An Analysis of Urbanisation Dynamics with the Use of the Fuzzy Set Theory—A Case Study of the City of Olsztyn
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. The Use of the Fuzzy Set Theory for the Identification of Urban Development Boundaries
3. Result
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Janeczko, E.; Dąbrowski, R.; Budnicka-Kosior, J.; Woźnicka, M. Influence of Urbanisation Processes on the Dynamics and Scale of Spatial Transformations in the Mazowiecki Landscape Park. Sustainability 2019, 11, 3007. [Google Scholar] [CrossRef] [Green Version]
- Mangi, M.; Yue, Z.; Kalwar, S.; Lashari, Z. Comparative Analysis of Urban Development Trends of Beijing and Karachi Metropolitan Areas. Sustainability 2020, 12, 451. [Google Scholar] [CrossRef] [Green Version]
- Aziz, A.; Ahmad, I.; Mayo, S.M.; Hameed, R.; Nadeem, O. Urbanisation and Its Impacts on Founded Areas of Big Cities in Pakistan: Case Studies of “Ichra” and “Sanda” Areas in Lahore. Tech. J. Univ. Eng. Technol. Taxila Pak. 2015, 20, 71–75. [Google Scholar]
- Zhang, X.Q. The Trends, Promises and Challenges of Urbanisation in the World. Habitat Int. 2016, 54, 241–252. [Google Scholar] [CrossRef]
- Szymańska, D.; Biegańsk, J. The phenomenon of urbanisationand processes connected with it. Studia Miejskie 2011, 4, 13–38. (In Polish) [Google Scholar]
- Węcławowicz, G. Social Geography of Cities. SOCIO-Spatial Diversity; Wyd. Naukowe PWN SA: Warsaw, Poland, 2003. (In Polish) [Google Scholar]
- Antrop, M. Changing patterns in the urbanised countryside of Western Europe. Landsc. Ecol. 2000, 15, 257–270. [Google Scholar] [CrossRef]
- Abass, K.; Adanu, S.K.; Agyemang, S. Periurbanisation and loss of arable land in Kumasi Metropolis in three decades: Evidence from remote sensing image analysis. Land Use Policy 2018, 72, 470–479. [Google Scholar] [CrossRef]
- Hoogstra, M.A.; Schanz, H.; Wiersum, K.F. The future of European forestry—Between urbanisation and rural development. For. Policy Econ. 2004, 6, 441–445. [Google Scholar] [CrossRef]
- Liszewski, S. Urban Space and Its Organization; Institute of Geography, Jagiellonian University Kraków: Krakow, Poland, 1997. [Google Scholar]
- Acevedo, W.; Masuoka, P. Time-series animation techniques for visualizing urban growth. Computer Geosci. 1997, 23, 423–435. [Google Scholar] [CrossRef]
- Biłozor, A. Urban land use changes forecasting. In Proceedings of the 9th International Conference on Environmental Engineering. Section: Sustainable Urban Development, Vilnius, Lithuania, 22–23 May 2014; ISBN 978-609-457-640-9. [Google Scholar]
- Biłozor, A.; Czyża, S.; Bajerowski, T. Identification and Location of a Transitional Zone between an Urban and a Rural Area Using Fuzzy Set Theory, CLC, and HRL Data. Sustainability 2019, 11, 7014. [Google Scholar] [CrossRef] [Green Version]
- Simon, D. Urban Environments: Issues on the Peri-Urban Fringe. Annual Review of Environment and Resources. 2008, 33, 167–185. [Google Scholar] [CrossRef]
- Siemiński, J. Rural-urban continuum and some of its infrastructural problems. Infrastruct. Ecol. Rural Areas 2010, 2, 215–228. [Google Scholar]
- Sobotka, S. Transformation of the historical spatial arrangements of the villages in the suburban area of Olsztyn, with particular emphasis on Brąswałd, Dorotowo and Jonkowo. Acta Sci. Pol. Administratio Locorum 2014, 13, 39–68. (In Polish) [Google Scholar]
- Szmytkie, R. Methods of Analysis of the Morphology and Physiomic of Sedate Units. Scientific Hearings of the Institute of Geography and Regional Development of the University of Wrocław no. 35 Wrocław 2014. Available online: http://www.geogr.uni.wroc.pl/data/files/publikacje-rozprawy-naukowe-igrr/rozprawy_35.pdf (accessed on 9 May 2020).
