The MODIS Global Vegetation Fractional Cover Product 2001–2018: Characteristics of Vegetation Fractional Cover in Grasslands and Savanna Woodlands
Abstract
:1. Introduction
- (1)
- To present the GVFCP (using a resampled 5 km2 resolution version) and illustrate the long-term global geographical patterns of FPV, FNPV, and FBS using the TEoW [38].
- (2)
- (3)
- To examine the levels and trends in FPV, FNPV, and FB in savanna, woodland and scrub grassland (SWSG) Ecoregions of the WGT and explore VFC trajectories in selected example ecoregions where major changes are occurring.
2. Materials and Methods
2.1. Data
2.1.1. Global Vegetation Fractional Cover Product
2.1.2. Terrestrial Ecoregions of the World
2.1.3. World Grassland Types
2.1.4. Global Livestock Production Systems
2.2. Analysis Method
2.2.1. Trend Analysis for World Grassland Types
2.2.2. Summarizing Levels and Trends across World Grassland Types and Savanna-Woodlands
3. Results
3.1. Global Patterns of Average VFC
3.2. Variation in Vegetation Fractional Cover within Global Livestock Production Systems
3.3. Variation in Average Vegetation Fractional Cover in World Grassland Type Divisions
3.4. Trends in Vegetation Fractional Cover
3.4.1. World Grassland Types
3.4.2. Savanna Woodland and Scrub Grasslands
3.5. Variation in Vegetation Fractional Cover in Example Ecoregions
4. Discussion
5. Conclusions
- (1)
- Ecoregions in both Africa and Australia are exhibiting concerning positive trends in FBS probably associated with climate and land use interactions.
- (2)
- Large areas of both positive and negative trends are occurring in individual ecoregions requiring more detailed examination of both fine scale spatial pattern and short-term trends.
- (3)
- There is value in explicit measures of level and trend in FNPV since change in dry intact herbaceous vegetation cover has huge implications for ecosystem function, livestock feed reserves, and carbon dynamics of grassy systems.
Supplementary materials
Supplementary File 1Online Resources
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Acronyms | Full Name |
---|---|
AVFCP | Australian Vegetation Fractional Cover Product |
AVHRR | Advanced Very High Resolution Radiometer |
BRDF | Bi-directional Reflectance Distribution Function |
BS | Bare Soil |
CAI | Cellulose Absorption Index |
FAPAR | Fraction of Absorbed Photosynthetically Active Radiation |
GEOGLAM | Group on Earth Observations Global Agricultural Monitoring |
GIMMS | Global Inventory Modeling and Mapping Studies |
GLPS | Global Livestock Production Systems |
GVFCP | Global Vegetation Fractional Cover Product |
MODIS | Moderate Resolution Imaging Spectroradiometer |
NBAR | Nadir BRDF-Adjusted Reflectance |
NDVI | Normalized Difference Vegetation Index |
NPV | Non-Photosynthetic Vegetation |
PV | Photosynthetic Vegetation |
RAPP | Rangeland and Pasture Productivity |
SWIR32 | Short Wave Infrared Ratio |
TEoW | Terrestrial Ecoregions of the World |
VFC | Vegetation Fractional Cover |
WGT | World Grassland Type |
Formation Name (Formation Code) Division Name | Division Code | Number of Ecoregions |
---|---|---|
NORTHERN HEMISPHERE | ||
Alpine Scrub, Forb Meadow and Grassland (ASFMG) | ||
Central Asian Alpine Scrub, Forb Meadow and Grassland | CAASFMG | 14 |
European Alpine Scrub, Forb Meadow and Grassland | EASFMG | 1 |
Boreal Grassland, Meadow and Shrubland (BGMS) | ||
Eurasian Boreal Grassland, Meadow and Shrubland | EBGS | 2 |
Cool Semi-Desert Scrub and Grassland (CSDSG) | ||
Eastern Eurasian Cool Semi-Desert Scrub and Grassland | EECSDSG | 12 |
Western Eurasian Cool Semi-Desert Scrub and Grassland | WECSDSG | 4 |
Western North American Cool Semi-Desert Scrub and Grassland | WNACSDSG | 4 |
Mediterranean Scrub, Grassland and Forb Meadow (MSGFM) | ||
California Grassland and Meadow | CGM | 2 |
Mediterranean Basin Dry Grassland | MBDG | 2 |
Temperate Grassland, Meadow and Shrubland (TGSM) | ||
Eastern Eurasian Grassland and Shrubland | EEGS | 8 |
Great Plains Grassland and Shrubland | GPGS | 15 |
Northeast Asia Grassland and Shrubland | NAGS | 4 |
Western Eurasian Grassland and Shrubland | WEGS | 2 |
Tropical Freshwater Marsh, Wet Meadow and Shrubland TFMWMS) | ||
Colombian-Venezuelan Freshwater Marsh, Wet Meadow and Shrubland | CVFMWMS | 1 |
Tropical Lowland Shrubland, Grassland and Savanna (TLSGS) | ||
