movie Simulating Urban Growth in the Detroit Region. Econ. Geogr. 1970, 46, 234. [Google Scholar] [CrossRef]
- Fotheringham, A.S.; Yang, W.; Kang, W. Multiscale Geographically Weighted Regression (MGWR). Ann. Am. Assoc. Geogr. 2017, 107, 1247–1265. [Google Scholar] [CrossRef]
- Georgescu, M.; Morefield, P.E.; Bierwagen, B.G.; Weaver, C.P. Urban Adaptation Can Roll Back Warming of Emerging Megapolitan Regions. Proc. Acad. Sci. 2014, 111, 2909–2914. [Google Scholar] [CrossRef]
- Levin, S.A. The Problem of Pattern and Scale in Ecology. Ecol. Time Ser. 1992, 73, 277–326. [Google Scholar] [CrossRef]
- Sayre, N.F. A Companion to Environmental Geography; Wiley Online Library: Hoboken, NJ, USA, 2009. [Google Scholar] [CrossRef]
- Goodchild, M. Models of Scale and Scales of Modelling. In Modelling Scale in Geographic Information Science; Tate, N., Atkinson, P.M., Eds.; Wiley: Chichester, UK, 2001; pp. 3–10. [Google Scholar]
- McMaster, R.B.; Sheppard, E. Introduction: Scale and Geographic Inquiry. In Scale and Geographic Inquiry: Nature, Society and Method; Sheppard, E., McMaster, R.B., Eds.; Blackwell Publishing Ltd.: Malden, MA, USA, 2004. [Google Scholar] [CrossRef]
- Perera, N.; Emmanuel, R.; Perera, N. A “Local Climate Zone” Based Approach to Urban Planning in Colombo, Sri Lanka. Urban Clim. 2018, 23, 188–203. [Google Scholar] [CrossRef]
- Xu, Y.; Ren, C.; Ma, P.; Ho, J.; Wang, W.; Lau, K.K.-L.; Lin, H.; Ng, E. Urban Morphology Detection and Computation for Urban Climate Research. Landsc. Urban Plan. 2017, 167, 212–224. [Google Scholar] [CrossRef]
- He, B.; Ding, L.; Prasad, D. Enhancing Urban Ventilation Performance through the Development of Precinct Ventilation Zones: A Case Study Based on the Greater Sydney, Australia. Sustain. Cities Soc. 2019, 47, 101472. [Google Scholar] [CrossRef]
- Cai, Z.; Han, G.; Chen, M. Do Water Bodies Play an Important Role in the Relationship Between Urban Form and Land Surface Temperature? Sustain. Cities Soc. 2018, 39, 487–498. [Google Scholar] [CrossRef]
- Zhou, W.; Huang, G.; Cadenasso, M.L. Does Spatial Configuration Matter? Understanding the Effects of Land Cover Pattern on Land Surface Temperature in Urban Landscapes. Landsc. Urban Plan. 2011, 102, 54–63. [Google Scholar] [CrossRef]
- Guo, G.; Wu, Z.; Xiao, R.; Chen, Y.; Liu, X.; Zhang, X. Impacts of Urban Biophysical Composition on Land Surface Temperature in Urban Heat Island Clusters. Landsc. Urban Plan. 2015, 135, 1–10. [Google Scholar] [CrossRef]
- Zhou, X.; Chen, H. Impact of Urbanization-Related Land Use Land Cover Changes and Urban Morphology Changes on the Urban Heat Island Phenomenon. Sci. Total Environ. 2018, 635, 1467–1476. [Google Scholar] [CrossRef]
- Lam, J.C.; Tsang, C.; Li, D.H. Long Term Ambient Temperature Analysis and Energy Use Implications in Hong Kong. Energy Convers. Manag. 2004, 45, 315–327. [Google Scholar] [CrossRef]
- Sobrino, J.A.; Jiménez-Muñoz, J.C.; Paolini, L. Land Surface Temperature Retrieval from LANDSAT TM 5. Remote Sens. Environ. 2004, 90, 434–440. [Google Scholar] [CrossRef]
