1. Introduction
The Amazon rainforest is the largest moist broadleaf tropical forest on the planet [
1]. It covers about
million km
in the Northern Latin America, encompassing nine different nations—Brazil, Peru, Ecuador, Colombia, Bolivia, Venezuela, Guyana, Suriname, and French Guiana. The Amazon basin has a world-wide importance since it hosts about
of the world’s species of plants and animals, offering food and resources supplies to large populations [
2]. The rainforest strongly impacts Earth dynamics by regulating the water cycle. Indeed, the amount of water in the atmosphere is influenced by plants transpiration, which is the process through which plants release water from their leaves during photosynthesis, contributing to the formation of rain clouds [
3]. Nevertheless, the rainforest acts as a sink that drains heat-trapping carbon dioxide from the atmosphere (about 2 billion tons of
per year and produce about
of the Earth’s oxygen [
4]) contrasting global warming.
The whole Amazon basin is currently under threat mainly because of unregulated human activities, including illegal deforestation and devastating fires, set to clear acreage for ranching and agriculture, as well as the mining of copper, iron, gold, oil, and gas. The use of spaceborne Synthetic Aperture Radar (SAR) systems represents a very promising solution for the monitoring of land cover changes in the rainforest. The main characteristic that favors them over optical and laser sensors is their capability to acquire consistent data also in cloud-covered conditions, which hide the Amazon rainforest from view for most of the whole wet season. In the last five years innovative global forest/non-forest maps have been generated using radar sensors, such as the forest/non-forest maps derived from the ALOS/PALSAR SAR backscatter at L band [
5] or from the single-pass volume correlation coefficient estimated from the Interferometric SAR (InSAR) coherence of the X-band bistatic TanDEM-X system [
6]. In this context a novel methodology for large-scale land cover maps generation, based on the combination of both backscatter and interferometric information from repeat-pass short-time-series has been developed in [
7] and tested on Sentinel-1 (S-1) data acquired over Europe.
The Sentinel-1 constellation comprises two C-band Dual-pol SAR satellites sharing the same orbit plane with a
orbital phasing difference. The main goal of S-1 mission is to provide a frequent operational interferometric capability (6 days repeat-pass), neighbouring the acquisitions within a thin orbital tube of 100 m (root mean square) diameter [
8] and covering large areas using the Interferometric Wide swath (IW) mode, a single-pass multi-swath scanning burst mode based on the Terrain Observation with Progressive Scans (TOPS) acquisition geometry [
9,
10].
In this paper, we extend and improve the concepts presented in [
7] to the rainforest mapping problem, by considering short-time-series acquired at six days revisit time over the Rondonia state, Brazil. Additionally to backscatter and temporal decorrelation contribution, we introduce new features for the classification, based on the analysis of the textural content from SAR backscatter, which allow for an improvement of the final accuracy. The results are validated using an independent external reference map and confirm the high potential of the developed methodology for forest monitoring purposes.
The paper is organized in six sections.
Section 2 recalls the theoretical basics presented in [
7] and introduces the proposed textural information to be used as input classification feature.
Section 3 describes the updated processing chain used for the generation of forest/non-forest maps from interferometric short-time-series. Then,
Section 4 describes the materials used in this work, namely the Sentinel-1 short-time-series acquired over the state of Rondonia, in Brazil, and the external reference used for the training and validation of the classification algorithm. The experimental results are reported in
Section 5, followed by their discussion in
Section 6 and, finally, the conclusions are drawn in
Section 7.
3. Method
As stated in the introduction, the methodology adopted in our system is based on the one developed in [
7], which relies on the use of a monthly interferometric time-series.
Figure 1 depicts the new processing chain with the integration of the SADH textures.
The pre-processing steps for the generation of the feature matrices in input to the classifier consist of a coregistration between the interferometric pair followed by an independent analysis of the information retrieved from the radar backscatter and interferometric coherence. As usually done in differential InSAR (DInSAR) applications, all the images in the time-series are coregistered with respect to a common master acquisition, selected as the one in the middle of the temporal stack. Secondly, the backscatter and the coherence from all the possible image pair combinations are estimated by using a moving average filter with a common window size. A boxcar filter with a fixed-size window of pixels was chosen according to:
the resolution of S-1 IW mode along azimuth and ground range, 14 m × 3.7 m respectively,
the common goal of having a window centered in the current estimated pixel.
Accordingly, the output resolution is an almost square cell of 70 m × 70.3 m. Regarding the multi-temporal InSAR processing chain, we used the exponential decay model proposed in [
7], and recalled in
Section 2.1, to fit for each pixel the estimated coherence samples at different temporal baselines. Two key parameters, namely the decorrelation constant
and the long-term coherence
, are eventually retrieved.