Amazonian Shrubland and Savanna | ASS | 1 |
Colombian-Venezuelan Lowland Shrubland, Grassland and Savanna | CVLSGS | |
Guianan Lowland Shrubland, Grassland and Savanna | GLSGS | 1 |
North Sahel Semi-Desert Scrub and Grassland | NSSDSG | 1 |
Sudano Sahelian Dry Savanna | SSDS | 1 |
West-Central African Mesic Woodland and Savanna | WCAMWS | 3 |
Tropical Montane Shrubland, Grassland and Savanna (TMSGS) | ||
African Montane Grassland and Shrubland | AMGS | 4 |
Guianan Montane Shrubland and Grassland | GMSG | 1 |
Indomalayan Montane Meadow | IMW | 1 |
Warm Semi-Desert Scrub and Grassland (WSDSG) | ||
Eastern Africa Xeric Scrub and Grassland | EAXSG | 4 |
North American Warm Desert Scrub and Grassland | NAWDSG | 1 |
SOUTHERN HEMISPHERE | ||
Alpine Scrub, Forb Meadow and Grassland (ASFMG) | ||
Australian Alpine Scrub, Forb Meadow and Grassland | AASFMG | 1 |
New Zealand Alpine Scrub, Forb Meadow and Grassland | NZASFMG | 1 |
Cool Semi-Desert Scrub and Grassland (CSDSG) | ||
Mediterranean and Southern Andean Cool Semi-Desert Scrub and Grassland | MSACSDSG | 1 |
Patagonian Cool Semi-Desert Scrub and Grassland | PCSDSG | 1 |
Tropical Andean Cool Semi-Desert Scrub and Grassland | TACSDSG | 1 |
Mediterranean Scrub, Grassland and Forb Meadow (MSGFM) | ||
Australian Mediterranean Scrub | AMS | 7 |
Pampean Grassland and Shrubland (semi-arid Pampa) | PGS | 4 |
South African Cape Mediterranean Scrub | SACMS | 1 |
Temperate Grassland, Meadow and Shrubland (TGMS) | ||
Australian Temperate Grassland and Shrubland | ATGS | 1 |
New Zealand Grassland and Shrubland | NZGS | 1 |
Southern African Montane Grassland | SAMG | 3 |
Tropical Freshwater Marsh, Wet Meadow and Shrubland (TFMWMS) | ||
Brazilian-Parana Freshwater Marsh, Wet Meadow and Shrubland | BPFMWMS | 1 |
Chaco Freshwater Marsh and Shrubland | CFMS | 1 |
Tropical Lowland Shrubland, Grassland and Savanna (TLSGS) | ||
Australian Tropical Savanna | ATS | 9 |
Brazilian-Parana Lowland Shrubland, Grassland and Savanna | BPLSGS | 2 |
Eastern and Southern African Dry Savanna and Woodland | ESADSW | 2 |
Miombo and Associated Broadleaf Savanna | MABS | 2 |
Mopane Savanna | MS | 3 |
Tropical Montane Shrubland, Grassland and Savanna (TMSGS) | ||
Madagascan Montane Grassland and Shrubland | MMGS | 1 |
African Montane Grassland and Shrubland | AMGS | 4 |
Brazilian-Parana Montane Shrubland and Grassland | BPMSG | 1 |
New Guinea Montane Meadow | NGMM | 1 |
Tropical Andean Shrubland and Grassland | TASG | 4 |
Warm Semi-Desert Scrub and Grassland (WSDSG) | ||
Australia Warm Semi-Desert Scrub and Grassland | AWSDSG | 1 |
Formation Code | ECO_CODE | Division Code | Hemisphere | Continent | Ecoregion Name |
---|---|---|---|---|---|
TLSGS | AT0707 | WCAMWS | N | AF | Guinean forest-savanna mosaic |
TLSGS | AT0905 | WCAMWS | N | AF | Saharan flooded grasslands |
TLSGS | AT0705 | WCAMWS | N | AF | East Sudanian savanna |
TLSGS | AT0713 | NSSDSG | N | AF | Sahelian Acacia savanna |
TLSGS | AT0722 | SSDS | N | AF | West Sudanian savanna |
TMSGS | AT1005 | AMGS | N | AF | East African montane moorlands |
TMSGS | AT1007 | AMGS | N | AF | Ethiopian montane grasslands and woodlands |
TMSGS | IM1001 | IMW | N | AF | Kinabalu montane alpine meadows |
TMSGS | AT1010 | AMGS | N | AF | Jos Plateau forest-grassland mosaic |
TMSGS | AT1008 | AMGS | N | AF | Ethiopian montane moorlands |
WSDSG | AT1313 | EAXSG | N | AF | Masai xeric grasslands and shrublands |
WSDSG | AT0711 | EAXSG | N | AF | Northern Acacia-Commiphora bushlands and thickets |
WSDSG | AT0715 | EAXSG | N | AF | Somali Acacia-Commiphora bushlands and thickets |
WSDSG | AT0716 | EAXSG | N | AF | Southern Acacia-Commiphora bushlands and thickets |
WSDSG | NA1303 | NAWDSG | N | NA | Chihuahuan desert |
TLSGS | NT0709 | CVLSGS | N | SA | Llanos |
TLSGS | NT0707 | GLSGS | N | SA | Guianan savanna |
TLSGS | NT0158 | ASS | N | SA | Rio Negro campinarana |
TMSGS | NT0169 | GMSG | N | SA | Pantepui |
TLSGS | AT0725 | MS | S | AF | Zambezian and Mopane woodlands |
TLSGS | AT1002 | WCAMWS | S | AF | Angolan scarp savanna and woodlands |
TLSGS | AT0724 | MABS | S | AF | Western Zambezian grasslands |
TLSGS | AT0702 | MS | S | AF | Angolan Mopane woodlands |
TLSGS | AT0717 | MS | S | AF | Southern Africa bushveld |
TLSGS | AT1309 | ESADSW | S | AF | Kalahari xeric savanna |
TLSGS | AT0721 | ESADSW | S | AF | Victoria Basin forest-savanna mosaic |