- Yu, X.; Guo, X.; Wu, Z. Land Surface Temperature Retrieval from Landsat 8 TIRS—Comparison Between Radiative Transfer Equation-Based Method, Split Window Algorithm and Single Channel Method. Remote Sens. 2014, 6, 9829–9852. [Google Scholar] [CrossRef]
- Barsi, J.A.; Schott, J.R.; Palluconi, F.D.; Helder, D.L.; Hook, S.J.; Markham, B.L.; Chander, G. Landsat TM and ETM+ Thermal Band Calibration. Can. J. Remote Sens. 2003, 29, 141–153. [Google Scholar] [CrossRef]
- Agam, N.; Kustas, W.P.; Anderson, M.C.; Li, F.; Neale, C.M. A Vegetation Index Based Technique for Spatial Sharpening of Thermal Imagery. Remote Sens. Environ. 2007, 107, 545–558. [Google Scholar] [CrossRef]
- Eswar, R.; Sekhar, M.; Bhattacharya, B.K. Disaggregation of LST over India: Comparative Analysis of Different Vegetation Indices. Int. J. Sens. 2016, 37, 1035–1054. [Google Scholar] [CrossRef]
- Haashemi, S.; Weng, Q.; Darvishi, A.; Alavipanah, S.K. Seasonal Variations of the Surface Urban Heat Island in a Semi-Arid City. Remote Sens. 2016, 8, 352. [Google Scholar] [CrossRef]
- Bonafoni, S.; Baldinelli, G.; Rotili, A.; Verducci, P. Albedo and Surface Temperature Relation in Urban Areas: Analysis With Different Sensors. In Proceedings of the Urban Remote Sensing Event (JURSE 2017), Dubai, UAE, 6–8 March 2017. [Google Scholar]
- Fox, J. Applied Regression Analysis and Generalized Linear Models. Available online: https://socialsciences.mcmaster.ca/jfox/Books/Applied-Regression-2E/JASA-review.pdf (accessed on 18 March 2019).
- Shoff, C.; Yang, T.-C. Spatially Varying Predictors of Teenage Birth Rates Among Counties in the United States. Demogr. Res. 2012, 27, 377–418. [Google Scholar] [CrossRef]
- Shaker, R.R. The Well-Being of Nations: An Empirical Assessment of Sustainable Urbanization for Europe. Int. J. Sustain. Dev. World Ecol. 2015, 22, 1–13. [Google Scholar] [CrossRef]
- Gholizadeh, H.; Robeson, S.M. Revisiting Empirical Ocean-Colour Algorithms for Remote Estimation of Chlorophyll- a Content on a Global Scale. Int. J. Sens. 2016, 37, 2682–2705. [Google Scholar] [CrossRef]
- Ridd, M.K. Exploring a V-I-S (vegetation-Impervious Surface-Soil) Model for Urban Ecosystem Analysis through Remote Sensing: Comparative Anatomy for cities†. Int. J. Sens. 1995, 16, 2165–2185. [Google Scholar] [CrossRef]
- Liang, S. Narrowband to Broadband Conversions of Land Surface Albedo I. Remote Sens. Environ. 2001, 76, 213–238. [Google Scholar] [CrossRef]
- Gál, T.; Unger, J. A New Software Tool for SVF Calculations Using Building and Tree-Crown Databases. Urban Clim. 2014, 10, 594–606. [Google Scholar] [CrossRef]
- Oke, T.R.; Mills, G.; Christen, A.; Voogt, J.A. Urban Climates; Cambridge University Press: Cambridge, UK, 2017. [Google Scholar]
- Wang, Y.; Zhan, Q.; Ouyang, W. Impact of Urban Climate Landscape Patterns on Land Surface Temperature in Wuhan, China. Sustainability 2017, 9, 1700. [Google Scholar] [CrossRef]
- Sobrino, J.A.; Oltra-Carrió, R.; Soria, G.; Bianchi, R.; Paganini, M. Impact of Spatial Resolution and Satellite Overpass Time on Evaluation of the Surface Urban Heat Island Effects. Remote Sens. Environ. 2012, 117, 50–56. [Google Scholar] [CrossRef]
