A New Fusion Approach for Extracting Urban Built-up Areas from Multisource Remotely Sensed Data
Abstract
:1. Introduction
2. Study Areas and Materials
3. Methods
3.1. Data Preprocessing
3.2. Multi-Level Data Fusion
3.3. Sample Iterative Optimization with Multi-Factor Constraints
4. Experimental Results and Discussion
4.1. Urban Extraction from 2001 to 2010
4.2. Accuracy Assessment Based on Finer-Resolution Remote Sensing Data
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Du, P.; Li, X.; Cao, W.; Luo, Y.; Zhang, H. Monitoring urban land cover and vegetation change by multi-temporal remote sensing information. Min. Sci. Technol. 2010, 20, 922–932. [Google Scholar] [CrossRef]
- Zhang, P.; Sun, Q.; Liu, M.; Li, J.; Sun, D. A strategy of rapid extraction of built-up area using multi-seasonal Landsat-8 thermal infrared Band 10 images. Remote Sens. 2017, 9, 1126. [Google Scholar] [CrossRef]
- Ge, W.; Yang, H.; Zhu, X.; Ma, M.; Yang, Y. Ghost City Extraction and Rate Estimation in China Based on NPP-VIIRS Night-Time Light Data. ISPRS Int. J. Geo-Inf. 2018, 7, 219. [Google Scholar] [CrossRef]
- Tolpekin, V.A. Detection of built-up area in optical and synthetic aperture radar images using conditional random fields. J. Appl. Remote Sens. 2014, 8, 083672. [Google Scholar]
- Bhaskaran, S.; Paramananda, S.; Ramnarayan, M. Per-pixel and object-oriented classification approachs for mapping urban features using Ikonos satellite data. Appl. Geogr. 2010, 30, 650–665. [Google Scholar] [CrossRef]
- Haas, J.; Ban, Y. Urban growth and environmental impacts in Jing-Jin-Ji, the Yangtze, River Delta and the Pearl River Delta. Int. J. Appl. Earth Observ. Geoinf. 2014, 30, 42–55. [Google Scholar] [CrossRef]
- Liu, Z.; He, C.; Zhang, Q.; Huang, Q.; Yang, Y. Extracting the dynamics of urban expansion in China using DMSP-OLS nighttime light data from 1992 to 2008. Landsc. Urban Plan. 2012, 106, 62–72. [Google Scholar] [CrossRef]
- Li, H.; Wu, Y.; Huang, X.; Sloan, M.; Skitmore, M. Spatial-temporal evolution and classification of marginalization of cultivated land in the process of urbanization. Habitat Int. 2017, 61, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Ma, X.; Tong, X.; Liu, S.; Li, C.; Ma, Z. A Multisource Remotely Sensed Data Oriented approach for Ghost City” Phenomenon Identification. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2018, 99, 2310–2319. [Google Scholar] [CrossRef]
- Dong, L.; Pan, J.; Feng, Y.; Wang, W. Spatial Difference Pattern of House Vacancy in China from Nighttime Light View. Econ. Geogr. 2017, 37, 62–69. [Google Scholar]
- Liu, S.; Tong, X.; Bruzzone, L.; Du, P. A novel semisupervised framework for multiple change detection in hyperspectral images. In Proceedings of the 2017 IEEE International Geoscience and Remote Sensing Symposium, Fort Worth, TX, USA, 23–28 July 2017; pp. 173–176. [Google Scholar]
- Amarsaikhan, D.; Ganzorig, M.; Blotevogel, H.H.; Nergui, B.; Gantuya, R. Integrated approach to extract information from high and very high resolution RS images for urban planning. J. Geogr. Reg. Plan. 2009, 2, 258–267. [Google Scholar]
- Li, K.; Chen, Y. A Genetic Algorithm-Based Urban Cluster Automatic threshold approach by Combining VIIRS DNB, NDVI, and NDBI to Monitor Urbanization. Remote Sens. 2018, 10, 277. [Google Scholar] [CrossRef]
