Elevation-Dependent Removal of Cirrus Clouds in Satellite Imagery
Abstract
:1. Introduction
2. Materials
3. Method
3.1. Part 1: Cirrus Detection
3.2. Part 2: Cirrus Removal
4. Results
4.1. Sentinel-2A Image of Atlas Mountains, Morocco
4.2. Landsat-8 Image of Lake Constance, Switzerland
4.3. Sentinel-2A Image of Rocky Mountains Near Albuquerque, USA
4.4. Sentinel-2A Image of Railroad Valley, USA
5. Discussion
- Surface albedo and surface bidirectional reflectance distribution function (BRDF), especially for sloped mountain regions,
- Cirrus optical thickness and cirrus particle size,
- Aerosol content and haze below cirrus cloud, and
- Atmospheric water vapor.
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
Scene/Sensor | Location | Country | Date (DD/MM/YYYY) | Path/Row (L8), Tile (S2) |
---|---|---|---|---|
1 / S2 | Atlas Mountains | Morocco | 18/01/2016 | T29RPQ |
2 / L8 | Lake Constance | Switzerland | 19/07/2014 | 194/27 |
3 / S2 | Railroad Valley | USA, NV | 30/07/2017 | T11SPC |
4 / S2 | Railroad Valley | USA, NV | 02/08/2017 | T11SPC |
5 / S2 | Klamath N.Forest | USA, CA | 25/09/2016 | T10TDL |
6 / S2 | La Paz | Bolivia | 18/03/2016 | T19KEB |
7 / S2 | San Francisco | USA, CA | 17/11/2015 | T10SEG |
8 / S2 | Pyrenees | Spain | 05/03/2015 | 197/31 |
9 / L8 | Kathmandu | Nepal | 24/01/2015 | 141/14 |
10 / L8 | Lahore | Pakistan | 10/11/2013 | 149/38 |
11 / L8 | Kitzbühl, Alps | Austria | 17/10/2017 | 192/27 |
12 / L8 | Quebec | Canada | 24/05/2015 | 12/26 |
13 / S2 | Diyarbakr | Turkey | 20/04/2016 | T37SFC |
14 / S2 | St. Johann, Alps | Austria | 09/05/2016 | T32TQT |
15 / S2 | Davos, Alps | Switzerland | 22/05/2016 | T32TNS |
16 / L8 | Beijing | China | 13/04/2014 | 123/32 |
17 / S2 | Salon-de-Provence | France | 15/02/2016 | T31TFJ |
18 / L8 | Montelimar | France | 14/07/2013 | 196/29 |
19 / L8 | Rio de Janeiro | Brazil | 18/06/2014 | 217/76 |
20 / L8 | Sitten | Switzerland | 30/08/2015 | 195/28 |
21 / L8 | Basel | Switzerland | 25/09/2013 | 195/27 |
22 / L8 | Orurillo | Peru | 07/02/2017 | 3/70 |
23 / L8 | Murnau | Germany | 01/09/2015 | 193/27 |
24 / S2 | Gobabeb | Namibia | 06/03/2019 | T33KWP |
25 / S2 | Madrid | Spain | 15/11/2017 | T30TVK |
26 / S2 | Munich | Germany | 16/06/2017 | T32UPU |
27 / L8 | Munich | Germany | 01/09/2015 | 193/27 |
28 / S2 | Railroad Valley | USA, NV | 23/07/2017 | T11SPC |
29 / S2 | Blair | USA, NE | 16/11/2019 | T15TTG |
30 / L8 | Darjeeling | India | 15/03/2015 | 139/41 |
31 / S2 | Seattle | USA, WA | 06/04/2019 | T10TET |
32 / S2 | Barrax | Spain | 11/10/2019 | T30SWJ |
33 / S2 | Barrax | Spain | 20/11/2019 | T30SWH |
References
