An Aircraft Wetland Inundation Experiment Using GNSS Reflectometry
Abstract
:1. Introduction
2. Experimental Campaign
2.1. Aircraft Flights
2.2. Flight Equipment
2.3. Antenna Calibration
3. Data Processing
3.1. Software Receiver and Geometric Modeling
3.2. Antenna Calibration Data Processing
3.3. Scattering Model
3.4. Surface Spot Size
4. Analysis Data Sets
4.1. Caddo Lake Calibrated Data
4.2. Ancillary Data
4.2.1. Sentinel-1 Data
4.2.2. Landsat Imagery
4.2.3. Landcover Classification Map
5. Results
5.1. Scattering Model
5.2. Estimate of Surface Spot Size
5.3. Caddo Lake
6. Discussion
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Stocker, T.F.; Qin, D.; Plattner, G.-K.; Tignor, M.; Allen, S.K.; Boschung, J.; Nauels, A.; Xia, Y.; Bex, V.; Midgley, P.M. (Eds.) IPCC, 2013: Climate Change 2013: The Physical Science Basis. Contributions of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013. [Google Scholar]
- Melton, J.R.; Wania, R.; Hodson, E.L.; Poulter, B.; Ringeval, B.; Spahni, R.; Bohn, T.; Avis, C.A.; Beerling, D.J.; Chen, G.; et al. Present state of global wetland extent and wetland methane modelling: Conclusions from a model inter-comparison project (WETCHIMP). Biogeosciences 2013, 10, 753–788. [Google Scholar] [CrossRef] [Green Version]
- Ringeval, B.; de Noblet-Ducoudré, N.; Ciais, P.; Bousquet, P.; Prigent, C.; Papa, F.; Rossow, W.B. An attempt to quantify the impact of changes in wetland extent on methane emissions on the seasonal and interannual time scales. Glob. Biogeochem. Cycles 2010, 24, GB2003. [Google Scholar] [CrossRef] [Green Version]
- Shindell, D.T.; Walter, B.P.; Faluvegi, G. Impacts of climate change on methane emissions from wetlands. Geophys. Res. Lett. 2004, 31, 21. [Google Scholar] [CrossRef]
- Catry, T.; Li, Z.; Roux, E.; Herbreteau, V.; Gurgel, H.; Mangeas, M.; Seyler, F.; Dessay, N. Wetlands and Malaria in the Amazon: Guidelines for the Use of Synthetic Aperture Radar Remote-Sensing. Int. J. Environ. Res. Public Health 2018, 15, 368. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gopal, B. Future of wetlands in tropical and subtropical Asia, especially in the face of climate change. Aquat. Sci. 2013, 75, 39–61. [Google Scholar] [CrossRef]
- Pekel, J.F.; Cottam, A.; Gorelick, N.; Belward, A.S. High-resolution mapping of global surface water and its long-term changes. Nature 2016, 540, 418–422. [Google Scholar] [CrossRef] [PubMed]
- Schroeder, R.; McDonald, K.; Chapman, B.; Jensen, K.; Podest, E.; Tessler, Z.; Bohn, T.; Zimmermann, R. Development and evaluation of a multi-year fractional surface water data set derived from active/passive microwave remote sensing data. Remote Sens. 2015, 7, 16688–16732. [Google Scholar] [CrossRef] [Green Version]
- Du, J.; Kimbal, J.; Galantowicz, J.; Kim, S.; Chan, S.; Reichle, R.; Jones, L.; Watts, J. Assessing global surface water inundation dynamics using combined satellite information from SMAP, AMSR2 and Landsat. Remote Sens. Environ. 2018, 213, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Martinez, J.M.; le Toan, T. Mapping of flood dynamics and spatial distribution of vegetation in the Amazon floodplain using multitemporal SAR data. Remote Sens. Environ. 2007, 108, 209–223. [Google Scholar] [CrossRef]
- Nghiem, S.V.; Zuffada, C.; Shah, R.; Chew, C.; Lowe, S.; Mannucci, A.; Cardellach, E.; Brakenridge, G.; Geller, G.; Rosenqvist, A. Wetland monitoring with global navigation satellite system reflectometry. Earth Sp. Sci. 2017, 4, 16–39. [Google Scholar] [CrossRef] [PubMed]
- Jensen, K.; McDonald, K.; Podest, E.; Rodríguez-Álvarez, N.; Horna, V.; Steiner, N. Assessing L-band GNSS-Reflectometry and Imaging Radar for Detecting Sub-Canopy Inundation Dynamics in a Tropical Wetlands Complex. Remote Sens. 2018, 10, 1431. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez-Alvarez, N.; Podest, E.; Jensen, K.; McDonald, K. Classifying Inundation in a Tropical Wetlands Complex with GNSS-R. Remote Sens. 2019, 11, 1053. [Google Scholar] [CrossRef] [Green Version]
- Morris, M.; Chew, C.; Reager, J.T.; Shah, R.; Zuffada, C. A novel approach to monitoring wetland dynamics using CYGNSS: Everglades case study. Remote Sens. Environ. 2019, 233, 111417. [Google Scholar] [CrossRef]
- Zribi, M.; Motte, E.; Baghdadi, N.; Baup, F.; Dayau, S.; Fanise, P.; Guyon, D.; Huc, M.; Wigneron, J. Potential Applications of GNSS-R Observations over Agricultural Areas: Results from the GLORI Airborne Campaign. Remote Sens. 2018, 10, 1245. [Google Scholar] [CrossRef] [Green Version]
- Egido, A.; Paloscia, S.; Motte, E.; Guerriero, L.; Pierdicca, N.; Caparrini, M.; Santi, E.; Fontanelli, G.; Floury, N. Airborne GNSS-R polarimetric measurements for soil moisture and above-ground biomass estimation. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 1522–1532. [Google Scholar] [CrossRef]
- Chew, C.C.; Small, E.E. Soil Moisture Sensing Using Spaceborne GNSS Reflections: Comparison of CYGNSS Reflectivity to SMAP Soil Moisture. Geophys. Res. Lett. 2018, 45, 4049–4057. [Google Scholar] [CrossRef] [Green Version]
- Chew, C.C.; Shah, R.; Zuffada, C.; Hajj, G.; Masters, D.; Mannucci, A.J. Demonstrating soil moisture remote sensing with observations from the UK TechDemoSat-1 satellite mission. Geophys. Res. Lett. 2016, 43, 3317–3324. [Google Scholar] [CrossRef] [Green Version]
- Comite, D.; Ticconi, F.; Dente, L.; Guerriero, L.; Pierdicca, N. Bistatic Coherent Scattering from Rough Soils with Application to GNSS Reflectometry. IEEE Trans. Geosci. Remote Sens. 2019, 58, 612–625. [Google Scholar] [CrossRef]
- Ulaby, F.; Moore, R.; Fung, A. Microwave Remote Sensing: Active and Passive; Addison-Wesley Publishing Company: Boston, MA, USA, 1982; p. 02116. [Google Scholar]
- Stefanski, J. Step by Step: Recommended Practice Flood Mapping. UN-SPIDER Knowledge Portal. 2015. Available online: http://www.un-spider.org/ (accessed on 2 September 2019).
