Monitoring Water Transparency in Shallow and Eutrophic Lake Waters Based on GOCI Observations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collections
2.2.1. In Situ Measurements
2.2.2. Satellite Data
2.3. Alogrithms for Zsd Estimation
2.4. Statistical Analysis and Accuracy Evaluation
3. Results
3.1. Limnological Conditions
3.2. Performance of the Estimated Kd(λ) Algorithm
3.3. Validation of Zsd Estimation with Independent Measurements
3.4. Interannual Variability of Zsd in Lake Taihu
3.4.1. Spatial and Variability Distributions of Zsd
3.4.2. Monthly Climatological Zsd
3.4.3. Regional Difference in the Monthly Climatological Zsd
4. Discussion
4.1. Satellite Application of the Modified Zsd Algorithm
4.2. Spatial and Temporal Variations of Zsd in Lake Taihu
4.3. Future Implications for Aquatic Environmental Changes
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Doron, M.; Babin, M.; Mangin, A.; Hembise, O. Estimation of light penetration, and horizontal and vertical visibility in oceanic and coastal waters from surface reflectance. J. Geophys. Res. Ocean. 2007, 112. [Google Scholar] [CrossRef] [Green Version]
- Feng, L.; Hou, X.; Zheng, Y. Monitoring and understanding the water transparency changes of fifty large lakes on the Yangtze Plain based on long-term MODIS observations. Remote Sens. Environ. 2019, 221, 675–686. [Google Scholar] [CrossRef]
- Platt, T.; Sathyendranath, S.; Caverhill, C.M.; Lewis, M.R. Ocean primary production and available light: Further algorithms for remote sensing. Deep Sea Res. Part A Oceanogr. Res. Pap. 1988, 35, 855–879. [Google Scholar] [CrossRef]
- Sathyendranath, S.; Platt, T.; Caverhill, C.M.; Warnock, R.E.; Lewis, M.R. Remote sensing of oceanic primary production: Computations using a spectral model. Deep Sea Res. Part A Oceanogr. Res. Pap. 1989, 36, 431–453. [Google Scholar] [CrossRef]
- Sathyendranath, S.; Gouveia, A.D.; Shetye, S.R.; Ravindran, P.; Platt, T. Biological control of surface temperature in the Arabian Sea. Nature 1991, 349, 54–56. [Google Scholar] [CrossRef]
- Morel, A.; Antoine, D. Heating Rate within the Upper Ocean in Relation to its Bio optical State. J. Phys. Oceanogr. 2010, 24, 1652–1665. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.; Tang, C.C.L.; Sathyendranath, S.; Platt, T. The impact of bio-optical heating on the properties of the upper ocean: A sensitivity study using a 3-D circulation model for the Labrador Sea. Deep Sea Res. Part II 2007, 54, 2630–2642. [Google Scholar] [CrossRef]
- Acker, J.G.; Brown, C.W.; Hine, A.C.; Armstrong, E.; Kuring, N. Satellite remote sensing observations and aerial photography of storm-induced neritic carbonate transport from shallow carbonate platforms. Int. J. Remote Sens. 2002, 23, 2853–2868. [Google Scholar] [CrossRef]
- Wei, S.; Wang, M. Three-dimensional observations from MODIS and CALIPSO for ocean responses to cyclone Nargis in the Gulf of Martaban. Geophys. Res. Lett. 2008, 35, 99–100. [Google Scholar]
- Mao, Y.; Wang, S.; Qiu, Z.; Sun, D.; Bilal, M. Variations of transparency derived from GOCI in the Bohai Sea and the Yellow Sea. Opt. Express 2018, 26, 12191–12209. [Google Scholar] [CrossRef]
- Kulshreshtha, A.; Shanmugam, P. Estimation of underwater visibility in coastal and inland waters using remote sensing data. Environ. Monit. Assess. 2017, 189, 199. [Google Scholar] [CrossRef] [PubMed]
