Detecting and Repairing Inter-system Bias Jumps with Satellite Clock Preprocessing
Abstract
:1. Introduction
2. Materials, Methods and Motivation
2.1. Experimental Data
2.2. Estimation Model and Processing Strategies
2.2.1. BDS/GPS PPP Model for ISB Estimation
2.2.2. Processing Strategies
2.3. The Incentive of Precise Satellite Clock Preprocessing
3. Results and Discussion
3.1. Conversion from Time Domain into Frequency Domain
3.2. Detection of Small Extrema in CFD
3.3. Classification of CFD Extrema and Clock Preprocessing
3.4. Improvement of the ISB Continuity
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Montenbruck, O.; Steigenberger, P.; Prange, L.; Deng, Z.; Zhao, Q.; Perosanz, F.; Romero, I.; Noll, C.; Stürze, A.; Weber, G.; et al. The Multi-GNSS Experiment (MGEX) of the International GNSS Service (IGS)–Achievements, prospects and challenges. Adv. Space Res. 2017, 59, 1671–1697. [Google Scholar] [CrossRef]
- Gu, S.; Lou, Y.; Shi, C.; Liu, J. BeiDou phase bias estimation and its application in precise point positioning with triple-frequency observable. J. Geod. 2015, 89, 979–992. [Google Scholar] [CrossRef]
- Odolinski, R.; Teunissen PJ, G.; Odijk, D. Combined BDS, Galileo, QZSS and GPS single-frequency RTK. GPS Solut. 2015, 19, 151–163. [Google Scholar] [CrossRef]
- Chen, J.; Wang, J.; Zhang, Y.; Yang, S.; Chen, Q.; Gong, X. Modeling and Assessment of GPS/BDS Combined Precise Point Positioning. Sensors 2016, 16, 1151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lou, Y.; Zheng, F.; Gu, S.; Wang, C.; Guo, H.; Feng, Y. Multi-GNSS precise point positioning with raw single-frequency and dual-frequency measurement models. GPS Solut. 2016, 20, 849–862. [Google Scholar] [CrossRef]
- Choy, S.; Bisnath, S.; Rizos, C. Uncovering common misconceptions in GNSS Precise Point Positioning and its future prospect. GPS Solut. 2017, 21, 13–22. [Google Scholar] [CrossRef]
- Li, X.; Zhang, X.; Ren, X.; Fritsche, M.; Wickert, J.; Schuh, H. Precise positioning with current multi-constellation Global Navigation Satellite Systems: GPS, GLONASS, Galileo and BeiDou. Sci. Rep. 2015, 5, 8328. [Google Scholar] [CrossRef] [PubMed]
- Torre, A.D.; Caporali, A. An analysis of intersystem biases for multi-GNSS positioning. GPS Solut. 2015, 19, 297–307. [Google Scholar] [CrossRef]
- Montenbruck, O.; Hauschild, A.; Hessels, U. Characterization of GPS/GIOVE sensor stations in the CONGO network. GPS Solut. 2011, 15, 193–205. [Google Scholar] [CrossRef]
- Tegedor, J.; Øvstedal, O.; Vigen, E. Precise orbit determination and point positioning using GPS, Glonass, Galileo and BeiDou. J. Geod. Sci. 2014, 4, 65–73. [Google Scholar] [CrossRef] [Green Version]
- Paziewski, J.; Wielgosz, P. Accounting for Galileo–GPS inter-system biases in precise satellite positioning. J. Geod. 2015, 89, 81–93. [Google Scholar] [CrossRef] [Green Version]
- Zhang, B.; Teunissen PJ, G.; Yuan, Y. On the short-term temporal variations of GNSS receiver differential phase biases. J. Geod. 2017, 91, 563–572. [Google Scholar] [CrossRef] [Green Version]
