The Quantitative Estimation of Grazing Intensity on the Zoige Plateau Based on the Space-Air-Ground Integrated Monitoring Technology
Abstract
:1. Introduction
2. Study Area
3. Materials and Methods
3.1. Trajectory Data of Monitored Paddocks
3.2. UAV Images
3.3. Satellite Images
3.4. Land Cover Data
3.5. Livestock and Fence Identification Based on UAV Images
3.6. Estimation of PGI Based on Kernel Density Estimation and Trajectory Data
3.7. Estimation of RGI Based on the Random Forest Regression Algorithm
3.8. Accuracy Assessment of GI
4. Result
4.1. The Trajectory of the Monitored Paddocks
4.2. Livestock and Fence of Each Paddock
4.3. The PGI of the Monitored Paddocks
4.4. The Accuracy of PGI
4.5. The RGI of Xiangdong Village
4.6. The Accuracy of RGI
5. Discussion
5.1. The Role of Space-Air-Ground Integrated Monitoring for the Estimation of GI at Regional Scale
5.2. The Effects of Phenology on Estimation of RGI
5.3. Implications and Future Work
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Xu, D.D.; Koper, N.; Guo, X.L. Quantifying the influences of grazing, climate and their interactions on grasslands using Landsat TM images. Grassl. Sci. 2018, 64, 118–127. [Google Scholar] [CrossRef]
- Ma, Q.Q.; Chai, L.R.; Hou, F.J.; Chang, S.H.; Ma, Y.S.; Tsunekawa, A.; Cheng, Y.X. Quantifying Grazing Intensity Using Remote Sensing in Alpine Meadows on Qinghai-Tibetan Plateau. Sustainability 2019, 11. [Google Scholar] [CrossRef] [Green Version]
- Fan, F.; Liang, C.; Tang, Y.; Harker-Schuch, I.; Porter, J.R. Effects and relationships of grazing intensity on multiple ecosystem services in the Inner Mongolian steppe. Sci. Total Environ. 2019, 675, 642–650. [Google Scholar] [CrossRef] [PubMed]
- Robinson, T.P.; Wint, G.R.; Conchedda, G.; Van Boeckel, T.P.; Ercoli, V.; Palamara, E.; Cinardi, G.; D’Aietti, L.; Hay, S.I.; Gilbert, M. Mapping the global distribution of livestock. PLoS ONE 2014, 9, e96084. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rinella, M.J.; Vavra, M.; Naylor, B.J.; Boyd, J.M. Estimating influence of stocking regimes on livestock grazing distributions. Ecol. Model. 2011, 222, 619–625. [Google Scholar] [CrossRef]
- Numata, I.; Roberts, D.A.; Chadwick, O.A.; Schimel, J.; Sampaio, F.R.; Leonidas, F.C.; Soares, J.V. Characterization of pasture biophysical properties and the impact of grazing intensity using remotely sensed data. Remote Sens. Environ. 2007, 109, 314–327. [Google Scholar] [CrossRef]
- Yu, K.F.; Lehmkuhl, F.; Falk, D. Quantifying land degradation in the Zoige Basin, NE Tibetan Plateau using satellite remote sensing data. J. Mt. Sci. Engl. 2017, 14, 77–93. [Google Scholar] [CrossRef]
- Wang, J.Y.; Li, A.N.; Bian, J.H. Simulation of the Grazing Effects on Grassland Aboveground Net Primary Production Using DNDC Model Combined with Time-Series Remote Sensing Data-A Case Study in Zoige Plateau, China. Remote Sens. 2016, 8, 168. [Google Scholar] [CrossRef] [Green Version]
- Ali, I.; Cawkwell, F.; Dwyer, E.; Barrett, B.; Green, S. Satellite remote sensing of grasslands: From observation to management. J. Plant Ecol. 2016, 9, 649–671. [Google Scholar] [CrossRef] [Green Version]