- Shang, S.; Lee, Z.; Shi, L.; Lin, G.; Wei, G.; Li, X. Changes in water clarity of the Bohai Sea: Observations from MODIS. Remote Sens. Environ. 2016, 186, 22–31. [Google Scholar] [CrossRef] [Green Version]
- He, X.; Pan, D.; Yan, B.; Wang, T.; Chen, C.T.A.; Zhu, Q.; Hao, Z.; Fang, G. Recent changes of global ocean transparency observed by SeaWiFS. Cont. Shelf Res. 2016, 143, 159–166. [Google Scholar] [CrossRef]
- Fukushima, T.; Matsushita, B.; Wei, Y.; Jaelani, L.M. Semi-analytical prediction of Secchi depth transparency in Lake Kasumigaura using MERIS data. Limnology 2018, 19, 1–12. [Google Scholar] [CrossRef]
- Lee, Z.; Shang, S.; Lin, Q.; Jing, Y.; Gong, L. A semi-analytical scheme to estimate Secchi-disk depth from Landsat-8 measurements. Remote. Sens. Environ. 2016, 177, 101–106. [Google Scholar] [CrossRef]
- Yu, D.; Zhou, B.; Li, T.L.; Liang, S.L.; Sun, X. Quantitative estimation of Secchi disk depth using the HJ-1B CCD image and in situ observations in Sishili Bay, China. In Ocean Remote Sensing and Monitoring from Space; International Society for Optics and Photonics: Beijing, China, 2014. [Google Scholar]
- Zhang, H.; Qiu, Z.; Devred, E.; Sun, D.; Wang, S.; He, Y.; Yu, Y. A simple and effective method for monitoring floating green macroalgae blooms: A case study in the Yellow Sea. Opt. Express 2019, 27, 4528–4548. [Google Scholar] [CrossRef]
- Sun, D.; Huan, Y.; Qiu, Z.; Hu, C.; Wang, S.; He, Y. Remote-sensing estimation of phytoplankton size classes from GOCI satellite measurements in Bohai Sea and Yellow Sea. J. Geophys. Res. Oceans 2017, 122, 8309–8325. [Google Scholar] [CrossRef]
- Yu, D.; Xing, Q.; Shi, P. A review on the estimation of Secchi disk depth by remote sensing in inland and nearshore case 2 waters. Mar. Sci. 2015, 39, 136–144. [Google Scholar]
- Giardino, C.; Pepe, M.; Brivio, P.A.; Ghezzi, P.; Zilioli, E. Detecting chlorophyll, Secchi disk depth and surface temperature in a sub-alpine lake using Landsat imagery. Sci. Total Environ. 2001, 268, 19–29. [Google Scholar] [CrossRef]
- Wu, G.; Leeuw, J.D.; Skidmore, A.K.; Prins, H.H.T.; Liu, Y. Comparison of MODIS and Landsat TM5 images for mapping tempo–spatial dynamics of Secchi disk depths in Poyang Lake National Nature Reserve, China. Int. J. Remote Sens. 2008, 29, 2183–2198. [Google Scholar] [CrossRef]
- Koponen, S.; Pulliainen, J.; Kallio, K.; Hallikainen, M. Lake water quality classification with airborne hyperspectral spectrometer and simulated MERIS data. Remote Sens. Environ. 2002, 79, 51–59. [Google Scholar] [CrossRef]
- Lee, Z.; Carder, K.L.; Arnone, R.A. Deriving inherent optical properties from water color: A multiband quasi-analytical algorithm for optically deep waters. Appl. Opt. 2002, 41, 5755–5772. [Google Scholar] [CrossRef] [PubMed]
- Doron, M.; Babin, M.; Hembise, O.; Mangin, A.; Garnesson, P. Ocean transparency from space: Validation of algorithms estimating Secchi depth using MERIS, MODIS and SeaWiFS data. Remote Sens. Environ. 2011, 115, 2986–3001. [Google Scholar] [CrossRef]
- Gordon, H.R. Sensitivity of radiative transfer to small-angle scattering in the ocean: Quantitative assessment. Appl. Opt. 1993, 32, 7505–7511. [Google Scholar] [CrossRef]
- Lee, Z.; Shang, S.; Hu, C.; Du, K.; Weidemann, A.; Hou, W.; Lin, J.; Lin, G. Secchi disk depth: A new theory and mechanistic model for underwater visibility. Remote Sens. Environ. 2015, 169, 139–149. [Google Scholar] [CrossRef] [Green Version]
- Qin, B.; Hu, W.; Chen, W. The Process. and Mechanism of Water Environment Evolvement in Taihu Lake; Science Press: Beijing, China, 2004. [Google Scholar]