- Chepfer, H.; Goloub, P.; Shinhirne, J.; Flamant, P.H.; Lavorato, M.; Sauvage, L.; Brogniez, G.; Pelon, J. Cirrus cloud properties derived from POLDER-1/ADEOS polarized radiances: First validation using a ground-based lidar network. J. Appl. Meteorol. 2000, 39, 154–168. [Google Scholar] [CrossRef]
- Gao, B.C.; Goetz, A.F.H.; Wiscombe, W. Cirrus cloud detection from airborne imaging spectrometer data using the 1.38 μm water vapor band. Geophys. Res. Letter 1993, 20, 301–304. [Google Scholar] [CrossRef]
- Gao, B.C.; Kaufman, Y.J. Selection of 1.375 μm MODIS channel for remote sensing of cirrus clouds and stratospheric aerosols from space. J. Atmos. Sci. 1995, 52, 4231–4237. [Google Scholar] [CrossRef]
- Gao, B.C.; Kaufman, Y.J.; Han, W.; Wiscombe, W.J. Correction of thin cirrus path radiances in the 0.5–1.0 μm spectral region using the sensitive 1.375 μm cirrus detecting channel. Geophys. Res. Letter 1998, 103, 32169–32176. [Google Scholar] [CrossRef]
- Gao, B.C.; Yang, P.; Li, R.R.; Wiscombe, W.J. An algorithm using visible and 1.38 μm channels to retrieve cirrus cloud reflectances from aircraft and satellite data. IEEE TGRS 2002, 40, 1659–1668. [Google Scholar]
- Gao, B.C.; Meyer, K.; Yang, P. A new concept on remote sensing of cirrus optical depth and effective ice particle size using strong water vapor absorption channels near 1.38 and 1.88 μm. IEEE TGRS 2004, 42, 1891–1899. [Google Scholar] [CrossRef]
- Meyer, K.; Platnick, S. Utilizing the MODIS 1.38 μm channel for cirrus cloud optical thickness retrievals: Algorithm and retrieval uncertainties. J. Geophys. Res. 2010, 115, D24209. [Google Scholar] [CrossRef]
- Thompson, D.R.; Guanter, L.; Berk, A.; Gao, B.C.; Richter, R.; Schläpfer, D.; Thome, K.J. Retrieval of Atmospheric Parameters and Surface Reflectance from Visible and Shortwave Infrared Imaging Spectroscopy Data. Surv. Geophys. 2019, 40, 333–360. [Google Scholar] [CrossRef] [Green Version]
- Markham, B.; Barsi, J.; Kvaran, G.; Ong, L.; Kaita, E.; Biggar, S.; Czapla-Myers, J.; Mishra, N.; Helder, D. Landsat-8 Operational Land Imager Radiometric Calibration and Stability. Remote Sens.. 2014, 6, 12275–12308. [Google Scholar] [CrossRef] [Green Version]
- Drusch, M.; Del Bello, U.; Carlier, S.; Colin, O.; Fernandez, V.; Gascon, F.; Hoersch, B.; Isola, C.; Laberinti, P.; Martimort, P.; et al. Sentinel-2: ESA’s optical high-resolution mission for GMES operational services. Remote Sens. Environ. 2012, 120, 25–36. [Google Scholar] [CrossRef]
- Richter, R.; Wang, X.; Bachmann, M.; Schläpfer, D. Correction of cirrus effects in Sentinel-2 type of imagery. Int. J. Remote Sens. 2011, 32, 2931–2941. [Google Scholar] [CrossRef]