- Bian, J.H.; Li, A.N.; Liu, Q.N.; Huang, C.Q. Cloud and Snow Discrimination for CCD Images of HJ-1A/B Constellation Based on Spectral Signature and Spatio-Temporal Context. Remote Sens. 2016, 8, 31. [Google Scholar] [CrossRef] [Green Version]
- Holechek, J.L.; Hilton de Souza, G.; Francisco, M.; Dee, G. Grazing Intensity: Critique and Approach. Rangelands 1998, 20, 15–18. [Google Scholar] [CrossRef]
- Insua, J.R.; Utsumi, S.A.; Basso, B. Estimation of spatial and temporal variability of pasture growth and digestibility in grazing rotations coupling unmanned aerial vehicle (UAV) with crop simulation models. PLoS ONE 2019, 14, e0212773. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bastin, G.; Scarth, P.; Chewings, V.; Sparrow, A.; Denham, R.; Schmidt, M.; O’Reagain, P.; Shepherd, R.; Abbott, B. Separating grazing and rainfall effects at regional scale using remote sensing imagery: A dynamic reference-cover method. Remote Sens. Environ. 2012, 121, 443–457. [Google Scholar] [CrossRef]
- Yu, L.; Zhou, L.; Liu, W.; Zhou, H.K. Using Remote Sensing and GIS Technologies to Estimate Grass Yield and Livestock Carrying Capacity of Alpine Grasslands in Golog Prefecture, China. Pedosphere 2010, 20, 342–351. [Google Scholar] [CrossRef]
- Wang, J.Y.; Li, A.N.; Jin, H.A. Sensitivity analysis of the DeNitrification and Decomposition model for simulating regional carbon budget at the wetland-grassland area on the Zoige Plateau, China. J. Mt. Sci. 2016, 13, 1200–1216. [Google Scholar] [CrossRef]
- Li, F.; Zheng, J.J.; Wang, H.; Luo, J.H.; Zhao, Y.; Zhao, R.B. Mapping grazing intensity using remote sensing in the Xilingol steppe region, Inner Mongolia, China. Remote Sens. Lett. 2016, 7, 328–337. [Google Scholar] [CrossRef]
- Yang, X.H.; Guo, X.L. Investigating vegetation biophysical and spectral parameters for detecting light to moderate grazing effects: A case study in mixed grass prairie. Cent. Eur. J. Geosci. 2011, 3, 336–348. [Google Scholar] [CrossRef]
- Feng, X.M.; Zhao, Y.S. Grazing intensity monitoring in Northern China steppe: Integrating CENTURY model and MODIS data. Ecol. Indic. 2011, 11, 175–182. [Google Scholar] [CrossRef]
- Kawamura, K.; Akiyama, T.; Yokota, H.; Tsutsumi, M.; Yasuda, T.; Watanabe, O.; Wang, S.P. Quantifying grazing intensities using geographic information systems and satellite remote sensing in the Xilingol steppe region, Inner Mongolia, China. Agric. Ecosyst. Environ. 2005, 107, 83–93. [Google Scholar] [CrossRef]
- Thomson, A.G. Airborne Radiometry and a Sheep Grazing Experiment on Dune Grassland. Int. J. Remote Sens. 1995, 16, 981–988. [Google Scholar] [CrossRef]
- Sha, Z.; Brown, D.G.; Xie, Y.; Welsh, W.F.; Bai, Y. Response of spectral vegetation indices to a stocking rate experiment in Inner Mongolia, China. Remote Sens. Lett. 2014, 5, 912–921. [Google Scholar] [CrossRef]
- Gurarie, E.; Andrews, R.D.; Laidre, K.L. A novel method for identifying behavioural changes in animal movement data. Ecol. Lett. 2009, 12, 395–408. [Google Scholar] [CrossRef] [PubMed]
- McGranahan, D.A.; Geaumont, B.; Spiess, J.W. Assessment of a livestock GPS collar based on an open-source datalogger informs best practices for logging intensity. Ecol. Evol. 2018, 8, 5649–5660. [Google Scholar] [CrossRef] [PubMed]