- Xu, H. A new index for delineating built-up land features in satellite imagery. Int. J. Remote Sens. 2008, 29, 4269–4276. [Google Scholar] [CrossRef]
- Xiang, D.; Tang, T.; Hu, C.; Fan, Q.; Su, Y. Built-up area extraction from polSAR imagery with model-based decomposition and polarimetric coherence. Remote Sens. 2016, 8, 685. [Google Scholar] [CrossRef]
- Pesaresi, M.; Gerhardinger, A.; Kayitakire, F. A robust built-up area presence index by anisotropic rotation-invariant textural measure. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2008, 1, 180–192. [Google Scholar] [CrossRef]
- Waqar, M.M.; Mirza, J.F.; Mumtaz, R.; Hussain, E. Development of new indices for extraction of built-up area and bare soil from Landsat Data. Open Access Sci. Rep. 2012, 1, 1–4. [Google Scholar]
- Li, Y.; Tan, Y.; Deng, J.; Wen, Q.; Tian, J. Cauchy graph embedding optimization for built-up areas detection from high-resolution remote sensing images. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2015, 8, 2078–2096. [Google Scholar] [CrossRef]
- Chen, Y.; Qin, K.; Jiang, H.; Wu, T.; Zhang, Y. Built-up area extraction using data field from high-resolution satellite images. In Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium, Beijing, China, 10–15 July 2016; pp. 437–440. [Google Scholar]
- Wang, X.; Liu, S.; Du, P.; Liang, H.; Xia, J.; Li, Y. Object-based change detection in urban areas from high spatial resolution images based on multiple features and ensemble learning. Remote Sens. 2018, 10, 276. [Google Scholar] [CrossRef]
- Su, Y.; Chen, X.; Wang, C.; Zhang, H.; Liao, J.; Ye, Y.; Wang, C. A new approach for extracting built-up urban areas using DMSP-OLS nighttime stable lights: A case study in the Pearl River Delta, Southern China. GISci. Remote Sens. 2015, 52, 218–238. [Google Scholar] [CrossRef]
- Xin, X.; Liu, B.; Di, K.; Zhu, Z.; Zhao, Z.; Liu, J.; Zhang, G. Monitoring urban expansion using time series of night-time light data: A case study in Wuhan. China. Int. J. Remote Sens. 2017, 38, 6110–6128. [Google Scholar] [CrossRef]
- Hu, T.; Huang, X.; Li, J.; Zhang, L. A novel co-training approach for urban land cover mapping with unclear Landsat time series imagery. Remote Sens. Environ. 2018, 217, 144–157. [Google Scholar] [CrossRef]
- Zhang, T.; Huang, X. Monitoring of Urban Impervious Surfaces Using Time Series of High-Resolution Remote Sensing Images in Rapidly Urbanized Areas: A Case Study of Shenzhen. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2018, 11, 1–17. [Google Scholar] [CrossRef]
- Bhatti, S.S.; Tripathi, N.K. Built-up area extraction using Landsat 8 OLI imagery. GISci. Remote Sens. 2014, 51, 445–467. [Google Scholar] [CrossRef] [Green Version]
- Lin, J.; Liu, X.; Li, K.; Li, X. A maximum entropy approach to extract urban land by combining MODIS reflectance, MODIS NDVI, and DMSP-OLS data. Int. J. Remote Sens. 2014, 35, 6708–6727. [Google Scholar] [CrossRef]
- Huang, X.; Hu, T.; Li, J.; Wang, Q.; Benediktsson, J.A. Mapping Urban Areas in China Using Multisource Data with a Novel Ensemble SVM Method. IEEE Trans. Geosci. Remote Sens. 2018, 56, 4258–4273. [Google Scholar] [CrossRef]
- Shi, K.; Chen, Y.; Yu, B.; Xu, T.; Li, L.; Huang, C.; Liu, R.; Chen, Z.; Wu, J. Urban expansion and agricultural land loss in China: A multiscale perspective. Sustainability 2016, 8, 790. [Google Scholar] [CrossRef]