- Ben-Dor, E. A precaution regarding cirrus cloud detection from airborne imaging spectrometer data using the 1.38 μm water vapor band. Remote Sens. Environ. 1994, 50, 346–350. [Google Scholar] [CrossRef]
- Kim, H.W.; Yeom, J.M.; Shin, D.; Choi, S.; Han, K.S.; Roujean, J.L. An assessment of thin cloud detection by applying bidirectional reflectance distribution function model-based background surface reflectance using Geostationary Ocean Color Imager (GOCI): A case study for South Korea. J. Geophys. Res. Atmos. 2017, 122, 8153–8172. [Google Scholar] [CrossRef]
- Zhu, Z.; Woodcock, C.E. Object-based cloud and cloud shadow detection in Landsat imagery. Remote Sens. Environ. 2012, 118, 83–94. [Google Scholar] [CrossRef]
- Zhu, Z.; Wang, S.; Woodcock, C.E. Improvement and expansion of the Fmask algorithm: Cloud, cloud shadow, and snow detection for Landsats 4–7, 8, and Sentinel 2 images. Remote Sens. Environ. 2015, 159, 269–277. [Google Scholar] [CrossRef]
- Frantz, D.; Hass, E.; Uhl, A.; Stoffels, J.; Hill, J. Improvement of the Fmask algorithm for Sentinel-2 images: Separating clouds from bright surfaces based on parallax effects. Remote Sens. Environ. 2018, 215, 471–481. [Google Scholar] [CrossRef]
- Doxani, G.; Vermote, E.; Roger, J.C.; Gascon, F.; Adriaensen, S.; Frantz, D.; Hagolle, O.; Hollstein, A.; Kirches, G.; Li, F.; et al. Atmospheric correction inter-comparison exercise. Remote Sens. 2018, 10, 353. [Google Scholar] [CrossRef] [Green Version]
- European Space Agency (ESA). ACIX I: CEOS-WGCV Atmospheric Correction Inter-Comparison Exercise, 1st Workshop. Available online: https://earth.esa.int/web/sppa/meetings-workshops/acix (accessed on 3 February 2020).
- Makarau, A.; Richter, R.; Schläpfer, D.; Reinartz, P. Combined Haze and Cirrus Removal for Multispectral Imagery. IEEE GRSL 2016, 13, 379–383. [Google Scholar] [CrossRef]
- Richter, R. Correction of satellite imagery over mountainous terrain. Appl. Opt. 1998, 37, 4004–4015. [Google Scholar] [CrossRef]
- Richter, R.; Schläpfer, D.; Müller, A. Operational atmospheric correction for imaging spectrometers accounting for the smile effect. IEEE TGRS 2011, 49, 1772–1780. [Google Scholar] [CrossRef]
- Richter, R.; Schläpfer, D. Atmospheric/Topographic Correction for Satellite Imagery; DLR Report DLR-IB 564-01/2019; German Aerospace Center (DLR): Wessling, Germany, 2019; Available online: https://www.rese-apps.com/pdf/atcor3_manual.pdf (accessed on 28 January 2020).
- Richter, R.; Schläpfer, D. Atmospheric and Topographic Correction (ATCOR Theoretical Background Document); DLR Report DLR-IB 564-03/2019; German Aerospace Center (DLR): Wessling, Germany, 2019; Available online: https://www.rese-apps.com/pdf/atcor_ATBD.pdf (accessed on 28 January 2020).