- Turner, L.W.; Udal, M.C.; Larson, B.T.; Shearer, S.A. Monitoring cattle behavior and pasture use with GPS and GIS. Can. J. Anim. Sci. 2000, 80, 405–413. [Google Scholar] [CrossRef]
- Schieltz, J.M.; Okanga, S.; Allan, B.F.; Rubenstein, D.I. GPS tracking cattle as a monitoring tool for conservation and management. Afr. J. Range Forage Sci. 2017, 34, 173–177. [Google Scholar] [CrossRef]
- Akasbi, Z.; Oldeland, J.; Dengler, J.; Finckh, M. Analysis of GPS trajectories to assess goat grazing pattern and intensity in Southern Morocco. Rangel. J. 2012, 34, 415–427. [Google Scholar] [CrossRef]
- Swain, D.L.; Friend, M.A.; Bishop-Hurley, G.J.; Handcock, R.N.; Wark, T. Tracking livestock using global positioning systems-are we still lost? Anim. Prod. Sci. 2011, 51, 167. [Google Scholar] [CrossRef] [Green Version]
- Shao, W.; Kawakami, R.; Yoshihashi, R.; You, S.; Kawase, H.; Naemura, T. Cattle detection and counting in UAV images based on convolutional neural networks. Int. J. Remote Sens. 2019, 41, 31–52. [Google Scholar] [CrossRef] [Green Version]
- Barbedo, J.G.A.; Koenigkan, L.V. Perspectives on the use of unmanned aerial systems to monitor cattle. Outlook Agric. 2018, 47, 214–222. [Google Scholar] [CrossRef] [Green Version]
- Guo, X.J.; Shao, Q.Q.; Li, Y.Z.; Wang, Y.C.; Wang, D.L.; Liu, J.Y.; Fan, J.W.; Yang, F. Application of UAV Remote Sensing for a Population Census of Large Wild Herbivores-Taking the Headwater Region of the Yellow River as an Example. Remote Sens. 2018, 10, 1041. [Google Scholar] [CrossRef] [Green Version]
- Kellenberger, B.; Marcos, D.; Courty, N.; Tuia, D. Detecting Animals in Repeated Uav Image Acquisitions by Matching CNN Activations with Optimal Transport. In Proceedings of the 2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018. [Google Scholar] [CrossRef]
- Bian, J.H.; Li, A.N.; Zhang, Z.J.; Zhao, W.; Lei, G.B.; Yin, G.F.; Jin, H.A.; Tan, J.B.; Huang, C.Q. Monitoring fractional green vegetation cover dynamics over a seasonally inundated alpine wetland using dense time series HJ-1A/B constellation images and an adaptive endmember selection LSMM model. Remote Sens. Environ. 2017, 197, 98–114. [Google Scholar] [CrossRef]
- Wang, J.Y. Simulation and Monitoring of the Grazing Effects on Grassland-Wetland Regional Carbon budget in Zoige Plateau. Ph.D. Thesis, University of Chinese Academy of Sciences, Beijing, China, 2016. [Google Scholar]
- Zhang, S.Q.; Guo, H.Y.; Luo, Y. Assessment on Driving Force of Climate Change & Livestock Grazing Capacity to Grassland Sanding in Ruoergai. Chin. J. Grassl. 2007, 29, 64–71. [Google Scholar]
- Zhang, Z.J.; Li, A.N.; Bian, J.H.; Zhao, W.; Nan, X.; Lei, G.B.; Tan, J.B.; Xia, H.M.; Wang, Y.C.; Du, X.L.; et al. The reliability analysis of remote sensing observation platemform based on unmanned aerial vehicle (UAV) in mountain areas—An experiment case study in Zoige Plateau. Remote Sens. Technol. Appl. 2016, 31, 417–429, (In Chinese with English abstract). [Google Scholar] [CrossRef] [Green Version]
- Gimenez, M.G.; de Jong, R.; Della Peruta, R.; Keller, A.; Schaepman, M.E. Determination of grassland use intensity based on multi-temporal remote sensing data and ecological indicators. Remote Sens. Environ. 2017, 198, 126–139. [Google Scholar] [CrossRef]