For the backscatter measurement, we consider the projection of the radar brightness on the plane perpendicular to the line of sight, known in literature as the
coefficient [
21], and we investigate its spatial dependencies in order to extract texture features. On the one hand, we estimated the multi-temporal
coefficient by averaging along the temporal dimension and then spatially multi-looking using the same boxcar filter used for the InSAR processing, as suggested in [
7]. On the other hand, for the computation of the spatial textures, we considered the multi-temporal mean
without applying any spatial multi-looking process. Indeed, at full resolution, the characteristics of different scattering mechanisms can be better preserved. For the application of the SADH method, we set the domain
D to
pixels and the number of gray levels
, in order to obtain a final output resolution which is consistent with the one of the other estimated parameters
,
, and
.
Finally, the feature extraction using the SADH method is repeated twice, considering the most significant displacement vectors along both the azimuth
and the slant-range
directions. In
Figure 1 we named these two set of textures as
and
, respectively.
After geocoding, all the previously described feature maps are posted to the final resolution of 50 m × 50 m and serve as input to a Random Forests (RF) classifier. As in [
7], we considered the Gini index as impurity measurement for the classifier and we set the number of estimators, that is, the number of decision trees, and the minimum number of samples in a leaf node to 50.
Following the branches of the block diagram in
Figure 1, a set of S-1 short-time-series can be downloaded and processed, deriving a total of 22 feature maps, 18 textures plus the 4 parameters proposed in [
7].
Table 1 summarizes the complete set of features considered in this work.
In
Section 5 we present the results of the Random Forests classifier in two different cases, characterized by a different set of input features:
case (ORIG): , , , and ,
case (SADH): , , , , , and .
In case
(ORIG) we apply the exact algorithm of [
7], which represents our baseline. In case
(SADH), we additionally use the whole 18 textures extracted from
by using the SADH method. In this context, we preliminary measured the Pearson’s correlation coefficient of all the possible combinations of input features and verified that no strong correlated features, either complete decorrelated ones, were present. For this reason, we use all the generated features as input to the Random Forests algorithm.
The comparison between the results is based on the evaluation of the average accuracy (
) and the overall accuracy (
) for all the test areas, considering all the valid pixels in the image under test. Given
P classes, the associated confusion matrix
C assumes in general the following form:
where the elements along the main diagonal,
, represent the correctly predicted pixels for each class
, that is, they are called class accuracies, and the sum of the elements along each column
j corresponds to the number of pixels belonging to each class
. The average accuracy defines the mean of each accuracy per single class, that is, the sum of class accuracies divided by the number of classes, while the overall accuracy corresponds to the number of correctly predicted pixels divided by the total number of pixels to predict, that is, the sum of all elements in
C. In particular, the respective formulas associated with the two metrics are:
and
While the overall accuracy assesses the global performance of the classifier, the average accuracy further accounts for accuracy unbalancing between the different classes.
4. Materials
The study area covers an extended region over the state of Rondonia, Brazil (approximately 238 thousand km), comprised between and latitude South and and longitude West. This area has become of primary interest, since it is one of the most deforested places in the Amazon basin. Furthermore, since the end of April 2019 the European Space Agency (ESA) has planned a 6-days repeat-pass coverage with the Sentinel-1a and Sentinel-1b satellites in order to monitor the state of the rainforest.
Within this large study area, we downloaded and processed a set of 12 S-1 short-time-series in the framework explained in
Figure 1, extracting for each stack the 22 feature maps described in
Section 3.
According to
Section 3, interferometric stacks of five acquisitions, corresponding to an observation time of 30 days, were coregistered with respect to a master image, chosen as the one in the middle of the acquisitions. As presented in
Figure 2 stacks belonging to a certain relative orbit have the same master date and all of these dates are centered around an average date, named acquisitions centroid. The provided 12 common swaths are described in
Table 2 and further details can be found in
Table A1, while the location of the 12 footprints, superimposed on Google Earth, are depicted in
Figure 3. Here, the external reference map FROM-GLC (described in the following) is displayed. From a first visual inspection of
Figure 3, some void areas can be identified along the orbit planes. These gaps are due to the misalignment in azimuth between S-1A and S-1B acquisitions and the stringent coregistration requirements for TOPS data. The varying squint (during the acquisition of a burst) causes a large variation of the Doppler centroid within the burst itself and a coregistration error results in a different phase ramp for different bursts, leading to consequently undesired phase jumps between subsequent bursts. In order to ensure a proper coregistration of the data, the enhanced spectral diversity (ESD) technique is applied to the overlapping areas between adjacent bursts [
10,
22,
23]. This approach provides results with accuracy of few centimeters if the overlapping area is sufficiently extended. In correspondence of those gaps this constraint is unfortunately not respected and the interferometric results are therefore not trustworthy.