- Thuillier, G.; Herse, M.; Labs, D.; Foujols, T.; Peetermans, W.; Gillotay, D.; Simon, P.C.; Mandel, H. The solar spectral irrandiance from 200 to 2400 nm as measured by the SOLSPEC spectrometer from the ATLAS and EURECA missions. Sol. Phys. 2013, 214, 1–22. [Google Scholar] [CrossRef]
- Baetens, L.; Desjardins, C.; Hagolle, O. Validation of Copernicus Sentinel-2 Cloud Masks Obtained from MAJA, Sen2Cor, and FMask Processors Using Reference Cloud Masks Generated with a Supervised Active Learning Procedure. Remote Sens. 2019, 11, 433. [Google Scholar] [CrossRef] [Green Version]
- Berk, A.; Bernstein, L.S.; Anderson, G.P.; Acharya, P.K.; Robertson, D.C.; Chetwynt, J.H.; Adler-Golden, S.M. MODTRAN cloud and multiple scattering upgrades with application to AVIRIS. Remote Sens. Environ. 1998, 65, 367–375. [Google Scholar] [CrossRef]
- Berk, A.; Cooley, T.W.; Anderson, G.P.; Acharya, P.K.; Bernstein, L.S.; Leonid Muratov, J.L.; Fox, M.J.; Adler-Golden, S.M.; Chetwynd, J.H.; Hoke, M.L.; et al. MODTRAN5: A reformulated atmospheric band model with auxiliary species and practical multiple scattering options. In Remote Sensing of Clouds and the Atmosphere IX; Schäfer, K.P., Cameron, A., Picard, R.H., Sifakis, N.I., Eds.; SPIE: Bellingham, WA, USA, 2004; Volume 5571, pp. 78–85. [Google Scholar]
- Kaufman, Y.J.; Wald, A.E.; Remer, L.A.; Gao, B.C.; Li, R.R.; Flynn, L. The MODIS 2.1 μm channel—Correlation with visible reflectance for use in remote sensing of aerosol. IEEE TGRS 1997, 35, 1286–1298. [Google Scholar]
- Richter, R.; Schläpfer, D.; Müller, A. An automatic atmospheric correction algorithm for visible/NIR imagery. Int. J. Remote Sens. 2006, 27, 2077–2085. [Google Scholar] [CrossRef]
- Vermote, E.; Justice, C.; Claverie, M.; Franch, B. Preliminary analysis of the performance of the Landsat 8/OLI land surface reflectance product. Remote Sens. Environ. 2016, 185, 46–56. [Google Scholar] [CrossRef]
- Gao, B.C.; Li, R.R. Removal of Thin Cirrus Scattering Effects in Landsat 8 OLI Images Using the Cirrus Detecting Channel. Remote Sens. 2017, 9, 834. [Google Scholar] [CrossRef] [Green Version]
Landsat-8 Bands | Resolution (m) | Sentinel-2 Bands | Resolution (m) |
---|---|---|---|
band 1 (0.43–0.45) | 30 | band 1 (0.433–0.453) | 60 |
band 2 (0.45–0.51) | 30 | band 2 (0.458–0.523) | 10 |
band 3 (0.53–0.59) | 30 | band 3 (0.543–0.578) | 10 |
band 4 (0.64–0.67) | 30 | band 4 (0.650–0.680) | 10 |
band 5 (0.85–0.88) | 30 | band 5 (0.698–0.713) | 20 |
band 6 (1.57–1.65) | 30 | band 6 (0.733–0.748) | 20 |
band 7 (2.11–2.29) | 30 | band 7 (0.765–0.785) | 20 |
band 8 (0.50–0.68) | 15 | band 8 (0.785–0.900) | 10 |
band 9 (1.36–1.38) | 30 | band 8a(0.855–0.875) | 20 |
band 10 (10.60–11.19) | 30 | band 9 (0.930–0.950) | 60 |
band 11 (11.50–12.51) | 30 | band 10 (1.365–1.385) | 60 |
band 11 (1.565–1.655) | 20 | ||
band 12 (2.100–2.280) | 20 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schläpfer, D.; Richter, R.; Reinartz, P. Elevation-Dependent Removal of Cirrus Clouds in Satellite Imagery. Remote Sens. 2020, 12, 494. https://doi.org/10.3390/rs12030494
Schläpfer D, Richter R, Reinartz P. Elevation-Dependent Removal of Cirrus Clouds in Satellite Imagery. Remote Sensing. 2020; 12(3):494. https://doi.org/10.3390/rs12030494
Chicago/Turabian StyleSchläpfer, Daniel, Rudolf Richter, and Peter Reinartz. 2020. "Elevation-Dependent Removal of Cirrus Clouds in Satellite Imagery" Remote Sensing 12, no. 3: 494. https://doi.org/10.3390/rs12030494
APA StyleSchläpfer, D., Richter, R., & Reinartz, P. (2020). Elevation-Dependent Removal of Cirrus Clouds in Satellite Imagery. Remote Sensing, 12(3), 494. https://doi.org/10.3390/rs12030494