- Drusch, M.; Del Bello, U.; Carlier, S.; Colin, O.; Fernandez, V.; Gascon, F.; Hoersch, B.; Isola, C.; Laberinti, P.; Martimort, P.; et al. Sentinel-2: ESA’s Optical High-Resolution Mission for GMES Operational Services. Remote Sens. Environ. 2012, 120, 25–36. [Google Scholar] [CrossRef]
- Lei, G.B.; Li, A.N.; Bian, J.H.; Zhang, Z.J.; Jin, H.A.; Nan, X.; Zhao, W.; Wang, J.Y.; Cao, X.M.; Tan, J.B.; et al. Land Cover Mapping in Southwestern China Using the HC-MMK Approach. Remote Sens. 2016, 8, 305. [Google Scholar] [CrossRef] [Green Version]
- Brunsdon, C. Estimating Probability Surfaces for Geographical Point Data-an Adaptive Kernel Algorithm. Comput. Geosci. 1995, 21, 877–894. [Google Scholar] [CrossRef]
- Peng, J.; Zhao, S.Q.; Liu, Y.X.; Tian, L. Identifying the urban-rural fringe using wavelet transform and kernel density estimation: A case study in Beijing City, China. Environ. Model. Softw. 2016, 83, 286–302. [Google Scholar] [CrossRef]
- Lopez-Novoa, U.; Saenz, J.; Mendiburu, A.; Miguel-Alonso, J.; Errasti, I.; Esnaola, G.; Ezcurra, A.; Ibarra-Berastegi, G. Multi-objective environmental model evaluation by means of multidimensional kernel density estimators: Efficient and multi-core implementations. Environ. Model. Softw. 2015, 63, 123–136. [Google Scholar] [CrossRef] [Green Version]
- Zheng, J.J.; Li, F.; Du, X. Using Red Edge Position Shift to Monitor Grassland Grazing Intensity in Inner Mongolia. J. Indian Soc. Remote Sens. 2018, 46, 81–88. [Google Scholar] [CrossRef]
- Bradley, B.A.; O’Sullivan, M.T. Assessing the short-term impacts of changing grazing regime at the landscape scale with remote sensing. Int. J. Remote Sens. 2011, 32, 5797–5813. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Zhao, X.Z.; Yu, B.L.; Liu, Y.; Chen, Z.Q.; Li, Q.X.; Wang, C.X.; Wu, J.P. Estimation of Poverty Using Random Forest Regression with Multi-Source Data: A Case Study in Bangladesh. Remote Sens. 2019, 11, 375. [Google Scholar] [CrossRef] [Green Version]
- Belgiu, M.; Dragut, L. Random forest in remote sensing: A review of applications and future directions. ISPRS J. Photogramm. Remote Sens. 2016, 114, 24–31. [Google Scholar] [CrossRef]
- Bian, J.; Li, A.; Zuo, J.; Lei, G.; Zhang, Z.; Nan, X. Estimating 2009–2017 Impervious Surface Change in Gwadar, Pakistan Using the HJ-1A/B Constellation, GF-1/2 Data, and the Random Forest Algorithm. ISPRS Int. Geo Inf. 2019, 8, 443. [Google Scholar] [CrossRef] [Green Version]
- Kellenberger, B.; Marcos, D.; Tuia, D. Detecting mammals in UAV images: Best practices to address a substantially imbalanced dataset with deep learning. Remote Sens. Environ. 2018, 216, 139–153. [Google Scholar] [CrossRef] [Green Version]
- Rango, A.; Havstad, K.; Estell, R. The Utilization of Historical Data and Geospatial Technology Advances at the Jornada Experimental Range to Support Western America Ranching Culture. Remote Sens. 2011, 3, 2089–2109. [Google Scholar] [CrossRef] [Green Version]
- Elmore, A.J.; Asner, G.P. Effects of grazing intensity on soil carbon stocks following deforestation of a Hawaiian dry tropical forest. Global Change Biol. 2006, 12, 1761–1772. [Google Scholar] [CrossRef]