- Zhang, Y.; Qin, B.; Hu, W.; Wang, S.; Chen, Y.; Chen, W. Temporal-spatial variations of euphotic depth of typical lake regions in Lake Taihu and its ecological environmental significance. Sci. China Ser. D 2006, 49, 431–442. [Google Scholar] [CrossRef]
- Zhang, Y.; Qin, B.; Chen, W.; Luo, L. A study on total suspended matter in Lake Taihu. Resour. Environ. Yangtze Basin 2004, 13, 266–271. (In Chinese) [Google Scholar]
- Lorenzen, C.J. Determination of chlorophyll and pheo-pigments: Spectrophotometric equations 1. Limnol. Oceanogr. 1967, 12, 343–346. [Google Scholar] [CrossRef]
- Chen, Y.; Chen, Y.; Hu, K. Discussion on possible error for phytoplankton chlorophyll-a concentration analysis using hot-ethanol extraction method. J. Lake Sci. 2006, 18, 550–552. [Google Scholar]
- Huang, X. Eco-Investigation, Observation and Analysis of Lakes; Standard Press of China: Beijing, China, 2000. [Google Scholar]
- Mueller, J.L.; Fargion, G.S.; Mcclain, C.R.; Pegau, S.; Zanefeld, J.R.V.; Mitchell, B.G.; Kahru, M.; Wieland, J.; Stramska, M. Ocean Optics Protocols for Satellite Ocean Color Sensor Validation, Revision 4; Volume IV: Inherent Optical Properties: Instruments, Characterizations, Field Measurements and Data Analysis Protocols; NASA: Washington, DC, USA, 2003. [Google Scholar]
- Tang, J.; Tian, G.; Wang, X.; Wang, X.; Song, Q. The methods of water spectra measurement and analysis I: Above-water method. J. Remote Sens. 2004, 8, 37–44. [Google Scholar]
- Kirk, J.T.O.; Press, C. Light & Photosynthesis in Aquatic Ecosystems; Cambridge University Press: Cambridge, UK, 1994. [Google Scholar]
- Ryu, J.H.; Han, H.J.; Cho, S.; Park, Y.J.; Ahn, Y.H. Overview of geostationary ocean color imager (GOCI) and GOCI data processing system (GDPS). Ocean. Sci. J. 2012, 47, 223–233. [Google Scholar] [CrossRef]
- Huang, C.; Shi, K.; Yang, H.; Li, Y.; Zhu, A.X.; Sun, D.; Xu, L.; Zou, J.; Chen, X. Satellite observation of hourly dynamic characteristics of algae with Geostationary Ocean Color Imager (GOCI) data in Lake Taihu. Remote Sens. Environ. 2015, 159, 278–287. [Google Scholar] [CrossRef]
- Du, C.; Li, Y.; Wang, Q.; Liu, G.; Zheng, Z.; Mu, M.; Li, Y. Tempo-spatial dynamics of water quality and its response to river flow in estuary of Taihu Lake based on GOCI imagery. Environ. Sci. Pollut. Res. 2017, 24, 28079–28101. [Google Scholar] [CrossRef] [PubMed]
- Lee, Z.P.; Du, K.P.; Arnone, R. A Model for the Diffuse Attenuation Coefficient of Downwelling Irradiance. J. Geophys. Res. 2005, 110. [Google Scholar] [CrossRef]
- Seegers, B.; Stumpf, R.P.; Schaeffer, B.; Loftin, K.A.; Werdell, J. Performance metrics for the assessment of satellite data products: An ocean color case study. Opt. Express 2018, 26, 7404–7422. [Google Scholar] [CrossRef] [Green Version]
- Lee, Z.; Carder, K.L.; Hawes, S.K.; Steward, R.G.; Peacock, T.G.; Davis, C.O. Model for the interpretation of hyperspectral remote-sensing reflectance. Appl. Opt. 1994, 33, 5721–5732. [Google Scholar] [CrossRef] [Green Version]
- Giorgio, D.O.; Gitelson, A.A. Effect of bio-optical parameter variability on the remote estimation of chlorophyll-a concentration in turbid productive waters: Experimental results. Appl. Opt. 2005, 44, 412–422. [Google Scholar]
- Gitelson, A.A.; Schalles, J.F.; Hladik, C.M. Remote chlorophyll—A retrieval in turbid, productive estuaries: Chesapeake Bay case study. Remote Sens. Environ. 2015, 109, 464–472. [Google Scholar] [CrossRef]