- Konecka-Szydłowska, B. The smallest cities in Poland in terms of the concept of urban-rural continuums. Regional Dev. Reg. Policy 2018, 41, 151–165. (In Polish) [Google Scholar]
- Degórska, B. Spatial Urbanisation of Rural Areas in the Metropolitan Area of Warsaw. Ecological and Landscape Context; Geographic Work, no 262; Institute of Geography and Spatial Development im. Stanisława Leszczyckiego, Polish Academy of Sciences: Warsaw, Poland, 2017. (In Polish) [Google Scholar]
- Ravetz, J.; Warhurst, P. Manchester: Re-Inventing the Local–Global in the Peri-Urban City-Region. In Peri-Urban Futures: Scenarios and Models for Land Use Change in Europe; Nilsson, K., Pauleit, S., Bell, S., Aalbers, C., Sick Nielsen, T., Eds.; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar] [CrossRef]
- Loibl, W.; Piorr, A.; Ravetz, J. Concepts and methods. In Peri-Urbanisation in Europe: Towards a European Policy to Sustain Urban-Rural Futures; Piorr, A., Ravetz, J., Tosics, I., Eds.; University of Copenhagen, Academic Books Life Sciences: Denmark, Copenhagen, 2011; pp. 24–29. [Google Scholar]
- Labbé, D. Facing the Urban Transition in Hanoi: Recent Urban Planning Issues and Initiatives; Institut national de la reherche scientifique Centre—Urbanisation Culture Société: Montréal, QC, Canada, 2010; Available online: http://espace.inrs.ca/id/eprint/4986/1/HanoiUrbanization.pdf (accessed on 2 April 2020).
- Csatári, B.; Farkas, J.Z.; Lennert, J. Land Use Changes in the Rural-Urban Fringe of Kecskemét after the Economic Transition. J. Settlements Spatial Plann. 2013, 4, 153–159. [Google Scholar]
- Nabielek, K.; Kronberger-Nabielek, P.; Hamers, D. The rural-urban fringe in the Netherlands: Recent developments and future challenges. SPOOL 2013, 1, 1–18. [Google Scholar] [CrossRef]
- Simon, D.; McGregor, D.; Nsiah-Gyabaah, K. The changing urban–rural interface of African cities: Definitional issues and an application to Kumasi, Ghana. Environ. Urban. 2004, 16, 235–248. [Google Scholar]
- Tacoli, C. The links between rural and urban development. Environ. Urban. 2003, 15, 3–12. [Google Scholar] [CrossRef]
- Hoffmann, E.; Jose, M.; Nölke, N.; Möckel, T. Construction and Use of a Simple Index of Urbanisation in the Rural–Urban Interface of Bangalore, India. Sustainability 2017, 9, 2146. [Google Scholar] [CrossRef] [Green Version]
- Gallent, N. The Rural–Urban fringe: A new priority for planning policy? Plann. Pract. Res. 2006, 21, 383–393. [Google Scholar] [CrossRef]
- Hao, P.; Geertman, S.; Hooimeijer, P.; Sliuzas, R. The land-use diversity in urban villages in Shenzhen. Environ. Plann. 2012, 44, 2742–2764. [Google Scholar] [CrossRef]
- Gallent, N.; Shaw, D. Spatial planning, area action plans and the rural-urban fringe. J. Environmental Plann. Manage. 2001, 50, 617–638. [Google Scholar] [CrossRef]
- Gant, R.; Robinson, G.; Shahab, F. Land-use change in the ‘edgelands’: Policies and pressures in London’s rural–urban fringe. Land Use Policy 2011, 28, 266–279. [Google Scholar] [CrossRef]
- Datta, R. Territorial Integration: An Approach to address Urbanising Villages in the Planning for Delhi Metropolitan Area, India. In Proceedings of the Territorial Integration of Urbanising Villages 40th ISoCaRP Congress, Geneva, Switzerland, 18–22 September 2004. [Google Scholar]
