Using FengYun-3C VSM Data and Multivariate Models to Estimate Land Surface Soil Moisture
Abstract
:1. Introduction
2. Data and Methods
2.1. Multisource Data
2.1.1. Data from the ISMN
2.1.2. FY-3C VSM
2.1.3. MODIS NDVI
2.2. Multivariate Models
2.2.1. Quantile Regression Model
2.2.2. Back-Propagation Neural Network Model
2.2.3. Linear Regression Model
2.3. Statistical Indicators
3. Results and Analysis
3.1. Comparison between FY-3C VSM and Measured SM
3.2. Relationship between Multiple Variables and SM Measurements
3.3. SM Estimation Using Multivariate Models
3.3.1. Multivariate Models for SM Estimation
3.3.2. Regional SM Monitoring Results
3.3.3. Accuracy Assessment between the Estimated and Actual SM
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
References
- Crow, W.T.; Kustas, W.P.; Prueger, J.H. Monitoring root-zone soil moisture through the assimolation of a thermal remote sensing-based soil moisture proxy into a water balance model. Remote Sens. Environ. 2008, 112, 1268–1281. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, Q.; Bao, A.; Wang, Y. A new remote sensing dryness index based on the near-infrared and red spectral space. Remote Sens. 2019, 11, 456. [Google Scholar] [CrossRef] [Green Version]
- Chang, D.-H.; Islam, S. Estimation of Soil Physical Properties Using Remote Sensing and Artificial Neural Network. Remote Sens. Environ. 2000, 74, 534–544. [Google Scholar] [CrossRef]
- Singh, V.K.; Singh, B.P.; Kisi, O.; Kushwaha, D.P. Spatial and multi-depth temporal soil temperature assessment by assimilating satellite imagery, artificial intelligence and regression based models in arid area. Comput. Electron. Agric. 2018, 150, 205–219. [Google Scholar] [CrossRef]
- Wang, L.; Wang, P.; Liang, S.; Qi, X.; Li, L.; Xu, L. Monitoring maize growth conditions by training a BP neural network with remotely sensed vegetation temperature condition index and leaf area index. Comput. Electron. Agric. 2019, 160, 82–90. [Google Scholar] [CrossRef]
- Barrett, B.W.; Dwyer, E.; Whelan, P.E. Soil Moisture Retrieval from Active Spaceborne Microwave Observations: An Evaluation of Current Techniques. Remote Sens. 2009, 1, 210–242. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Li, Z.; Chen, Q.; Wei, X. A microwave vegetation water index from passive microwave radiometer data. Int. J. Remote Sens. 2008, 29, 6779–6787. [Google Scholar] [CrossRef]
- Sabaghya, S.; Walker, J.P.; Renzullo, L.J.; Jackson, T.J. Spatially enhanced passive microwave derived soil moisture: Capabilities and opportunities. Remote Sens. Environ. 2018, 209, 551–580. [Google Scholar] [CrossRef]
- O’Neill, P.E. Microwave remote sensing of soil moisture: A comparison of results from different truck and aircraft platforms. Int. J. Remote Sens. 1985, 6, 1125–1134. [Google Scholar]
- Lee, K.H.; Anagnostou, E.N. A combined passive/active microwave remote sensing approach for surface variable retrieval using Tropical Rainfall Measuring Mission observations. Remote Sens. Environ. 2004, 92, 112–125. [Google Scholar] [CrossRef]
- Huang, S.; Tsang, L.; Njoku, E.G.; Chan, K.S. Backscattering coefficients, coherent reflectivities, and emissivities of randomly rough soil surfaces at L-Band for SMAP applications based on numerical solutions of maxwell equations in three-dimensional simulations. IEEE Trans. Geosci. Remote Sens. 2010, 48, 2557–2568. [Google Scholar] [CrossRef]
- He, B.; Xing, M.; Bai, X. A synergistic methodology for soil moisture estimation in an alpine prairie using radar and optical satellite data. Remote Sens. 2014, 6, 10966–10985. [Google Scholar] [CrossRef] [Green Version]