- Data Server for Caddo Lake Information. 2017. Available online: http://caddolakedata.us/maps (accessed on 9 September 2019).
- Camps, A. Spatial Resolution in GNSS-R Under Coherent Scattering. IEEE Geosci. Remote Sens. Lett. 2019, 17, 1–5. [Google Scholar] [CrossRef]
Abbreviation | General Class | Specific Class | Wetland ID |
---|---|---|---|
OW | open water | open water | L1UBHh |
EM1 | emergents | emergent reeds, semipermanently flooded | PEM5/FLCh |
EM2 | emergents | emergent reeds, permanently flooded | PEM5/UBFH |
EM3 | emergents | emergent reeds, seasonally flooded | PEM5C |
CF1 | cypress forests | broad-leaved deciduous, scrub-shrub temporarily flooded | PFO/SS1A |
CF2 | cypress forests | needle-leaved deciduous, scrub-shrub semipermanently flooded | PFO/SS2F |
BH1 | bottomland hardwoods | broad-leaved deciduous, temporarily flooded | PFO1A |
BH2 | bottomland hardwoods | broad-leaved deciduous, seasonally flooded | PFO1C |
CF3 | cypress forests | needle-leaved deciduous, semipermanently flooded | PFO2/1F |
CF4 | cypress forests | needle-leaved deciduous, seasonally flooded | PFO2/UBCh |
CF5 | cypress forests | needle-leaved deciduous, semipermanently flooded | PFO2/UBF |
CF6 | cypress forests | needle-leaved deciduous, intermittently exposed | PFO2/UBG |
PFCF1 | permanently flooded cypress forests | needle-leaved deciduous, permanently flooded | PFO2/UBH |
CF7 | cypress forests | needle-leaved deciduous, semipermanently flooded | PFO2F |
CF8 | cypress forests | needle-leaved deciduous, intermittently exposed | PFO2Gh |
CF9 | cypress forests | dead forest, permanently flooded | PFO5/UBHh |
CF10 | cypress forests | deciduous, temporarily flooded | PFO6A |
CF11 | cypress forests | deciduous, seasonally flooded | PFO6C |
SSW1 | scrub-shrub wetlands | scrub-shrub broad-leaved deciduous, temporarily flooded | PSS1A |
SSW2 | scrub-shrub wetlands | scrub-shrub broad-leaved deciduous, seasonally flooded | PSS1C |
SSW3 | scrub-shrub wetlands | scrub-shrub broad-leaved deciduous, semipermanently flooded | PSS1F |
SSW4 | scrub-shrub wetlands | scrub-shrub needle-leaved deciduous, permanently flooded | PSS2/UBHh |
U | upland | upland | U |
EM4 | emergents | emergent reeds, evergreen semipermanently flooded | PEM5/AB7F |
EM5 | emergents | emergent reeds, temporarily flooded | PEM5A |
SSW5 | scrub-shrub wetlands | scrub-shrub, needle-leaved deciduous intermittently exposed | PSS2/UBG |
SSW6 | scrub-shrub wetlands | scrub-shrub, broad-leaved deciduous semipermanently flooded | PSS1/EMFh |
CF12 | cypress forests | broad-leaved deciduous, seasonally flooded | PFO/SS1C |
EM6 | emergents | emergent persistent semipermanently flooded | PEM1Fh |
EM7 | emergents | emergent reeds semipermanently flooded | PEM5Fh |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lowe, S.T.; Chew, C.; Shah, J.; Kilzer, M. An Aircraft Wetland Inundation Experiment Using GNSS Reflectometry. Remote Sens. 2020, 12, 512. https://doi.org/10.3390/rs12030512
Lowe ST, Chew C, Shah J, Kilzer M. An Aircraft Wetland Inundation Experiment Using GNSS Reflectometry. Remote Sensing. 2020; 12(3):512. https://doi.org/10.3390/rs12030512
Chicago/Turabian StyleLowe, Stephen T., Clara Chew, Jesal Shah, and Michael Kilzer. 2020. "An Aircraft Wetland Inundation Experiment Using GNSS Reflectometry" Remote Sensing 12, no. 3: 512. https://doi.org/10.3390/rs12030512