- Bilozor, A.; Renigier-Bilozor, M. Procedure of Assessing Usefulness of the Land in the Process of Optimal Investment Location for Multi-Family Housing Function. Proc. Eng. 2016, 161, 1868–1873. [Google Scholar] [CrossRef] [Green Version]
- Biłozor, A.; Renigier-Biłozor, M.; Cellmer, R. Assessment Procedure of Suburban Land Attractiveness and Usability for Housing. In Proceedings of the Baltic Geodetic Congress, Olsztyn, Poland, 21–23 June 2018. [Google Scholar] [CrossRef]
- Renigier-Bilozor, M.; Bilozor, A. Optimization of the Variables Selection in the Process of Real Estate Markets Rating. Oeconomia Copernic. 2015, 6, 139–157. [Google Scholar] [CrossRef]
- Ready, R.; Abdalla, C. GIS Analysis of Land Use on the Rural-Urban Fringe: The Impact of Land Use and Potential Local Disamenities on Residential Property Values and on the Location of Residential Development in Berks County, Pennsylvania. Final Report. Staff Paper 364 June 2003. Available online: https://www.rosemonteis.us/files/references/ready-abdalla-2003.pdf (accessed on 30 May 2020).
- Renigier-Bilozor, M.; Wisniewski, R.; Bilozor, A. Rating attributes toolkit for the residential property market. Int. J. Strategic Property Manag. 2017, 21, 307–317. [Google Scholar] [CrossRef]
- Renigier-Bilozor, M. Modern classification system of real estate markets. Geodetski Vestnik 2017, 61, 441–460. [Google Scholar] [CrossRef]
- Mils, E. Studiesin fhe Structureofthe Urban Economy; Johns Hopkins Press: Baltimore, MD, USA, 1972. [Google Scholar]
- O’sullivan, A. Urban Economics; McGraw-Hill/Irwin: New York, NY, USA, 2007; pp. 225–226. [Google Scholar]
- Geshkov, M. Urban sprawl in Eastern Europe: The Sofia City example. Econ. Altern. 2015, 2, 101–116. [Google Scholar]
- Hussam, Al-Bilbisi Spatial Monitoring of Urban Expansion Using Satellite Remote Sensing Images: A Case Study of Amman City. Jordan Sustain. 2019, 11, 2260. [CrossRef] [Green Version]
- Zhang, M.; Chen, F.; Tian, B.; Liang, D. Multi-temporal SAR image classification of coastal plain wetlands using a new feature selection method and random forests. Remote Sens. Lett 2019, 10, 312–321. [Google Scholar] [CrossRef]
- Lisini, G.; Salentinig, A.; Du, P.; Gamba, P. SAR-Based Urban Extents Extraction: From ENVISAT to Sentinel-1. IEEE J. Sel. Top. Appl. Earth Observations Remote Sens. 2018, 11, 268–2691. [Google Scholar] [CrossRef]
- Balz, T.; Washaya, P.; Jendryke, M. Urban change monitoring using globally available SENTINEL-1 imagery. In Proceedings of the 2018 International Workshop on Big Geospatial Data and Data Science (BGDDS), Wuhan, China, 22–23 September 2018. [Google Scholar] [CrossRef]
- Lefebvre, A.; Sannier, C.; Corpetti, T. Monitoring Urban Areas with Sentinel-2A Data: Application to the Update of the Copernicus High Resolution Layer Imperviousness Degree. Remote Sens. 2016, 8, 606. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Hub, G.; Chenb, Y.; Lib, X.; Xua, X.; Lic, S.; Peid, F.; Wanga, S. High-resolution multi-temporal mapping of global urban land using Landsat images based on the Google Earth Engine Platform. Remote Sens. Environ. 2018, 209, 227–239. [Google Scholar] [CrossRef]
- Schuga, F.; Okujenia, A.; Hauera, J.; Hosterta, P.; Nielsena, J.; van der Lindena, S. Mapping patterns of urban development in Ouagadougou, Burkina Faso, using machine learning regression modeling with biseasonal Landsat time series. Remote Sens. Environ. 2018, 210, 217–228. [Google Scholar] [CrossRef]