TLSGS | AT0726 | MABS | S | AF | Zambezian Baikiaea woodlands |
TMSGS | AT1011 | MMGS | S | AF | Madagascar ericoid thickets |
TMSGS | AT1001 | AMGS | S | AF | Angolan montane forest-grassland mosaic |
TMSGS | AT1013 | AMGS | S | AF | Rwenzori-Virunga montane moorlands |
TMSGS | AT1015 | AMGS | S | AF | Southern Rift montane forest-grassland mosaic |
TMSGS | AT1006 | AMGS | S | AF | Eastern Zimbabwe montane forest-grassland mosaic |
TLSGS | AA0708 | ATS | S | AU | Trans Fly savanna and grasslands |
TLSGS | AA0709 | ATS | S | AU | Victoria Plains tropical savanna |
TLSGS | AA0705 | ATS | S | AU | Einasleigh upland savanna |
TLSGS | AA0706 | ATS | S | AU | Kimberly tropical savanna |
TLSGS | AA0701 | ATS | S | AU | Arnhem Land tropical savanna |
TLSGS | AA0702 | ATS | S | AU | Brigalow tropical savanna |
TLSGS | AA0703 | ATS | S | AU | Cape York Peninsula tropical savanna |
TLSGS | AA0704 | ATS | S | AU | Carpentaria tropical savanna |
TLSGS | AA0707 | ATS | S | AU | Mitchell grass downs |
TMSGS | AA1002 | NGMM | S | AU | Central Range sub-alpine grasslands |
WSDSG | AA1304 | AWSDSG | S | AU | Great Sandy-Tanami desert |
TMSGS | NT0703 | BPMSG | S | NA | Campos Rupestres montane savanna |
TLSGS | NT0702 | BPLSGS | S | SA | Beni savanna |
TLSGS | NT0704 | BPLSGS | S | SA | Cerrado |
TMSGS | NT1003 | TASG | S | SA | Central Andean wet puna |
TMSGS | NT1005 | TASG | S | SA | Cordillera de Merida píramo |
TMSGS | NT1006 | TASG | S | SA | Northern Andean píramo |
TMSGS | NT1004 | TASG | S | SA | Cordillera Central píramo |
References
- Ustin, S.L.; Gamon, J.A. Remote sensing of plant functional types. New Phytol. 2006, 186, 795–816. [Google Scholar] [CrossRef] [PubMed]
- Guan, K.; Wood, E.F.; Caylor, K.K. Multi-sensor derivation of regional vegetation fractional cover in Africa. Remote Sens. Environ. 2012, 124, 653–665. [Google Scholar] [CrossRef]
- Guerschman, J.P.; Hill, M.J.; Renzullo, L.J.; Barrett, D.J.; Marks, A.S.; Botha, E.J. Estimating fractional cover of photosynthetic vegetation, non-photosynthetic vegetation and bare soil in the Australian tropical savanna region upscaling the EO-1 Hyperion and MODIS sensors. Remote Sens. Environ. 2009, 113, 928–945. [Google Scholar] [CrossRef]
- Guerschman, J.P.; Scarth, P.F.; McVicar, T.R.; Renzullo, L.J.; Malthus, T.J.; Stewart, J.B.; Rickards, J.E.; Trevithick, R. Assessing the effects of site heterogeneity and soil properties when unmixing photosynthetic vegetation, non-photosynthetic vegetation and bare soil fractions from Landsat and MODIS data. Remote Sens. Environ. 2015, 161, 12–26. [Google Scholar] [CrossRef]
- Guerschman, J.P.; Hill, M.J. Calibration and validation of the Australian fractional cover product for MODIS collection 6. Remote Sens. Lett. 2018, 9, 696–705. [Google Scholar] [CrossRef]
- Rickards, J.; Stewart, J.; McPhee, R.; Randall, L. Australian ground cover reference sites database 2014: User guide for PostGIS. Victoria 2014, 119, 74. Available online: https://data.gov.au/data/dataset/68963ddf-fa83-43fe-86bd-2f27ec0284f4 (accessed on 25 January 2020).
- Nagler, P.L.; Daughtry, C.S.T.; Goward, S.N. Plant litter and soil reflectance. Remote Sens. Environ. 2000, 71, 207–215. [Google Scholar] [CrossRef]
- Nagler, P.L.; Inoue, Y.; Glenn, E.P.; Russ, A.L.; Daughtry, C.S.T. Cellulose absorption index (CAI) to quantify mixed soil-plant litter scenes. Remote Sens. Environ. 2003, 87, 310–325. [Google Scholar] [CrossRef]
- Daughtry, C.S.T. Discriminating crop residues from soil by shortwave infrared reflectance. Agron. J. 2001, 93, 125–131. [Google Scholar] [CrossRef]
- Daughtry, C.S.T.; Hunt, E.R.; Doraiswamy, P.C.; McMurtrey, J.E. Remote sensing the spatial distribution of crop residues. Agron. J. 2005, 97, 864–871. [Google Scholar] [CrossRef]
- Daughtry, C.S.T.; Doraiswamy, P.C.; Hunt, E.R.; Stern, A.J.; McMurtrey, J.E.; Prueger, J.H. Remote sensing of crop residue cover and soil tillage intensity. Soil Tillage Res. 2006, 91, 101–108. [Google Scholar] [CrossRef]
- Guerschman, J.P.; Held, A.A.; Donohue, R.J.; Renzullo, L.J.; Sims, N.; Kerblat, F.; Grundy, M. The GEOGLAM Rangelands and Pasture Productivity Activity: Recent Progress and Future Directions. AGU Fall Meeting Abstracts 2015. Available online: http://adsabs.harvard.edu/abs/2015AGUFM.B43A0531G (accessed on 25 January 2020).