- Ahrends, H.E.; Oberbauer, S.F.; Eugster, W. Small-Scale Albedo-Temperature Relationship Contrast With Large-Scale Relations in Alaskan Acidic Tussock Tundra. In Proceedings of the SPIE 8531, Remote Sensing for Agriculture, Ecosystems, and Hydrology XIV, 8531, Edinburgh, UK, 5 November 2012. [Google Scholar] [CrossRef]
- Huang, Q.; Huang, J.; Yang, X.; Fang, C.; Liang, Y. Quantifying the Seasonal Contribution of Coupling Urban Land Use Types on Urban Heat Island Using Land Contribution Index: A Case Study in Wuhan, China. Sustain. Cities Soc. 2019, 44, 666–675. [Google Scholar] [CrossRef]
- Guo, G.; Zhou, X.; Wu, Z.; Xiao, R.; Chen, Y. Characterizing the Impact of Urban Morphology Heterogeneity on Land Surface Temperature in Guangzhou, China. Environ. Model. Softw. 2016, 84, 427–439. [Google Scholar] [CrossRef]
- Yang, J.; Su, J.; Xia, J.C.; Jin, C.; Li, X.; Ge, Q. The Impact of Spatial Form of Urban Architecture on the Urban Thermal Environment: A Case Study of the Zhongshan District, Dalian, China. IEEE J. Sel. Top. Appl. Earth Obs. Sens. 2018, 11, 2709–2716. [Google Scholar] [CrossRef]
- Yang, J.; Jin, S.; Xiao, X.; Jin, C.; Xia, J.C.; Li, X.; Wang, S. Local Climate Zone Ventilation and Urban Land Surface Temperatures: Towards a Performance-Based and Wind-Sensitive Planning Proposal in Megacities. Sustain. Cities Soc. 2019, 47, 101487. [Google Scholar] [CrossRef]
- Seto, K.C.; Golden, J.S.; Alberti, M.; Turner, B.L. Sustainability in an Urbanizing Planet. Proc. Acad. Sci. 2017, 114, 8935–8938. [Google Scholar] [CrossRef]
- Stewart, I.D.; Oke, T.R. Local Climate Zones for Urban Temperature Studies. Am. Meteorol. Soc. 2012, 93, 1879–1900. [Google Scholar] [CrossRef]
- Cai, M.; Ren, C.; Xu, Y.; Lau, K.K.; Wang, R. Investigating the Relationship Between Local Climate Zone and Land Surface Temperature Using an Improved WUDAPT Methodology—A Case Study of Yangtze River Delta, China. Urban Clim. 2018, 24, 485–502. [Google Scholar] [CrossRef]
- Pede, T.; Mountrakis, G. An Empirical Comparison of Interpolation Methods for MODIS 8-Day Land Surface Temperature Composites across the Conterminous Unites States. ISPRS J. Photogramm. Sens. 2018, 142, 137–150. [Google Scholar] [CrossRef]
- Zou, Z.; Zhan, W.; Liu, Z.; Bechtel, B.; Gao, L.; Hong, F.; Huang, F.; Lai, J. Enhanced Modeling of Annual Temperature Cycles With Temporally Discrete Remotely Sensed Thermal Observations. Remote Sens. 2018, 10, 650. [Google Scholar] [CrossRef]
- Bechtel, B.; Sismanidis, P. Time Series Analysis of Moderate Resolution Land Surface Temperatures. In Remote Sensing: Time Series Image Processing; Weng, Q., Ed.; Taylor & Francis: Abingdon, UK, 2017. [Google Scholar]
Indicators | Description | Range |
---|---|---|
Landscape composition indicators retrieved from Landsat images | ||
NDVI | Growth status, abundance and coverage of vegetation, calculated as | [−1,1] |
FVC | Growth status, abundance and coverage of vegetation, calculated as | [0,1] |
NDBI | Coverage of buildings, calculated as | [−1,1] |
ISF | Fraction of impervious surface, calculated based on the vegetation-impervious surface-soil (V-I-S) model [67] | [0,1] |