- Njoku, E.G.; Li, L. Retrieval of land surface parameters using passive microwave measurements at 6–18 GHz. IEEE Trans. Geosci. Remote Sens. 1999, 37, 79–93. [Google Scholar] [CrossRef] [Green Version]
- Shi, J.; Jiang, L.; Zhang, L.; Chen, K.-S.; Wigneron, J.-P.; Chanzy, A.; Jackson, T.J. Physically based estimation of bare-surface soil moisture with the passive radiometers. IEEE Trans. Geosci. Remote Sens. 2006, 44, 3145–3153. [Google Scholar] [CrossRef]
- Entekhabi, D.; Nakamura, H.; Njoku, E.G. Solving the inverse problem for soil moisture and temperature profiles by sequential assimilation of multifrequency remotely sensed observations. IEEE Trans. Geosci. Remote Sens. 1994, 32, 438–447. [Google Scholar] [CrossRef]
- Lievens, H.; Tomer, S.K.; Bitar, A.A.; De Lannoy, G.J.M.; Drusch, M.; Dumedah, G.; Hendricks Franssen, H.-J.; Kerr, Y.H.; Martens, B.; Pan, M.; et al. SMOS soil moisture assimilation for improved hydrologic simulation in the Murray Darling Basin, Australia. Remote Sens. Environ. 2015, 168, 146–162. [Google Scholar] [CrossRef]
- Njoku, E.G.; Chan, S.K. Vegetation and surface roughness effects on AMSR-E land observations. Remote Sens. Environ. 2006, 100, 190–199. [Google Scholar] [CrossRef]
- Cui, C.; Xu, J.; Zeng, J.; Chen, K.-S.; Bai, X.; Lu, H.; Chen, Q.; Zhao, T. Soil moisture mapping from satellites: An intercomparison of SMAP, SMOS, FY3B, AMSR2, and ESA CCI over two dense network regions at different spatial scales. Remote Sens. 2018, 10, 33. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.Y.; Parinussa, R.M.; Dorigo, W.A.; de Jeu, R.A.M.; Wagner, W.; van Dijk, A.I.J.M.; McCabe, M.F.; Evans, J.P. Developing an improved soil moisture dataset by blending passive and active microwave satellite-based retrievals. Hydrol. Earth Syst. Sci. 2011, 15, 425–436. [Google Scholar] [CrossRef] [Green Version]
- Choi, M.; Hur, Y. A microwave-optical/infrared disaggregation for improving spatial representation of soil moisture using AMSR-E and MODIS products. Remote Sens. Environ. 2012, 124, 259–269. [Google Scholar] [CrossRef]
- De Jeu, R.A.M.; Wagner, W.; Holmes, T.R.H.; Dolman, A.J.; van de Giesen, N.C.; Friesen, J. Global Soil Moisture Patterns Observed by Space Borne Microwave Radiometers and Scatterometers. Surv. Geophys. 2008, 29, 399–420. [Google Scholar] [CrossRef] [Green Version]
- Ma, H.; Liu, S. The potential evaluation of multisource remote sensing data for extracting soil moisture based on the method of BP neural network. Can. J. Remote Sens. 2016, 42, 117–124. [Google Scholar] [CrossRef]
- Zhu, Y.; Li, X.; Pearso, S.; Wu, D.; Sun, R.; Johnson, S.; Wheeler, J.; Fang, S. Evaluation of Fengyun-3C soil moisture products using in-Situ data from the Chinese Automatic Soil Moisture Observation Stations: A case study in Henan Province, China. Water 2019, 11, 248. [Google Scholar] [CrossRef] [Green Version]
- Dorigo, W.A.; Wagner, W.; Hohensinn, R.; Hahn, S.; Paulik, C.; Xaver, A.; Gruber, A.; Drusch, M.; Mecklenburg, S.; van Oevelen, P.; et al. The International Soil Moisture Network: A data hosting facility for global in situ soil moisture measurements. Hydrol. Earth Syst. Sci. 2011, 15, 1675–1698. [Google Scholar] [CrossRef] [Green Version]
- Dorigo, W.A.; Gruber, A.; de Jeu, R.A.M.; Wagner, W.; Stacke, T.; Loew, A.; Albergel, C.; Brocca, L.; Chung, D.; Parinussa, R.M.; et al. Evaluation of the ESA CCI soil moisture product using ground-based observations. Remote Sens. Environ. 2015, 162, 380–395. [Google Scholar] [CrossRef]
- The Data Hosting Facility of the International Soil Moisture Network. Available online: https://ismn.geo.tuwien.ac.at/en/ (accessed on 10 December 2019).