- Guerschman, J.P.; Leys, J.; Rozas Larraondo, P.; Henrikson, M.; Paget, M.; Barson, M. Monitoring Groundcover: An Online Tool for Australian Regions; Technical Report; CSIRO: Canberra, Australia, 21 November 2018; 58p. [Google Scholar] [CrossRef]
- Guerschman, J.P.; Hill, M.J.; Leys, J.; Heidenreich, S. Vegetation cover dependence on accumulated antecedent precipitation in Australia: Relationships with photosynthetic and non-photosynthetic vegetation fractions. Remote Sens. Environ. 2020, in press. [Google Scholar]
- Hansen, M.C.; Potapov, P.V.; Moore, R.; Hancher, M.; Turubanova, S.A.A.; Tyukavina, A.; Thau, D.; Stehman, S.V.; Goetz, S.J.; Loveland, T.R.; et al. High-resolution global maps of 21st-century forest cover change. Science 2013, 342, 850–853. [Google Scholar] [CrossRef] [Green Version]
- Zomer, R.J.; Neufeldt, H.; Xu, J.; Ahrends, A.; Bossio, D.; Trabucco, A.; Van Noordwijk, M.; Wang, M. Global Tree Cover and Biomass Carbon on Agricultural Land: The contribution of agroforestry to global and national carbon budgets. Sci. Rep. 2016, 6, 29987. [Google Scholar] [CrossRef]
- Bastin, J.-F.; Finegold, Y.; Garcia, C.; Mollicone, D.; Rezende, M.; Routh, D.; Zohner, C.M.; Crowther, T.W. The global tree restoration potential. Science 2019, 365, 76–79. [Google Scholar] [CrossRef]
- Mousivand, A.; Arsanjani, J.J. Insights on the historical and emerging global land cover changes: The case of ESA-CCI-LC datasets. Appl. Geogr. 2019, 106, 82–92. [Google Scholar] [CrossRef]
- Song, X.P.; Hansen, M.C.; Stehman, S.V.; Potapov, P.V.; Tyukavina, A.; Vermote, E.F.; Townshend, J.R. Global land change from 1982 to 2016. Nature 2018, 560, 639–643. [Google Scholar] [CrossRef]
- Chen, C.; Park, T.; Wang, X.; Piao, S.; Xu, B.; Chaturvedi, R.K.; Fuchs, R.; Brovkin, V.; Ciais, P.; Fensholt, R.; et al. China and India lead in greening of the world through land-use management. Nat. Sustain. 2019, 2, 122–129. [Google Scholar] [CrossRef]
- Yang, W.; Tan, B.; Huang, D.; Rautiainen, M.; Shabanov, N.; Wang, Y.; Privette, J.; Huemmrich, K.; Fensholt, R.; Sandholt, I.; et al. MODIS leaf area index products: from validation to algorithm improvement. IEEE Trans. Geosci. Remote Sens. 2006, 44, 1885–1898. [Google Scholar] [CrossRef]
- Okin, G.S.; Clarke, K.D.; Lewis, M.M. Comparison of methods for estimation of absolute vegetation and soil fractional cover using MODIS normalized BRDF-adjusted reflectance data. Remote Sens. Environ. 2013, 130, 266–279. [Google Scholar] [CrossRef] [Green Version]
- Ying, Q.; Hansen, M.C.; Potapov, P.V.; Tyukavina, A.; Wang, L.; Stehman, S.V.; Moore, R.; Hancher, M. Global bare ground gain from 2000 to 2012 using Landsat imagery. Remote Sens. Environ. 2017, 194, 161–176. [Google Scholar] [CrossRef] [Green Version]
- Hansen, M.C.; DeFries, R.S.; Townshend, J.R.G.; Carroll, M.; Dimiceli, C.; Sohlberg, R.A. Global percent tree cover at a spatial resolution of 500 meters: First results of the MODIS vegetation continuous fields algorithm. Earth Interact. 2003, 7, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Sexton, J.O.; Song, X.-P.; Feng, M.; Noojipady, P.; Anand, A.; Huang, C.; Kim, -H.; Collins, K.M.; Channan, S.; DiMiceli, C.; et al. Global, 30-m resolution continuous fields of tree cover: Landsat-based rescaling of MODIS vegetation continuous fields with lidar-based estimates of error. Int. J. Digit. Earth 2013, 6, 427–448. [Google Scholar] [CrossRef] [Green Version]
- McCallum, I.; Wagner, W.; Schmullius, C.; Shvidenko, A.; Obersteiner, M.; Fritz, S.; Nilsson, S. Comparison of four global FAPAR datasets over Northern Eurasia for the year 2000. Remote Sens. Environ. 2010, 114, 941–949. [Google Scholar] [CrossRef]