Albedo | Overall reflectance in all directions [68] | [0,1] |
WP | Percentage of water body area in a spatial unit, calculated from MNDWI | [0,1] |
Morphology indicators retrieved from building survey data | ||
BD | The total area of building divided by the pixel area | [0,1] |
BH | The area averaged building height | [0,max] |
BVD | A 3D indicator calculated as the building volume divided by the pixel area | [min,max] |
SVF | The faction of sky visibility at a given point [69] | [0,1] |
Season | Maximum (°C) | Minimum (°C) | Mean (°C) | Standard Deviation |
---|---|---|---|---|
Summer | 54.28 | 30.10 | 42.33 | 4.77 |
Transition season | 40.98 | 23.23 | 28.40 | 2.50 |
Winter | 19.42 | 7.57 | 12.30 | 1.44 |
Indicator | Season | Maximum | Minimum | Mean | Standard Deviation |
---|---|---|---|---|---|
FVC | Summer | 0.83 | 0.14 | 0.50 | 0.13 |
Transition season | 0.81 | 0.08 | 0.49 | 0.15 | |
Winter | 0.72 | 0.09 | 0.40 | 0.10 | |
Albedo | Summer | 0.35 | 0.04 | 0.16 | 0.04 |
Transition season | 0.29 | 0.01 | 0.14 | 0.05 | |
Winter | 0.24 | 0.04 | 0.13 | 0.03 | |
WP | Summer | 1.00 | 0.00 | 0.17 | 0.31 |
Transition season | 1.00 | 0.00 | 0.16 | 0.31 | |
Winter | 1.00 | 0.00 | 0.15 | 0.29 | |
BD | Summer | 0.71 | 0.00 | 0.10 | 0.11 |
Transition season | 0.71 | 0.00 | 0.10 | 0.11 | |
Winter | 0.71 | 0.00 | 0.10 | 0.12 | |
BH | Summer | 70.08 | 0.00 | 7.54 | 7.61 |
Transition season | 71.20 | 0.00 | 7.57 | 7.62 | |
Winter | 75.60 | 0.00 | 7.71 | 7.80 | |
BVD | Summer | 11.11 | 0.00 | 1.08 | 1.61 |
Transition season | 11.11 | 0.00 | 1.10 | 1.62 | |
Winter | 11.11 | 0.00 | 1.12 | 1.65 |
Indices | Summer | Transition Season | Winter | ||||||
---|---|---|---|---|---|---|---|---|---|
OLS | GWR | MGWR | OLS | GWR | MGWR | OLS | GWR | MGWR | |
R2 | 0.9184 | 0.9843 | 0.9866 | 0.8869 | 0.9672 | 0.9728 | 0.5302 | 0.8681 | 0.9391 |
AICc | 1649.62 | −3647.87 | −4483.46 | 3250.61 | −618.87 | −1089.45 | 10249.60 | 4685.70 | 3256.15 |
RSS | 401.18 | 77.06 | 65.67 | 555.69 | 161.16 | 133.62 | 2308.84 | 648.30 | 229.14 |
Indictors | Summer | Transition Season | Winter | |||
---|---|---|---|---|---|---|
GWR | MGWR | GWR | MGWR | GWR | MGWR | |
FVC | 62 | 71 | 74 | 112 | 239 | 70 |
Albedo | 62 | 147 | 74 | 213 | 239 | 40 |
WP | 62 | 970 | 74 | 4912 | 239 | 4912 |
BD | 62 | 196 | 74 | 147 | 239 | 365 |
BH | 62 | 4912 | 74 | 4912 | 239 | 4912 |
BVD | 62 | 4912 | 74 | 4912 | 239 | 4912 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, H.; Zhan, Q.; Gao, S.; Yang, C. Seasonal Variation of the Spatially Non-Stationary Association Between Land Surface Temperature and Urban Landscape. Remote Sens. 2019, 11, 1016. https://doi.org/10.3390/rs11091016
Liu H, Zhan Q, Gao S, Yang C. Seasonal Variation of the Spatially Non-Stationary Association Between Land Surface Temperature and Urban Landscape. Remote Sensing. 2019; 11(9):1016. https://doi.org/10.3390/rs11091016
Chicago/Turabian StyleLiu, Huimin, Qingming Zhan, Sihang Gao, and Chen Yang. 2019. "Seasonal Variation of the Spatially Non-Stationary Association Between Land Surface Temperature and Urban Landscape" Remote Sensing 11, no. 9: 1016. https://doi.org/10.3390/rs11091016