- Shi, K.; Yu, B.; Huang, C.; Wu, J.; Sun, X. Exploring spatiotemporal patterns of electric power consumption in countries along the Belt and Road. Energy 2018, 150, 847–859. [Google Scholar] [CrossRef]
- Zhou, N.; Hubacek, K.; Roberts, M. Analysis of spatial patterns of urban growth across South Asia using DMSP-OLS nighttime lights data. Appl. Geogr. 2015, 63, 292–303. [Google Scholar] [CrossRef]
- Li, A.; Zhang, Z.; Su, H.; Li, Y.; Lei, B. Research on “Ghost Town” Index Based on Landsat Data Products and DMSP/OLS Nighttime Light Data: A Case Research of Anhui Province. Sci. Mosaic 2017, 6, 172–176. [Google Scholar]
- Li, X.; Zhou, Y. A stepwise calibration of global DMSP/OLS stable nighttime light data (1992–2013). Remote Sens. 2017, 9, 637. [Google Scholar]
- Liang, D.; Zuo, Y.; Huang, L.; Zhao, J.; Teng, L.; Yang, F. Evaluation of the consistency of MODIS land cover product (MCD12Q1) based on Chinese 30 m GlobeLand30 datasets: A case study in Anhui Province, China. ISPRS Int. J. Geo-Inf. 2015, 4, 2519–2541. [Google Scholar] [CrossRef]
- Estoque, R.C.; Murayama, Y. Classification and change detection of built-up lands from Landsat-7 ETM+ and Landsat-8 OLI/TIRS imageries: A comparative assessment of various spectral indices. Ecol. Indic. 2015, 56, 205–217. [Google Scholar] [CrossRef]
- National Bureau of Statistics of the People’s Republic of China. China City Statistical Yearbook; China Statistics Press: Beijing, China, 2002.
- National Bureau of Statistics of the People’s Republic of China. China City Statistical Yearbook; China Statistics Press: Beijing, China, 2006.
- National Bureau of Statistics of the People’s Republic of China. China City Statistical Yearbook; China Statistics Press: Beijing, China, 2011.
- National Fundamental Geographic Information System, National Geomatics Center of China. Available online: http://ngcc.sbsm.gov.cn/ (accessed on 7 May 2019).
- Cao, Z.; Wu, Z.; Kuang, Y.; Huang, N. Correction of DMSP/OLS night-time light images and its application in China. J. Geo-Inf. Sci. 2015, 17, 1092–1102. [Google Scholar]
- Zhang, Q.; Wang, P.; Chen, H.; Huang, Q.; Jiang, H.; Zhang, Z.; Zhang, Y.; Luo, X.; Sun, S. A novel approach for urban area extraction from VIIRS DNB and MODIS NDVI data: A case study of Chinese cities. Int. J. Remote Sens. 2017, 38, 1–16. [Google Scholar] [CrossRef]
- Chao, Z.; Sheng, M. Study on extraction approachs for water information in Nantong city, China using Landsat7 ETM+ data. Int. Conf. Remote Sens. 2011, 51, 771–774. [Google Scholar]
- Chen, X.; Wen, X.; Guo, L. Study on urban heat island effect in Nanchang based on landsat 8 satellite images. Acta Agric. Jiangxi 2017, 29, 103–108. [Google Scholar]
- Ma, X.; Tong, X.; Liu, S.; Ma, Z. Extraction of built-up areas in Chinese silk road economic belt based on DMSP-OLS data. In Proceedings of the 2017 IEEE International Geoscience and Remote Sensing Symposium, Fort Worth, TX, USA, 23–28 July 2017; pp. 5877–5880. [Google Scholar]
- Jiang, W.; He, G.J.; Long, T.F.; Wang, C.; Ni, Y.; Ma, R.Q. Assessing light pollution in China based on nighttime light imagery. Remote Sens. 2017, 9, 135. [Google Scholar] [CrossRef]
- Small, C.; Pozzi, F.; Elvidge, C.D. Spatial Analysis of Global Urban Extent from DMSPOLS Night Lights. Remote Sens. Environ. 2005, 96, 277–291. [Google Scholar] [CrossRef]
- Shi, K.; Huang, C.; Yu, B.; Yin, B.; Huang, Y.; Wu, J. Evaluation of NPP-VIIRS night-time light composite data for extracting built-up urban areas. Remote Sens. Lett. 2014, 5, 358–366. [Google Scholar] [CrossRef]