- Wang, L.; Hu, X.; Chen, L.; He, L. Consistent calibration of VIRR reflective solar channels onboard FY-3A, FY-3B, and FY-3C using a multisite calibration method. Remote Sens. 2018, 10, 1336. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.; Liang, S.; He, T.; Cao, Y.; Jiang, B. Surface shortwave net radiation estimation from FengYun-3 MERSI data. Remote Sens. 2015, 7, 6224–6239. [Google Scholar] [CrossRef] [Green Version]
- Zhao, X.; Chen, N.; Li, W.; Peng, J.; Shen, L. ℓp-ICP coastline inflection method for geolocation error estimation in FY-3 MWRI data. Remote Sens. 2019, 11, 1886. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Kan, X.; Ren, W.; Cao, T.; Tian, W.; Wang, J. Snow cover monitoring in Qinghai-Tibetan plateau based on Chinese Fengyun-3/VIRR data. J. Indian Soc. Remote Sens. 2017, 45, 271–283. [Google Scholar] [CrossRef]
- Fournier, J.M.; Koske, I. Public employment and earnings inequality: An analysis based on conditional and unconditional quantile regressions. Econ. Lett. 2013, 121, 263–266. [Google Scholar] [CrossRef]
- Koenker, R.; Hallock, K.F. Quantile regression. J. Econ. Perspect. 2001, 15, 143–156. [Google Scholar] [CrossRef]
- Koenker, R.; Bassett, G.J. Regression quantiles. J. Electrochem. Soc. 1987, 46, 33–50. [Google Scholar]
- Arunraj, N.S.; Ahrens, D. A hybrid seasonal autoregressive integrated moving average and quantile regression for daily food sales forecasting. Int. J. Prod. Econ. 2015, 170, 321–335. [Google Scholar] [CrossRef]
- Rocchini, D.; Cade, B.S. Quantile regression applied to spectral distance decay. IEEE Geosci. Remote Sens. 2008, 5, 643. [Google Scholar] [CrossRef]
- Benoit, D.F.; Van den Poel, D. Benefits of quantile regression for the analysis of customer lifetime value in a contractual setting: An application in financial services. Expert Syst. Appl. 2009, 36, 10475–10484. [Google Scholar] [CrossRef]
- Babu, C.N.; Reddy, B.E. A moving-average filter based hybrid ARIMA–ANN model forforecasting time series data. Appl. Soft Comput. 2014, 23, 27–38. [Google Scholar] [CrossRef]
- Khashei, M.; Bijari, M.; Hejazi, S.R. Combining seasonal ARIMA models with computational intelligence techniques for time series forecasting. Soft Comput. 2012, 16, 1091–1105. [Google Scholar] [CrossRef]
- Rumelhart, D.E.; Hinton, G.E.; Williams, R.J. Learning representations by back-propagating errors. Nature 1986, 326, 533–536. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, L. Stock market prediction of S&P 500 via combination of improved BCO approach and BP neural network. Expert Syst. Appl. 2009, 36, 8849–8854. [Google Scholar]
Frequency (GHz) | 10.65 | 18.7 | 23.8 | 36.5 | 89 |
---|---|---|---|---|---|
Polarization | V/H | V/H | V/H | V/H | V/H |
Band width (MHz) | 180 | 200 | 400 | 900 | 4600 |
Sensitivity (K) | 0.5 | 0.5 | 0.8 | 0.5 | 1.0 |
Calibration accuracy (K) | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 |
IFOV (km × km) | 51 × 85 | 30 × 50 | 27 × 45 | 18 × 30 | 9 × 15 |
Pixel size (km × km) | 40 × 11.2 | 40 × 11.2 | 20 × 11.2 | 20 × 11.2 | 10 × 11.2 |
Dynamic range (K) | 3~340 | ||||
Sampling number | 240 | ||||
Beam efficiency | ≥90% | ||||