- Pickett-Heaps, C.A.; Canadell, J.; Briggs, P.R.; Gobron, N.; Haverd, V.; Paget, M.J.; Pinty, B.; Raupach, M.R. Evaluation of six satellite-derived Fraction of Absorbed Photosynthetic Active Radiation (FAPAR) products across the Australian continent. Remote Sens. Environ. 2014, 140, 241–256. [Google Scholar] [CrossRef]
- Myneni, R.; Hoffman, S.; Knyazikhin, Y.; Privette, J.; Glassy, J.; Tian, Y.; Wang, Y.; Song, X.; Zhang, Y.; Smith, G.; et al. Global products of vegetation leaf area and fraction absorbed PAR from year one of MODIS data. Remote Sens. Environ. 2002, 83, 214–231. [Google Scholar] [CrossRef] [Green Version]
- Fang, H.; Wei, S.; Jiang, C.; Scipal, K. Theoretical uncertainty analysis of global MODIS, CYCLOPES, and GLOBCARBON LAI products using a triple collocation method. Remote Sens. Environ. 2012, 124, 610–621. [Google Scholar] [CrossRef]
- Zhu, Z.; Bi, J.; Pan, Y.; Ganguly, S.; Anav, A.; Xu, L.; Samanta, A.; Piao, S.; Nemani, R.; Myneni, R. Global data sets of vegetation leaf area index (LAI) 3g and fraction of photosynthetically active radiation (FPAR) 3g derived from global inventory modeling and mapping studies (GIMMS) normalized difference vegetation index (NDVI3g) for the period 1981 to 2011. Remote Sens. 2013, 5, 927–948. [Google Scholar] [CrossRef] [Green Version]
- Bucini, G.; Hanan, N.P. A continental-scale analysis of tree cover in African savannas. Glob. Ecol. Biogeogr. 2007, 16, 593–605. [Google Scholar] [CrossRef]
- Hill, M.J.; Román, M.O.; Schaaf, C.B.; Hutley, L.; Brannstrom, C.; Etter, A.; Hanan, N.P. Characterizing vegetation cover in global savannas with an annual foliage clumping index derived from the MODIS BRDF product. Remote Sens. Environ. 2011, 115, 2008–2024. [Google Scholar] [CrossRef]
- Southworth, J.; Zhu, L.; Bunting, E.; Ryan, S.J.; Herrero, H.; Waylen, P.R.; Hill, M.J. Changes in vegetation persistence across global savanna landscapes, 1982–2010. J. Land Use Sci. 2016, 11, 7–32. [Google Scholar] [CrossRef]
- Staver, A.C.; Archibald, S.; Levin, S.A. The Global Extent and Determinants of Savanna and Forest as Alternative Biome States. Science 2011, 334, 230–232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hanan, N.P.; Tredennick, A.T.; Prihodko, L.; Bucini, G.; Dohn, J. Analysis of stable states in global savannas: is the CART pulling the horse? Glob. Ecol. Biogeogr. 2014, 23, 259–263. [Google Scholar] [CrossRef] [PubMed]
- Staver, A.C.; Hansen, M.C. Analysis of stable states in global savannas: is the CART pulling the horse? - a comment. Glob. Ecol. Biogeogr. 2015, 24, 985–987. [Google Scholar] [CrossRef]
- Hanan, N.P.; Tredennick, A.T.; Prihodko, L.; Bucini, G.; Dohn, J. Analysis of stable states in global savannas - a response to Staver and Hansen. Glob. Ecol. Biogeogr. 2015, 24, 988–989. [Google Scholar] [CrossRef]
- Olson, D.M.; Dinerstein, E.; Wikramanayake, E.D.; Burgess, N.D.; Powell, G.V.N.; Underwood, E.C.; D’Amico, J.A.; Itoua, I.; Strand, H.E.; Morrison, J.C.; et al. Terrestrial Ecoregions of the World: A New Map of Life on Earth. Bioscience 2001, 51, 933–938. [Google Scholar] [CrossRef]
- Dixon, A.P.; Faber-Langendoen, D.; Josse, C.; Morrison, J.; Loucks, C.J. Distribution mapping of world grassland types. J. Biogeogr. 2014, 41, 2003–2019. [Google Scholar] [CrossRef]
- Robinson, T.P.; Thornton, P.K.; Franceschini, G.; Kruska, R.L.; Chiozza, F.; Notenbaert, A.; Cecchi, G.; Herrero, M.; Epprecht, M.; Fritz, S.; et al. Global livestock production systems; Food and Agriculture Organization of the United Nations (FAO) and International Livestock Research Institute (ILRI): Rome, Italy, 2011; 52p, Available online: http://www.fao.org/3/i2414e/i2414e.pdf (accessed on 25 January 2020).