- Jiang, N.; Xu, Y.; Xu, T.; Xu, G.; Sun, Z.; Schuh, H. GPS/BDS short-term ISB modelling and prediction. GPS Solut. 2017, 21, 163–175. [Google Scholar] [CrossRef] [Green Version]
- Zeng, A.; Yang, Y.; Ming, F.; Jing, Y. BDS–GPS inter-system bias of code observation and its preliminary analysis. GPS Solut. 2017, 21, 1573–1581. [Google Scholar] [CrossRef]
- Jiang, N.; Xu, T.; Xu, Y.; Xu, G.; Schuh, H. Assessment of Different Stochastic Models for Inter-System Bias between GPS and BDS. Remote Sens. 2019, 11, 989. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Li, J.; Wang, A.; Xu, J.; He, H.; Guo, H.; Shen, J.; Dai, X. Preliminary assessment of the navigation and positioning performance of BeiDou regional navigation satellite system. Sci. China Earth Sci. 2014, 57, 144–152. [Google Scholar] [CrossRef]
- Zumberge, J.F.; Heflin, M.B.; Jefferson, D.C.; Watkins, M.M.; Webb, F.H. Precise point positioning for the efficient and robust analysis of GPS data from large networks. J. Geophys. Res. 1997, 102, 5005–5017. [Google Scholar] [CrossRef] [Green Version]
- Dach, R.; Schaer, S.; Lutz, S.; Meindl, M.; Beutler, G. Combining the Observations from Different GNSS. Agu. Fall Meet. Abstr. 2010, 12, 1–10. [Google Scholar]
- Geng, J.; Meng, X.; Dodson, A.H.; Teferle, F.N. Integer ambiguity resolution in precise point positioning: Method comparison. J. Geod. 2010, 84, 569–581. [Google Scholar] [CrossRef] [Green Version]
- Defraigne, P.; Bruyninx, C. On the link between GPS pseudorange noise and day-boundary discontinuities in geodetic time transfer solutions. GPS Solut. 2007, 11, 239–249. [Google Scholar] [CrossRef]
- Ge, M.; Gendt, G.; Rothacher, M.; Shi, C.; Liu, J. Resolution of GPS carrier-phase ambiguities in Precise Point Positioning (PPP) with daily observations. J. Geod. 2008, 82, 389–399. [Google Scholar] [CrossRef]
- Zhou, F.; Dong, D.; Li, P.; Li, X.; Schuh, H. Influence of stochastic modeling for inter-system biases on multi-GNSS undifferenced and uncombined precise point positioning. GPS Solut. 2019, 23, 59. [Google Scholar] [CrossRef]
- US Department of Commerce; NIST. Handbook of Frequency Stability Analysis; NIST: Gaithersburg, MD, USA, 2007; Volume 1065, pp. 1–123.
- Yang, Y.; He, H.; Xu, G. Adaptively robust filtering for kinematic geodetic positioning. J. Geod. 2001, 75, 109–116. [Google Scholar] [CrossRef]
- Huang, G.; Zhang, Q.; Li, H.; Fu, W. Quality variation of GPS satellite clocks on-orbit using IGS clock products. Adv. Space Res. 2013, 51, 978–987. [Google Scholar] [CrossRef]
Station Name | Receiver Types and Firmware Ver. | Distributions |
---|---|---|
HKSL | Leica GRX1200 + GNSS/6.404 | 22.372N, 113.928E |
HKWS | Leica GRX1200 + GNSS/6.404 | 22.434N, 114.335E |
HKOH | Leica GRX1200 + GNSS/6.404 | 22.248N, 114.229E |
JFNG | Trimble NeTR9/5.01 | 30.516N, 114.491E |
SIN1 | Trimble NeTR9/5.01 | 1.343N, 103.679E |
CUT0 | Trimble NeTR9/5.03 | 32.004S, 115.895E |