Beam error (°) | <0.1 | ||||
Scanning mode | Conical scanning | ||||
Orbit width (km) | 1400 | ||||
Viewing angle (°) | 45 ± 0.1 | ||||
Scanning period (s) | 1.7 ± 0.1 | ||||
Scanning period error (ms) | 0.34 ms (between scanning lines)/1 ms (in 30 min) |
Model | Independent/Input Variable |
---|---|
MLR-1, MBPNN-1 | FY-3C VSM |
MLR-2, MBPNN-2 | FY-3C VSM, MODIS NDVI |
MLR-3, MBPNN-3 | FY-3C VSM, MODIS NDVI, location |
Error Metrics | R | RMSE (cm3/cm3) | ubRMSE (cm3/cm3) | MAE (cm3/cm3) | |
---|---|---|---|---|---|
Month | |||||
January | 0.467 | 0.116 | 0.113 | 0.092 | |
April | 0.500 | 0.114 | 0.112 | 0.094 | |
July | 0.621 | 0.164 | 0.130 | 0.120 | |
October | 0.558 | 0.147 | 0.121 | 0.113 |
τ | 0.1 | 0.3 | 0.5 | 0.7 | 0.9 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Variable | β(τ) | P | β(τ) | P | β(τ) | P | β(τ) | P | β(τ) | P | |
Intercept | 0.207 | <0.001 | 0.311 | <0.001 | 0.336 | <0.001 | 0.339 | <0.001 | 0.361 | <0.001 | |
FY-3C VSM | 0.024 | <0.001 | 0.070 | <0.001 | 0.094 | <0.001 | 0.125 | <0.001 | 0.201 | <0.001 | |
NDVI (×10−1) | −0.136 | =0.005 | 0.116 | <0.001 | 0.304 | <0.001 | 0.523 | <0.001 | 0.470 | <0.001 | |
Latitude (×10−2) | 0.568 | <0.001 | 0.318 | <0.001 | 0.235 | <0.001 | 0.077 | <0.001 | −0.207 | <0.001 | |
Longitude (×10−2) | 0.323 | <0.001 | 0.321 | <0.001 | 0.310 | <0.001 | 0.248 | <0.001 | 0.135 | <0.001 | |
Elevation (×10−5) | 0.891 | <0.001 | 0.667 | <0.001 | 0.591 | <0.001 | 0.399 | =0.001 | −0.001 | =0.992 |
Error Metrics | R | RMSE (cm3/cm3) | MAE (cm3/cm3) | MRE (%) | |
---|---|---|---|---|---|
Model | |||||
MLR-1 | 0.640 | 0.050 | 0.039 | 32.0 | |
MBPNN-1 | 0.690 | 0.056 | 0.044 | 38.0 | |
MLR-2 | 0.661 | 0.049 | 0.038 | 30.4 | |
MBPNN-2 | 0.708 | 0.054 | 0.041 | 35.2 | |
MLR-3 | 0.694 | 0.047 | 0.035 | 27.3 | |
MBPNN-3 | 0.871 | 0.034 | 0.026 | 20.7 |
Error Metrics | R | RMSE (cm3/cm3) | MAE (cm3/cm3) | MRE (%) | Number of Samples | |
---|---|---|---|---|---|---|
Month | ||||||
January | 0.913 | 0.040 | 0.031 | 15.4 | 4464 | |
February | 0.943 | 0.030 | 0.022 | 10.4 | 5501 | |
March | 0.787 | 0.056 | 0.043 | 21.7 | 6690 | |
April | 0.893 | 0.032 | 0.024 | 11.0 | 8870 | |
May | 0.824 | 0.047 | 0.039 | 18.1 | 8391 | |
June | 0.863 | 0.035 | 0.027 | 15.1 | 7701 | |
July | 0.871 | 0.034 | 0.026 | 20.7 | 7446 | |
August | 0.870 | 0.052 | 0.042 | 36.3 | 7366 | |
September | 0.862 | 0.063 | 0.054 | 46.7 | 8001 | |
October | 0.844 | 0.053 | 0.043 | 44.3 | 8852 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, L.; Fang, S.; Pei, Z.; Zhu, Y.; Khoi, D.N.; Han, W. Using FengYun-3C VSM Data and Multivariate Models to Estimate Land Surface Soil Moisture. Remote Sens. 2020, 12, 1038. https://doi.org/10.3390/rs12061038
Wang L, Fang S, Pei Z, Zhu Y, Khoi DN, Han W. Using FengYun-3C VSM Data and Multivariate Models to Estimate Land Surface Soil Moisture. Remote Sensing. 2020; 12(6):1038. https://doi.org/10.3390/rs12061038
Chicago/Turabian StyleWang, Lei, Shibo Fang, Zhifang Pei, Yongchao Zhu, Dao Nguyen Khoi, and Wei Han. 2020. "Using FengYun-3C VSM Data and Multivariate Models to Estimate Land Surface Soil Moisture" Remote Sensing 12, no. 6: 1038. https://doi.org/10.3390/rs12061038