- Wang, M.; Son, S.; Harding, L.W. Retrieval of diffuse attenuation coefficient in the Chesapeake Bay and turbid ocean regions for satellite ocean color applications. J. Geophys. Res. Oceans 2009, 114. [Google Scholar] [CrossRef]
- Le, C.; Li, Y.; Zha, Y.; Sun, D.; Wang, L. Optical properties and remote sensing retrieval model of diffuse attenuation coefficient of taihu lake water body. Chin. J. Appl. Ecol. 2009, 20, 337–343. [Google Scholar]
- Zhang, T.; Fell, F. An empirical algorithm for determining the diffuse attenuation coefficient Kd in clear and turbid waters from spectral remote sensing reflectance. Limnol. Oceanogr. Methods 2007, 5, 457–462. [Google Scholar] [CrossRef]
- Wang, S.; Li, Y.; Wang, Q.; Lv, H. Remote Sensing Inversion of Diffuse Attenuation Coefficient in Lake Taihu Based on the GOCI Images. Chin. Environ. Sci. 2015, 36, 3620–3622. [Google Scholar]
- He, X.; Bai, Y.; Pan, D.; Huang, N.; Dong, X.; Chen, J.; Chen, C.T.A.; Cui, Q. Using geostationary satellite ocean color data to map the diurnal dynamics of suspended particulate matter in coastal waters. Remote Sens. Environ. 2013, 133, 225–239. [Google Scholar] [CrossRef]
- Qiu, Z.; Zheng, L.; Zhou, Y.; Sun, D.; Wang, S.; Wu, W. Innovative GOCI algorithm to derive turbidity in highly turbid waters: A case study in the Zhejiang coastal area. Opt. Express 2015, 23, A1179–A1193. [Google Scholar] [CrossRef] [PubMed]
- Huovinen, P.S.; Penttilä, H.; Soimasuo, M.R. Spectral attenuation of solar ultraviolet radiation in humic lakes in Central Finland. Chemosphere 2003, 51, 205–214. [Google Scholar] [CrossRef]
- Rodrigues, T.; Alcântara, E.; Watanabe, F.; Imai, N. Retrieval of Secchi disk depth from a reservoir using a semi-analytical scheme. Remote Sens. Environ. 2017, 198, 213–228. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.L.; Qin, B.Q.; Liu, M.L. Temporal–spatial variations of chlorophyll a and primary production in Meiliang Bay, Lake Taihu, China from 1995 to 2003. J. Plankton Res. 2007, 29, 707–719. [Google Scholar] [CrossRef]
- Sun, D.; Li, Y.; Wang, Q.; Gao, J.; Lv, H.; Le, C.; Huang, C. Light scattering properties and their relation to the biogeochemical composition of turbid productive waters: A case study of Lake Taihu. Appl. Opt. 2009, 48, 1979–1989. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, X.; Yin, Y.; Wang, M.; Qin, B. A simple optical model to estimate diffuse attenuation coefficient of photosynthetically active radiation in an extremely turbid lake from surface reflectance. Opt. Express 2012, 20, 20482–20493. [Google Scholar] [CrossRef]
- Fan, C.; Lu, Z.; Qin, B.; Wang, S.; Hu, W.; Chen, Z. Estimation on dynamic release of phosphorus from wind-induced suspended particulate matter in Lake Taihu. Sci. China 2004, 47, 710–719. [Google Scholar] [CrossRef]
- Shi, K.; Zhang, Y.; Liu, X.; Wang, M.; Qin, B. Remote sensing of diffuse attenuation coefficient of photosynthetically active radiation in Lake Taihu using MERIS data. Remote Sens. Environ. 2014, 140, 365–377. [Google Scholar] [CrossRef]
- Huang, C.; Li, Y.; Hao, Y.; Sun, D.; Yu, Z.; Zhuo, Z.; Xia, C.; Xu, L. Detection of algal bloom and factors influencing its formation in Taihu Lake from 2000 to 2011 by MODIS. Environ. Earth Sci. 2014, 71, 3705–3714. [Google Scholar] [CrossRef]