For both training and validation we used a modified version of the Finer Resolution Observation and Monitoring of Global Land Cover (FROM-GLC) map [
24]. This reference is a global land cover map generated using a Random Forests classifier, trained on Landsat Thematic Mapper (TM) and Enhanced Thematic Mapper Plus (ETM+) data and updated to 2017 using additional Sentinel-2 data. Since the FROM-GLC map comprises an inventory of 10 land cover classes, we first grouped them into four macro-classes: artificial surfaces (ART), forests (FOR), non-forested areas (NFR), and water bodies and unclassified or no data as invalids (INV), as shown in
Table 3. Secondly, because of the difficulty in finding reliable reference data over the Amazon basin, we discarded all the possible temporal inconsistencies between FROM-GLC reference and Sentinel-1, by relying on the PRODES (Programa de Cálculo do Desflorestamento da Amazônia) digital map [
25]. PRODES is a ground polygon inventory derived from visual inspection of optical data and depicts new deforested areas on a yearly base. We therefore extracted from PRODES the polygons corresponding to new cuts occurred between 2017 and 2019 and we set them as invalid samples in the FROM-GLC map, obtaining a more reliable map that, for the sake of simplicity, we named REF.
Figure 4 shows the external REF reference map (left), represented as the FROM-GLC 2017 of
Figure 3 with in yellow the clearcuts (CUT) marked by PRODES between 2017 and 2019. Those pixels were grouped to the class invalids (INV), then, discarded in both the training and the validation.
Moreover, a further analysis by means of high-resolution multi-spectral Sentinel-2 (S-2) data is presented in
Section 5. In order to avoid unwanted effects caused by the presence of clouds, we selected the best S-2 acquisition within the analyzed time span accordingly to the past weather information [
26]. From a visual inspection and a check of the cloud shadow mask available in the Level 2A product, we considered the acquisitions on the 16 May 2019 as the most reliable one.
5. Results
The experiments were conducted by splitting the twelve stacks of
Table 2 into validation and training swaths. The former were selected in order to cover a strip of about 250 km × 1000 km crossing the Rondonia state, as shown in
Figure 4, and they correspond to the stacks of the relative orbit 83, marked with asterisks in
Table 2. The other swaths were chosen for training the Random Forests algorithm: in particular, we selected 5 million pixels for each of the considered classes. According to the Random Forests common issues for the training stage [
27], these samples were randomly selected from all the training swaths, with the exception of the pixels of the class ART, artificially replicated because of the poor data availability. In this way, we were able to generate a well-balanced training data set. In this paper, we first concentrate on the algorithm performance assessment over a large-scale area located along the S-1 relative orbit plane number 83, and, more specifically, comprising stacks 6, 7, 8, and 9 in
Table 2. Secondly, we analyze four significant patches of
pixels, selected within the swath corresponding to stack 7 in
Table 2.
5.1. Large-Scale Classification
In this first analysis we concentrate on the results obtained by applying the proposed algorithm to the large-scale area shown in
Figure 4, where a comparison between the REF reference map and case
(SADH) for the four swaths acquired with orbit number 83 is presented. The performance analysis is carried out using both the overall and average accuracy parameters denoted as OA and AA, respectively, and
Table 4 summarizes the two metrics for each of the four stacks, considering the set of inputs in case
(ORIG) and in case
(SADH).
5.2. Analysis of Single Patches
In the following we consider the S-1 swath corresponding to stack 7 in
Table 2 and we provide a performance analysis of our proposed algorithm over selected patches, in order to analyze specific details in the images. As shown in
Figure 5, we select four small patches of
pixels, extending by about 25 km × 25 km on ground. Patches (a) and (b) are characterized by the presence of urban areas, that is, the municipalities of Porto Velho and Ariquemes, respectively, while patches (c) and (d) identify stable regions of cropland mixed with remaining rainforest areas. Similarly to
Section 5.1, we summarize the results of the patches in
Figure 6 and
Table 5, which describes the OA and AA for each patch, in both the input configurations, case
(ORIG) and case
(SADH).
6. Discussion
In this section, the experimental results presented in
Section 5 are discussed in the same order, starting from the large-scale classification analysis of
Section 5.1. In
Table 4 all considered swaths are characterized by an overall accuracy above 82.50% and 84.26% for the
(ORIG) and
(SADH) cases, respectively, by considering all valid pixels within the images. Again, the additional information of the SADH textures increases both the OA and the AA of at least 1.5% in all four swaths. In particular, the use of the SADH textures allows the Random Forests to improve the detection performance, especially for the ART and NFR classes, depicted in blue and red, respectively, in
Figure 4 and better visible with the analysis of the global confusion matrices in
Figure 7.
Figure 8 shows the pie charts related to the feature importance in the two considered cases ORIG (a) and SADH (b) by grouping all the texture features together. We notice that the set of texture features has quite a strong relevance in the Random Forests prediction and improves the classification accuracy presented in
Table 4. Furthermore, in
Figure 8c we show how the features importance is distributed for the 18 SADH textures only, partitioning the green slice of the pie chart in
Figure 8b only. Here we can see how the entropy (
ENT) plays a key role among all other features, while the less informative is the pure variance (
VAR).