- Chi, D.K.; Wang, H.; Li, X.B.; Liu, H.H.; Li, X.H. Assessing the effects of grazing on variations of vegetation NPP in the Xilingol Grassland, China, using a grazing pressure index. Ecol. Indic. 2018, 88, 372–383. [Google Scholar] [CrossRef]
- Yang, X.H.; Guo, X.L.; Fitzsimmons, M. Assessing light to moderate grazing effects on grassland production using satellite imagery. Int. J. Remote Sens. 2012, 33, 5087–5104. [Google Scholar] [CrossRef]
- Bian, J.H.; Li, A.N.; Wang, Q.F.; Huang, C.Q. Development of Dense Time Series 30-m Image Products from the Chinese HJ-1A/B Constellation: A Case Study in Zoige Plateau, China. Remote Sens. 2015, 7, 16647–16671. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Li, A.; Jin, H.; Bian, J.; Zhang, Z.; Lei, G.; Qin, Z.; Huang, C. An Enhanced Spatial and Temporal Data Fusion Model for Fusing Landsat and MODIS Surface Reflectance to Generate High Temporal Landsat-Like Data. Remote Sens. 2013, 5, 5346–5368. [Google Scholar] [CrossRef] [Green Version]
Area (ha) | Livestock Inventory on 2018.7.20 (SU) | Livestock Inventory on 2018.9.28 (SU) | Livestock Inventory on 2018.12.2 (SU) | |
---|---|---|---|---|
Paddock #1 | 100.61 | 360 | 360 | 220 |
Paddock #2 | 50.39 | 120 | 116 | 116 |
Paddock #3 | 86.87 | 258 | 258 | 254 |
Paddock #4 | 225.01 | 1020 | 1016 | 588 |
Paddock #5 | 350.21 | 727 | 719 | 479 |
Paddock #6 | 42.77 | 126 | 126 | 122 |
Paddock #7 | 155.01 | 470 | 470 | 246 |
Paddock #8 | 200.75 | 816 | 812 | 600 |
Paddock #9 | 91.86 | 370 | 366 | 366 |
Paddock #10 | 96.85 | 409 | 409 | 229 |
No | Tile Number | Platform | Acquisition Time | Cloud Coverage (%) |
---|---|---|---|---|
1 | T48STC | Sentinel-2A | 23 August 2018 | 0.4 |
2 | T48STC | Sentinel-2A | 22 September 2018 | 4.8 |
3 | T48STC | Sentinel-2B | 17 October 2018 | 3.0 |
4 | T48STC | Sentinel-2A | 1 November 2018 | 0.0 |
Produced Data | Estimation Model Considering the Phenology or Not | RMSE | MAE | r2 | P |
---|---|---|---|---|---|
RGI-PA | No | 0.01296 | 1.1630 | 0.8408 | 0.00 |
Yes | 0.01546 | 0.9301 | 0.8573 | 0.00 | |
RGI-P1 | No | 0.02624 | 2.4040 | 0.7322 | 0.00 |
Yes | 0.03374 | 1.9400 | 0.7480 | 0.00 | |
RGI-P2 | No | 0.02347 | 1.9710 | 0.7699 | 0.00 |
Yes | 0.0233 | 1.4690 | 0.7858 | 0.00 | |
RGI-P3 | No | 0.0290 | 2.3680 | 0.7558 | 0.00 |
Yes | 0.03091 | 1.9190 | 0.7645 | 0.00 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lei, G.; Li, A.; Zhang, Z.; Bian, J.; Hu, G.; Wang, C.; Nan, X.; Wang, J.; Tan, J.; Liao, X. The Quantitative Estimation of Grazing Intensity on the Zoige Plateau Based on the Space-Air-Ground Integrated Monitoring Technology. Remote Sens. 2020, 12, 1399. https://doi.org/10.3390/rs12091399
Lei G, Li A, Zhang Z, Bian J, Hu G, Wang C, Nan X, Wang J, Tan J, Liao X. The Quantitative Estimation of Grazing Intensity on the Zoige Plateau Based on the Space-Air-Ground Integrated Monitoring Technology. Remote Sensing. 2020; 12(9):1399. https://doi.org/10.3390/rs12091399
Chicago/Turabian StyleLei, Guangbin, Ainong Li, Zhengjian Zhang, Jinhu Bian, Guyue Hu, Changbo Wang, Xi Nan, Jiyan Wang, Jianbo Tan, and Xiaohan Liao. 2020. "The Quantitative Estimation of Grazing Intensity on the Zoige Plateau Based on the Space-Air-Ground Integrated Monitoring Technology" Remote Sensing 12, no. 9: 1399. https://doi.org/10.3390/rs12091399