- Duan, H.; Ma, R.; Zhang, Y.; Bai, Z. Remote-sensing assessment of regional inland lake water clarity in northeast China. Limnology 2009, 10, 135–141. [Google Scholar] [CrossRef]
- Duan, H.; Ronghua, M.A.; Kong, W.; Hao, J.A.; Zhang, S. Optical properties of chromophoric dissolved organic matter in Lake Taihu. J. Lake Sci. 2009, 21, 242–247. [Google Scholar]
- Kloiber, S.M.; Brezonik, P.L.; Olmanson, L.G.; Bauer, M.E. A procedure for regional lake water clarity assessment using landsat multispectral data. Remote Sens. Environ. 2002, 82, 38–47. [Google Scholar] [CrossRef]
- Bermejo, R.; Heesch, S.; Mac Monagail, M.; O’Donnell, M.; Daly, E.; Wilkes, R.J.; Morrison, L. Spatial and temporal variability of biomass and composition of green tides in Ireland. Harmful Algae 2019, 81, 94–105. [Google Scholar] [CrossRef]
- Hongtao, D.; Ronghua, M.; Xiaofeng, X.; Fanxiang, K.; Shouxuan, Z.; Weijuan, K.; Jingyan, H.; Linlin, S. Two-decade reconstruction of algal blooms in China’s Lake Taihu. Environ. Sci. Technol. 2012, 43, 3522–3528. [Google Scholar]
- Luo, J.; Li, X.; Ma, R.; Li, F.; Duan, H.; Hu, W.; Qin, B.; Huang, W. Applying remote sensing techniques to monitoring seasonal and interannual changes of aquatic vegetation in Taihu Lake. China Ecol. Indic. 2016, 60, 503–513. [Google Scholar] [CrossRef]
- Cao, Z.; Duan, H.; Feng, L.; Ma, R.; Xue, K. Climate-and human-induced changes in suspended particulate matter over Lake Hongze on short and long timescales. Remote Sens. Environ. 2017, 192, 98–113. [Google Scholar] [CrossRef]
Parameters | Minimum | Maximum | Mean | SD |
---|---|---|---|---|
Chla | 0.55 | 349.75 | 25.54 | 43.32 |
TSM | 3.40 | 132.33 | 39.75 | 26.19 |
OSM | 2.13 | 44.13 | 9.59 | 6.61 |
ISM | 1.12 | 119.07 | 30.16 | 23.32 |
ISM:TSM | 0.33 | 0.90 | 0.73 | 0.13 |
OSM:TSM | 0.62 | 0.67 | 0.24 | 0.13 |
Zsd | 0.10 | 1.50 | 0.37 | 0.22 |
Kd(490) | 1.27 | 9.52 | 4.72 | 1.99 |
Form No. | General form | Optimal Band Combination | R2 |
---|---|---|---|
X1 | Rrs(λi) | λi = 745 | 0.34 |
X2 | ln Rrs(λi) | λi = 745 | 0.48 |
X3 | Rrs(λi)/Rrs(λj) | λi = 745; λj = 555 | 0.54 |
X4 | Rrs(λi) − Rrs(λj)) | λi = 745; λj = 555 | 0.24 |
X5 | ln(Rrs,λi)/ln(Rrs,λj) | λi = 555; λj = 745 | 0.56 |
X6 | (Rrs(λi) − Rrs(λj)]/[Rrs(λi)/Rrs(λj)) | λi = 745; λj = 555 | 0.45 |
X7 | (Rrs(λi) + Rrs(λj)]/[Rrs(λi)/Rrs(λj)) | λi = 745; λj = 412 | 0.33 |
X5 Function | R2 | p-Value |
---|---|---|
ln(Rrs,555)/ln(Rrs,745) | 0.56 | <0.01 |
ln(Rrs,490)/ln(Rrs,745) | 0.44 | <0.01 |
ln(Rrs,555)/ln(Rrs,660) | 0.43 | <0.01 |
ln(Rrs,443)/ln(Rrs,745) | 0.37 | <0.01 |
ln(Rrs,660)/ln(Rrs,745) | 0.36 | <0.01 |
ln(Rrs,555)/ln(Rrs,680) | 0.35 | <0.01 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bai, S.; Gao, J.; Sun, D.; Tian, M. Monitoring Water Transparency in Shallow and Eutrophic Lake Waters Based on GOCI Observations. Remote Sens. 2020, 12, 163. https://doi.org/10.3390/rs12010163
Bai S, Gao J, Sun D, Tian M. Monitoring Water Transparency in Shallow and Eutrophic Lake Waters Based on GOCI Observations. Remote Sensing. 2020; 12(1):163. https://doi.org/10.3390/rs12010163
Chicago/Turabian StyleBai, Shuying, Jixi Gao, Deyong Sun, and Meirong Tian. 2020. "Monitoring Water Transparency in Shallow and Eutrophic Lake Waters Based on GOCI Observations" Remote Sensing 12, no. 1: 163. https://doi.org/10.3390/rs12010163
APA StyleBai, S., Gao, J., Sun, D., & Tian, M. (2020). Monitoring Water Transparency in Shallow and Eutrophic Lake Waters Based on GOCI Observations. Remote Sensing, 12(1), 163. https://doi.org/10.3390/rs12010163