Moreover, during the investigation, we noted that an additional source of inconsistency between the reference and the resulting classification map is given by the different semantic interpretation of radar and optical sensors over some areas characterized by the presence of rough terrain and sparse vegetation. As an example, we analyze the white patch in
Figure 4, of size
pixels, corresponding to a portion of stack 8 in
Table 2. It corresponds to an area of the Pacaás Novos National Park. As reported in the corresponding S-2 RGB map of
Figure 9 that area comprises a plateau with a peak in the upper-right side of the patch, called mount Tracoa. Through a visual comparison between the NDVI and RGB maps, retrieved from the S-2 acquisition of 2019, and the REF reference of 2017, it is now clear that the latter is not really sensitive to the presence of low and sparse vegetation. On the other hand, the result obtained from case
(SADH) clearly show the same patterns visible within the optical data. The reader should therefore be aware that these kinds of discrepancies, even if they actually represent a source of information, might slightly decrease the computed performance of the proposed methodology, calculated by considering the REF only as external reference map.
By observing the REF reference and the results of case (ORIG) and case (SADH) in
Figure 6, it can be seen how the introduction of the texture information in case
(SADH) helps improving the classification with respect to case
(ORIG), by better isolating urban areas and closing gaps over forested areas. This is confirmed by the corresponding accuracy values in
Table 5, where a positive increment of both the overall and average accuracy,
and
, respectively, is detected. In particular, in patches (a) and (b), textures are helpful to better classify small details in man-made structures. This results in a slight increase of the overall accuracy (between 1.29% and 1.78%), together with a more relevant improvement in the average accuracy as well (between 2.21% and 6.02%). In patch (c), the inclusion of SADH textures provides a better segmentation of the class
forests (FOR) with respect to the classification results obtained using the sole interferometric and backscattering parameters. The random noise-like misclassification occurrencies are reduced, resulting in an increase of both OA and AA, which varies between 1.12% and 2.10%. Finally, in patch (d) the introduction of textures also allows for correctly classifying bare soil areas as
non-forested areas (NFR), which would otherwise result in misclassified
artificial surfaces (ART).
As a further comment, although this first analysis demonstrates the improvement obtained by using the SADH textures for all the considered patches, patch (a) presents lower values of accuracy with respect to the other ones even when considering case
(SADH), with an overall and average accuracy of 73.60% and 78.15%, respectively. Such low values are mainly caused by the time difference between the Sentinel-1 acquisitions (April–May 2019) and the REF reference map from 2017. Indeed, this is confirmed by observing the True Color (RGB) and the Normalized Difference Vegetation Index (NDVI) maps from a Sentinel-2 acquisition of 16 May 2019, depicted in the last two columns of
Figure 6. The RGB map shows how the city of Porto Velho, the capital of Rondonia, is more extended with respect to 2017, especially on the top-right corner of patch (a). Similar inconsistencies can also be found in patch (b) when observing both the urban and the deforested areas. For example, with respect to the reference REF map, a squared re-vegetated area can be detected at the top-left corner of patch (b), whose presence is again confirmed by the NDVI index extracted from the Sentinel-2 acquisition of 2019.
7. Conclusions
The work that we presented in this paper demonstrates the high potential of multi-temporal interferometric short-time-series for forest mapping purposes and, in particular, for an effective monitoring of the Amazon rainforest. By combining the information retrieved from backscatter, together with temporal interferometric parameters and spatial textures, it is possible to produce accurate large-scale forest maps at regular intervals. In particular, the introduction of backscatter spatial textures, with respect to the previous stand of the technique, allows for the achievement of a consistent improvement of the final classification accuracy at the cost of a moderate increase of computational effort thanks to the SADH method implementation. The use of backscatter spatial textures significantly improves the correct discrimination between non-forested areas and artificial surfaces.
As case study, we selected an area over the Rondonia State, Brazil, characterized by the availability of six-days repeat-pass Sentinel-1 interferometric time-series, acquired over an overall period of 30 days only (short-time-series), achieving accuracy values always above 80%. It is worth noting that some inconsistencies between the obtained results and the external reference map are not due to effective misclassification, but to the different acquisition time frame between the generated maps and the external reference. This is confirmed by the additional analysis of Sentinel-2 optical data, acquired during the same time span.
The proposed methodology sets the basis for the development of an operational framework for the effective monitoring of forest changes at a monthly rate, by performing change detection between subsequent multi-temporal stacks. This last aspect is of great interest for the development of an early-warning system, which could effectively support the deputy authorities to identify illegal deforestation hot-spots and therefore protect the rainforest resources.