- Wu, B.; Zhang, L.; Li, P. Unmixing of Hyperspectral Imagery Based on Probabilistic Outputs of Support Vector Machines. Geomat. Inf. Sci. 2006, 31, 51–54. [Google Scholar]
- Ma, X.; Tong, X.; Liu, S.; Luo, X.; Xie, H.; Li, C. Optimized sample selection in SVM classification by combining with DMSP-OLS, Landsat NDVI and globeland30 products for extracting urban built-up areas. Remote Sens. 2017, 9, 236. [Google Scholar] [CrossRef]
- He, C.; Shi, P.; Li, J.; Chen, J.; Pan, Y.; Li, J.; Zhuo, L.; Toshiaki, I. Study on the Reconstruction of China’s Urbanization Process in 1990s Based on DMSP/OLS Night Light Data and Statistical Data. Chin. Sci. Bull. 2006, 51, 856–861. [Google Scholar] [CrossRef]
Data Source | Product Description | Spatial Resolution | Time |
---|---|---|---|
DMSP-OLS data | Yearly stable nighttime light composites, which show the average nighttime light intensity, including light emission from fires disasters, large-scale burning, the surface of the sea and cities at night with an anti-interference function to reduce the noise caused by clouds and water. | 2 km | 2001 to 2010 |
MODIS landcover product | MCD12Q1 product, which is obtained from annual Terra and Aqua observations, usually describing 17 types of land cover surfaces, including 11 natural vegetation types, 3 land-development and inlay types, and 3 types other than vegetation and developed land. | 0.5 km | |
Landsat 7 ETM+ images | Sensor with Enhanced Thematic Mapper Plus (ETM+) equipment, which induces surface reflection of the solar radiation and thermal radiation, including 8 bands of sensors covering different wavelengths from infrared to visible light. | 30 m | 2010 |
Study Areas | Method | Kappa | OA (%) | CE (%) | OE (%) |
---|---|---|---|---|---|
Chengdu | Threshold dichotomy | 0.67 | 88.65 | 41.67 | 11.59 |
Improved NFS | 0.72 | 91.41 | 37.52 | 3.79 | |
Proposed method | 0.78 | 95.38 | 18.98 | 10.99 | |
Kunming | Threshold dichotomy | 0.76 | 86.73 | 29.31 | 25.49 |
Improved NFS | 0.80 | 90.49 | 5.98 | 28.23 | |
Proposed method | 0.85 | 97.98 | 13.42 | 12.86 | |
Nanning | Threshold dichotomy | 0.69 | 88.42 | 39.01 | 43.65 |
Improved NFS | 0.72 | 92.37 | 37.85 | 10.86 | |
Proposed method | 0.80 | 98.16 | 17.95 | 12.63 | |
Chongqing | Threshold dichotomy | 0.81 | 90.11 | 31.57 | 12.83 |
Improved NFS | 0.84 | 93.94 | 23.40 | 4.71 | |
Proposed method | 0.92 | 98.42 | 13.19 | 2.99 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, X.; Li, C.; Tong, X.; Liu, S. A New Fusion Approach for Extracting Urban Built-up Areas from Multisource Remotely Sensed Data. Remote Sens. 2019, 11, 2516. https://doi.org/10.3390/rs11212516
Ma X, Li C, Tong X, Liu S. A New Fusion Approach for Extracting Urban Built-up Areas from Multisource Remotely Sensed Data. Remote Sensing. 2019; 11(21):2516. https://doi.org/10.3390/rs11212516
Chicago/Turabian StyleMa, Xiaolong, Chengming Li, Xiaohua Tong, and Sicong Liu. 2019. "A New Fusion Approach for Extracting Urban Built-up Areas from Multisource Remotely Sensed Data" Remote Sensing 11, no. 21: 2516. https://doi.org/10.3390/rs11212516
APA StyleMa, X., Li, C., Tong, X., & Liu, S. (2019). A New Fusion Approach for Extracting Urban Built-up Areas from Multisource Remotely Sensed Data. Remote Sensing, 11(21), 2516. https://doi.org/10.3390/rs11212516