- Schaaf, C.B.; Wang, Z. MCD43A4 MODIS/Terra+Aqua BRDF/Albedo Nadir BRDF Adjusted Reflectance Daily L3 Global - 500m V006. NASA EOSDIS Land Processes DAAC 2015. [Google Scholar] [CrossRef]
- Flood, N. Seasonal Composite Landsat TM/ETM+ Images Using the Medoid (a Multi-Dimensional Median). Remote Sens. 2013, 5, 6481–6500. [Google Scholar] [CrossRef] [Green Version]
- Faber-Langendoen, D.; Keeler-Wolf, T.; Meidinger, D.; Tart, D.; Hoagland, B.; Josse, C.; Navarro, G.; Ponomarenko, S.; Saucier, J.-P.; Weakley, A.; et al. EcoVeg: a new approach to vegetation description and classification. Ecol. Monogr. 2014, 84, 533–561. [Google Scholar] [CrossRef]
- Mann, H.B. Nonparametric Tests Against Trend. Econometrica 1945, 13, 245. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank correlation methods; Oxford University Press: New York, NY, USA, 1962. Available online: https://trove.nla.gov.au/version/264239415 (accessed on 26 January 2020).
- Meals, D.W.; Spooner, J.; Dressing, S.A.; Harcum, J.B. Statistical Analysis for Monotonic Trends; Tech Notes 6; Developed for U.S. Environmental Protection Agency by Tetra Tech, Inc.: Fairfax, VA, USA, November 2011; 23p. Available online: https://www.epa.gov/sites/production/files/2016-05/documents/tech_notes_6_dec2013_trend.pdf (accessed on 25 January 2020).
- Gaitán, J.J.; Bran, D.E.; Oliva, G.E.; Aguiar, M.R.; Buono, G.G.; Ferrante, D.; Nakamatsu, V.; Ciari, G.; Salomone, J.M.; Massara, V.; et al. Aridity and overgrazing have convergent effects on ecosystem structure and functioning in Patagonian rangelands. Land Degrad. Dev. 2018, 29, 210–218. [Google Scholar] [CrossRef]
- Piquer-Rodríguez, M.; Butsic, V.; Gärtner, P.; Macchi, L.; Baumann, M.; Pizarro, G.G.; Volante, J.; Gasparri, I.; Kuemmerle, T. Drivers of agricultural land-use change in the Argentine Pampas and Chaco regions. Appl. Geogr. 2018, 91, 111–122. [Google Scholar] [CrossRef]
- Soulard, C.E.; Wilson, T.S. Recent land-use/land-cover change in the Central California Valley. J. Land Use Sci. 2015, 10, 59–80. [Google Scholar] [CrossRef] [Green Version]
- Brown, K.A.; Parks, K.E.; Bethell, C.A.; Johnson, S.E.; Mulligan, M. Predicting Plant Diversity Patterns in Madagascar: Understanding the Effects of Climate and Land Cover Change in a Biodiversity Hotspot. PLoS ONE 2015, 10, 0122721. [Google Scholar] [CrossRef] [PubMed]
- Vieilledent, G.; Grinand, C.; Rakotomalala, F.A.; Ranaivosoa, R.; Rakotoarijaona, J.-R.; Allnutt, T.F.; Achard, F. Combining global tree cover loss data with historical national forest cover maps to look at six decades of deforestation and forest fragmentation in Madagascar. Boil. Conserv. 2018, 222, 189–197. [Google Scholar] [CrossRef]
- Rasmussen, K.; D’haen, S.; Fensholt, R.; Fog, B.; Horion, S.; Nielsen, J.O.; Rasmussen, L.V.; Reenberg, A. Environmental change in the Sahel: reconciling contrasting evidence and interpretations. Reg. Environ. Chang. 2016, 16, 673–680. [Google Scholar] [CrossRef]
- Aleman, J.C.; Blarquez, O.; Staver, C.A.; Staver, A.C. Land-use change outweighs projected effects of changing rainfall on tree cover in sub-Saharan Africa. Glob. Chang. Boil. 2016, 22, 3013–3025. [Google Scholar] [CrossRef]
- Anchang, J.Y.; Prihodko, L.; Kaptué, A.T.; Ross, C.W.; Ji, W.; Kumar, S.S.; Lind, B.; Sarr, M.A.; Diouf, A.A.; Hanan, N.P. Trends in Woody and Herbaceous Vegetation in the Savannas of West Africa. Remote Sens. 2019, 11, 576. [Google Scholar] [CrossRef] [Green Version]
- Touré, A.A.; Tidjani, A.; Rajot, J.; Marticorena, B.; Bergametti, G.; Bouet, C.; Ambouta, K.; Garba, Z. Dynamics of wind erosion and impact of vegetation cover and land use in the Sahel: A case study on sandy dunes in southeastern Niger. Catena 2019, 177, 272–285. [Google Scholar] [CrossRef]
- Hanan, N.P. Agroforestry in the Sahel. Nat. Geosci. 2018, 11, 296–297. [Google Scholar] [CrossRef]