NNOR | SEPT PolaRx4/2.9.0 | 31.049S, 116.193E |
MAJU | SEPT PolaRx4TR/2.9.0Patch1 | 7.119N, 171.365E |
NAUR | SEPT PolaRx4TR/2.9.0Patch1 | 0.552S, 166.926E |
Items | Processing Strategies |
---|---|
Data | GPS + BDS in nine stations |
Observations | Ionospheric-free linear combined phase and pseudorange data |
Estimator | Extended Kalman filter (EKF) |
Signal selection | BDS: B1/B2; GPS: L1/L2 |
Interval rate | 30 s |
Cut-off angle | 7° |
Satellite orbit and clock | Fixed to GFZ MGEX (GBM) products |
Zenith tropospheric delay/Mapping function | Zenith hydrostatic delay with Saastamoinen model, Zenith wet delay using random walk process with a constraint of 1 cm2/h; Global mapping function (GMF) is implemented as the mapping function |
Ionospheric delay | The first-order error eliminated by the way of the ionospheric-free linear combination |
Receiver phase center | In GPS, igs14.atx are used for phase center offset (PCO) and phase center variations (PCV) correction; In BDS, corrections are applied the same as GPS |
Satellite phase center | igs14.atx are used for PCO and PCV correction |
Windup effect | Corrected |
Tidal effects | Corrected for solid tides, ocean loading, polar tides |
Receiver clock | GPS receiver clock estimated as white noise |
Inter-system bias (ISB) | Estimated as a piece-wise constant every 5 min (288 epochs one day) |
Phase ambiguities | Estimated as constant in each arc |
Satellite ID | Data Interruption (DI) Periods | Phase Modulation (PM) Points in the Time Domain | ||
---|---|---|---|---|
Periods | Corresponding Time (Day/Time in Aug. 2015) | Epoch | Corresponding Time (Day/Time in Aug. 2015) | |
C01 | 3745–4032 | 14/00:00–14/23:55 | 5285 | 19/08:20 |
5185–5284 | 19/00:00–19/08:15 | |||
C02 | 2176–2304 | 8/13:15–8/23:55 | 2305 | 9/00:00 |
3740–3745 | 13/23:35–14/00:00 | 3746 | 14/00:05 | |
5037–5472 | 18/11:40–19/23:55 | 5473 | 20/00:00 | |
C03 | 865–1440 | 4/00:00–5/23:55 | 1441 2057 4932 5798 6718 | 6/00:00 8/03:20 18/02:55 21/03:05 24/07:45 |
2017–2056 | 8/00:00–8/03:15 | |||
4800–4931 | 17/15:55–18/02:50 | |||
5761–5797 | 21/00:00–21/03:00 | |||
6625–6717 | 24/00:00–24/07:40 | |||
8498–8928 | 30/12:05–31/23:55 | |||
C04 | 4850–4896 | 17/20:05–17/23:55 | 4897 | 18/00:00 |
5761–5790 | 21/00:00–21/02:25 | 5791 | 21/02:30 | |
C05 | 575–578 | 2/23:50–3/00:05 | 579 5185 6049 6774 | 3/00:10 19/00:00 22/00:00 24/12:25 |
2050–2054 | 8/02:45–8/03:05 | |||
2881–3168 | 11/00:00–11/23:55 | |||
5133–5184 | 18/19:40–18/23:55 | |||
5962–6048 | 21/16:45–21/23:55 | |||
6765–6773 | 24/11:40–24/12:20 | |||
8415–8425 | 30/05:10–30/06:00 | |||
C06 | 577–653 | 3/00:00–3/06:20 | 654 | 3/06:25 |
C07 | 7385–7396 | 26/15:20–26/16:15 | 7397 | 26/16:20 |
C11 | 4765–4771 | 17/13:00–17/13:30 | 4772 6138 | 17/13:35 22/07:25 |
5074–5078 | 18/14:45–18/15:05 | |||
5206–5210 | 19/01:45–19/02:05 | |||
6049–6137 | 22/00:00–22/07:20 | |||
6442–6447 | 23/08:45–23/09:10 | |||
C12 | 4897–4900 | 18/00:00–18/00:15 | 5185 | 19/00:00 |