- Brandt, M.; Rasmussen, K.; Hiernaux, P.; Herrmann, S.; Tucker, C.J.; Tong, X.; Tian, F.; Mertz, O.; Kergoat, L.; Mbow, C.; et al. Reduction of tree cover in West African woodlands and promotion in semi-arid farmlands. Nat. Geosci. 2018, 11, 328–333. [Google Scholar] [CrossRef]
- Bolognesi, M.; Vrieling, A.; Rembold, F.; Gadain, H. Rapid mapping and impact estimation of illegal charcoal production in southern Somalia based on WorldView-1 imagery. Energy Sustain. Dev. 2015, 25, 40–49. [Google Scholar] [CrossRef]
- Kiruki, H.M.; van der Zanden, E.H.; Malek, Ž.; Verburg, P.H. Land cover change and woodland degradation in a charcoal producing semi-arid area in Kenya. Land Degrad. Dev. 2017, 28, 472–481. [Google Scholar] [CrossRef] [Green Version]
- Ndegwa, G.M.; Nehren, U.; Anhuf, D.; Iiyama, M. Estimating sustainable biomass harvesting level for charcoal production to promote degraded woodlands recovery: A case study from Mutomo District, Kenya. Land Degrad. Dev. 2018, 29, 1521–1529. [Google Scholar] [CrossRef]
- Rowell, D.P.; Booth, B.B.B.; Nicholson, S.E.; Good, P. Reconciling Past and Future Rainfall Trends over East Africa. J. Clim. 2015, 28, 9768–9788. [Google Scholar] [CrossRef]
- Lyon, B.; DeWitt, D.G. A recent and abrupt decline in the East African long rains. Geophys. Res. Lett. 2012, 39. [Google Scholar] [CrossRef] [Green Version]
- Lyon, B. Seasonal Drought in the Greater Horn of Africa and Its Recent Increase during the March–May Long Rains. J. Clim. 2014, 27, 7953–7975. [Google Scholar] [CrossRef]
- Holechek, J.L.; Cibils, A.F.; Bengaly, K.; Kinyamario, J.I. Human Population Growth, African Pastoralism, and Rangelands: A Perspective. Rangel. Ecol. Manag. 2017, 70, 273–280. [Google Scholar] [CrossRef]
- Lankester, F.; Davis, A. Pastoralism and wildlife: historical and current perspectives in the East African rangelands of Kenya and Tanzania. Rev. Sci. et Tech. de l’OIE 2016, 35, 473–484. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rukundo, E.; Liu, S.; Dong, Y.; Rutebuka, E.; Asamoah, E.F.; Xu, J.; Wu, X. Spatio-temporal dynamics of critical ecosystem services in response to agricultural expansion in Rwanda, East Africa. Ecol. Indic. 2018, 89, 696–705. [Google Scholar] [CrossRef]
- Guzha, A.; Rufino, M.; Okoth, S.; Jacobs, S.; Nóbrega, R. Impacts of land use and land cover change on surface runoff, discharge and low flows: Evidence from East Africa. J. Hydrol. Reg. Stud. 2018, 15, 49–67. [Google Scholar] [CrossRef]
- Bradley, B.A.; Houghton, R.A.; Mustard, J.F.; Hamburg, S.P. Invasive grass reduces aboveground carbon stocks in shrublands of the Western US. Glob. Chang. Boil. 2006, 12, 1815–1822. [Google Scholar] [CrossRef] [Green Version]
- Mau-Crimmins, T.M.; Schussman, H.R.; Geiger, E.L. Can the invaded range of a species be predicted sufficiently using only native-range data? Lehmann lovegrass (Eragrostis lehmanniana) in the southwestern United States. Ecol. Model. 2006, 193, 736–746. [Google Scholar] [CrossRef]
- Abatzoglou, J.T.; Kolden, C.A. Climate Change in Western US Deserts: Potential for Increased Wildfire and Invasive Annual Grasses. Rangel. Ecol. Manag. 2011, 64, 471–478. [Google Scholar] [CrossRef]
- Romero-Ruiz, M.; Flantua, S.; Tansey, K.; Berrío, J. Landscape transformations in savannas of northern South America: Land use/cover changes since 1987 in the Llanos Orientales of Colombia. Appl. Geogr. 2012, 32, 766–776. [Google Scholar] [CrossRef]
- Ocampo-Peñuela, N.; Garcia-Ulloa, J.; Ghazoul, J.; Etter, A. Quantifying impacts of oil palm expansion on Colombia’s threatened biodiversity. Boil. Conserv. 2018, 224, 117–121. [Google Scholar] [CrossRef]
- Ordoñez, D.A.R.; Leal, M.R.L.V.; Bonomi, A.; Cortez, L.A.B. Expansion assessment of the sugarcane and ethanol production in the Llanos Orientales region in Colombia. Biofuels, Bioprod. Biorefining 2018, 12, 857–872. [Google Scholar] [CrossRef]
- McKeon, G.M.; Stone, G.S.; Syktus, J.I.; Carter, J.O.; Flood, N.R.; Ahrens, D.G.; Bruget, D.N.; Chilcott, C.R.; Cobon, D.H.; Cowley, R.A.; et al. Climate change impacts on northern Australian rangeland livestock carrying capacity: a review of issues. Rangel. J. 2009, 31, 1–29. [Google Scholar] [CrossRef] [Green Version]
TEoW Realms | Area (M km2) | Area (%) | FPV | FPV StD | FNPV | FNPV StD | FBS | FBS StD |
---|---|---|---|---|---|---|---|---|
Tropical and Subtropical Moist Broadleaf Forests | 19.845 | 13.47 | 77.1 | 16.3 | 13.9 | 11.6 | 10.0 | 6.3 |
Tropical and Subtropical Dry Broadleaf Forests | 3.805 | 2.58 | 53.8 | 18.5 | 29.0 | 11.1 | 16.9 | 10.1 |
Temperate Broadleaf and Mixed Forests | 12.859 | 8.73 | 55.3 | 16.3 | 28.7 | 8.8 | 15.5 | 11.0 |
Tropical and Subtropical Grasslands, Savannas and Shrublands | 19.531 | 13.26 | 42.3 | 23.4 | 32.1 | 11.8 | 24.9 | 22.0 |
Temperate Grasslands, Savannas and Shrublands | 9.624 | 6.53 | 31.2 | 16.3 | 43.7 | 9.5 | 24.8 | 13.3 |
Montane Grasslands and Shrublands | 5.189 | 3.52 | 18.3 | 21.1 | 43.0 | 11.7 | 39.0 | 21.5 |
Tundra | 11.234 | 7.63 | 38.0 | 20.2 | 49.7 | 13.7 | 12.5 | 14.8 |
Mangroves | 0.348 | 0.24 | 58.2 | 19.8 | 29.5 | 15.5 | 12.2 | 9.2 |
Flooded Grasslands and Savannas | 1.095 | 0.74 | 43.1 | 22.7 | 31.9 | 11.9 | 24.3 | 21.1 |
Mediterranean Forests, Woodlands and Scrub | 3.267 | 2.22 | 29.7 | 18.5 | 38.8 | 10.1 | 30.9 | 18.8 |
Deserts and Xeric Shrublands | 27.948 | 18.97 | 6.8 | 12.0 | 27.2 | 18.3 | 66.2 | 25.7 |
Tropical and Subtropical Coniferous Forests | 0.644 | 0.44 | 57.3 | 17.4 | 30.6 | 12.8 | 11.9 | 6.6 |
Temperate Conifer Forests | 4.365 | 2.96 | 51.6 | 20.3 | 32.5 | 12.2 | 15.4 | 13.1 |
Inland Water | 0.685 | 0.46 | 21.4 | 23.0 | 46.9 | 17.6 | 27.5 | 16.2 |
Rock and Ice | 10.840 | 7.36 | 2.7 | 8.4 | 44.4 | 23.1 | 45.9 | 26.4 |
Boreal Forests/Taiga | 16.042 | 10.89 | 59.0 | 9.2 | 31.6 | 9.0 | 8.2 | 4.7 |
Form | Area (M km2) | Negative Trend FBS (M km2) | Positive Trend FBS (M km2) | Negative Trend FNPV (M km2) | Positive Trend FNPV (M km2) | Negative Trend FPV (M km2) | Positive Trend FPV (M km2) |
---|---|---|---|---|---|---|---|
North | |||||||
TLSGS | 7.002 | 1.435 | 1.045 | 1.186 | 0.527 | 0.211 | 0.688 |
TMSGS | 0.307 | 0.014 | 0.058 | 0.044 | 0.008 | 0.026 | 0.022 |
WSDSG | 2.194 | 0.574 | 0.791 | 0.557 | 0.264 | 0.306 | 0.386 |
South | |||||||
TLSGS | 6.095 | 1.569 | 1.034 | 0.855 | 0.595 | 0.506 | 1.073 |
TMSGS | 0.254 | 0.042 | 0.038 | 0.030 | 0.019 | 0.022 | 0.044 |
WSDSG | 0.816 | 0.256 | 0.161 | 0.120 | 0.274 | 0.137 | 0.096 |
Total | 16.668 | 3.890 | 3.127 | 2.793 | 1.687 | 1.208 | 2.309 |
Form | WGT % Area | Negative Trend FBS (%) | Positive Trend FBS (%) | Negative Trend FNPV (%) | Positive Trend FNPV (%) | Negative Trend FPV (%) | Positive Trend FPV (%) |
---|---|---|---|---|---|---|---|
North | |||||||
TLSGS | 19.7 | 20.5 | 14.9 | 16.9 | 7.5 | 3.0 | 9.8 |
TMSGS | 0.9 | 0.2 | 0.8 | 0.6 | 0.1 | 0.4 | 0.3 |
WSDSG | 6.2 | 8.2 | 11.3 | 8.0 | 3.8 | 4.4 | 5.5 |
South | |||||||
TLSGS | 17.2 | 22.4 | 14.8 | 12.2 | 8.5 | 7.2 | 15.3 |
TMSGS | 0.7 | 0.6 | 0.5 | 0.4 | 0.3 | 0.3 | 0.6 |
WSDSG | 2.3 | 3.7 | 2.3 | 1.7 | 3.9 | 2.0 | 1.4 |
Total | 46.9 | 23.3 | 18.8 | 16.8 | 10.1 | 7.2 | 13.8 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hill, M.J.; Guerschman, J.P. The MODIS Global Vegetation Fractional Cover Product 2001–2018: Characteristics of Vegetation Fractional Cover in Grasslands and Savanna Woodlands. Remote Sens. 2020, 12, 406. https://doi.org/10.3390/rs12030406
Hill MJ, Guerschman JP. The MODIS Global Vegetation Fractional Cover Product 2001–2018: Characteristics of Vegetation Fractional Cover in Grasslands and Savanna Woodlands. Remote Sensing. 2020; 12(3):406. https://doi.org/10.3390/rs12030406
Chicago/Turabian StyleHill, Michael J., and Juan P. Guerschman. 2020. "The MODIS Global Vegetation Fractional Cover Product 2001–2018: Characteristics of Vegetation Fractional Cover in Grasslands and Savanna Woodlands" Remote Sensing 12, no. 3: 406. https://doi.org/10.3390/rs12030406