5047–5184 | 18/12:30–18/23:55 |
Day-Pairs | HKSL | HKWS | HKOH | JFNG | SIN1 | CUT0 | NNOR | MAJU | NAUR |
---|---|---|---|---|---|---|---|---|---|
17–18 | 6.58 | 6.75 | 6.81 | 6.85 | 6.67 | 6.34 | 6.98 | 7.29 | 7.49 |
18–19 | −12.12 | −12.34 | −12.09 | −12.20 | −11.81 | −10.88 | −11.64 | −11.24 | −11.68 |
19–20 | −82.52 | −82.42 | −82.66 | −82.80 | −82.72 | −83.09 | −82.81 | −83.89 | −83.43 |
20–21 | 81.90 | 82.09 | 81.61 | 82.25 | 82.06 | 81.47 | 81.84 | 81.33 | 81.66 |
Day-Pairs | C01 | C02 | C03 | C04 | C05 | C06 | |
17–18 | 7.37 | 9.02 | 7.92 | ||||
18–19 | −14.48 | −7.17 | −10.69 | ||||
19–20 | −80.95 | −79.38 | −74.81 | −83.41 | |||
20–21 | 80.95 | 79.38 | 74.81 | 83.41 | |||
Day-Pairs | C07 | C08 | C09 | C10 | C11 | C12 | C14 |
17–18 | 7.03 | 7.83 | 6.36 | 6.97 | 8.65 | 7.40 | |
18–19 | −12.45 | −10.56 | −12.30 | −12.85 | −11.41 | −11.23 | |
19–20 | −81.66 | −82.61 | −81.46 | −81.68 | −81.47 | −81.98 | −81.15 |
20–21 | 81.66 | 82.61 | 81.46 | 81.68 | 81.47 | 81.98 | 81.15 |
Correlation Coefficients | C06 | C07 | C08 | C09 | C10 | C11 | Mean |
---|---|---|---|---|---|---|---|
HKSL | −5 | −2 | −5 | −1 | −4 | −8 | −4 |
HKWS | −7 | −1 | −7 | −1 | −2 | −8 | −4 |
HKOH | −3 | −2 | −3 | −3 | −4 | −5 | −3 |
JFNG | −5 | −1 | −5 | −1 | −3 | −7 | −4 |
SIN1 | −3 | −3 | −3 | −2 | −6 | −8 | −4 |
CUT0 | −2 | −16 | −2 | −13 | −22 | −17 | −12 |
NNOR | −1 | −5 | −1 | −5 | −8 | −6 | −4 |
MAJU | −2 | −18 | −2 | −20 | −23 | −8 | −12 |
NAUR | −1 | −9 | −1 | −12 | −12 | −2 | −6 |
Day-Pairs | 17/18 | 18/19 | 19/20 | 20/21 | ||||
---|---|---|---|---|---|---|---|---|
Station ID | a | b | a | b | a | b | a | b |
HKSL | 2.55 | 1.09 | 4.69 | 1.07 | 37.39 | 0.03 | 36.46 | 0.28 |
HKWS | 2.57 | 1.07 | 4.74 | 1.08 | 4.74 | 0.08 | 37.22 | 0.22 |
HKOH | 3.12 | 1.22 | 5.41 | 1.18 | 41.00 | 0.01 | 39.04 | 0.44 |
JFNG | 2.82 | 1.15 | 4.55 | 0.96 | 33.29 | 0.12 | 37.50 | 0.10 |
SIN1 | 2.86 | 1.15 | 4.77 | 0.99 | 32.22 | 0.09 | 34.37 | 0.36 |
CUT0 | 1.70 | 0.66 | 2.93 | 0.56 | 22.21 | 0.05 | 22.59 | 0.43 |
NNOR | 2.52 | 0.88 | 4.08 | 0.78 | 28.41 | 0.15 | 28.41 | 0.43 |
MAJU | 2.02 | 0.56 | 3.56 | 0.62 | 26.10 | 0.34 | 26.10 | 0.31 |
NAUR | 2.16 | 0.63 | 3.73 | 0.64 | 25.77 | 0.13 | 25.24 | 0.32 |
Mean | 2.48 | 0.93 | 4.27 | 0.88 | 27.90 | 0.11 | 31.88 | 0.32 |
Improvement rate | 62.4% | 79.5% | 99.6% | 99.0% |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, N.; Xu, T.; Xu, Y.; Xu, G.; Schuh, H. Detecting and Repairing Inter-system Bias Jumps with Satellite Clock Preprocessing. Remote Sens. 2020, 12, 850. https://doi.org/10.3390/rs12050850
Jiang N, Xu T, Xu Y, Xu G, Schuh H. Detecting and Repairing Inter-system Bias Jumps with Satellite Clock Preprocessing. Remote Sensing. 2020; 12(5):850. https://doi.org/10.3390/rs12050850
Chicago/Turabian StyleJiang, Nan, Tianhe Xu, Yan Xu, Guochang Xu, and Harald Schuh. 2020. "Detecting and Repairing Inter-system Bias Jumps with Satellite Clock Preprocessing" Remote Sensing 12, no. 5: 850. https://doi.org/10.3390/rs12050850