- Benedetti, A.; Picchiani, M.; Del Frate, F. SENTINEL-1 and SENTINEL-2 data fusion for urban change detection. In Proceedings of the IGARSS 2018—2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018. [Google Scholar] [CrossRef]
- Che, M.; Gamba, P. Intra-Urban Change Analysis Using Sentinel-1 and Nighttime Light Data. IEEE J. Sel. Top. Appl. Earth Observations Remote Sens. 2019, 12, 1134–1142. [Google Scholar] [CrossRef]
- Akay, S.S.; Sertel, E. Urban land cover/use change detection using high resolution spot 5 and spot 6 images and urban atlas nomenclature. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 2016, XLI-B8, 789–796. [Google Scholar] [CrossRef]
- Luoa, X.; Tonga, X.; Qianb, Z.; Pana, H.; Liu, S. Detecting urban ecological land-cover structure using remotely sensed imagery: A multi-area study focusing on metropolitan inner cities. Int. J. Appl. Earth Obs. Geoinf. 2019, 75, 106–117. [Google Scholar] [CrossRef]
- Benz, U.C.; Hofmann, P.; Willhauck, G.; Lingenfelder, I.; Heynen, M. Multi-resolution, object-oriented fuzzy analysis of remote sensing data for GIS-ready information. ISPRS J. Photogramm. Remote Sens. 2004, 58, 239–258. [Google Scholar] [CrossRef]
- Washaya, P. Balz, T. SAR coherence change detection of urban areas affected by disasters using sentinel-1 imagery. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 2018, XLII-3, 1857–1861. [Google Scholar] [CrossRef] [Green Version]
- Kuc, G.; Chormański, J. Sentinel-2 imagery for mapping and monitoring imperviousnessin urban areasg. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 2019, XLII-1/W2, 43–47. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; He, C.; Zhang, Q.; Huang, Q.; Yang, Y. Extracting the dynamics of urban expansion in China using DMSP-OLS nighttime light data from 1992 to 2008. Landsc. Urban Plan. 2012, 106, 62–72. [Google Scholar] [CrossRef]
- Ma, T.; Zhou, C.; Pei, T.; Haynie, S.; Fan, J. Quantitative estimation of urbanisation dynamics using time series of DMSP/OLS nighttime light data: A comparative case study from China’s cities. Remote Sens. Environ. 2012, 124, 99–107. [Google Scholar] [CrossRef]
- Gao, B.; Huang, Q.; He, C.; Dou, Y. Similarities and differences of city-size distributions in three main urban agglomerations of China from 1992 to 2015: A comparative study based on nighttime light data. J. Geogr. Sci. 2017, 27, 533–545. [Google Scholar] [CrossRef]
- 59. Li, X.; Zhou, Y. Urban mapping using DMSP/OLS stable night-time light: A review. Int. J. Remote Sens. 2017, 38, 6030–6046. [Google Scholar] [CrossRef]
- Zhao, J.; Ji, G.; Yue, Y.; Lai, Z.; Chen, Y.; Yang, D.; Yang, X.; Wang, Z. Spatio-temporal dynamics of urban residential CO2 emissions and their driving forces in China using the integrated two nighttime light datasets. Appl. Energy 2019, 235, 612–624. [Google Scholar] [CrossRef]
- Jones, C.; Kammen, D. Spatial Distribution of U.S. Household Carbon Footprints Reveals Suburbanisation Undermines Greenhouse Gas Benefits of Urban Population Density Environ. Sci. Technol. 2014, 48, 895–902. [Google Scholar] [CrossRef]
- Cao, Y.; Wang, Y.; Li, G.; Fang, X. Vegetation Response to Urban Landscape Spatial Pattern Change in the Yangtze River Delta, China. Sustainability 2020, 12, 68. [Google Scholar] [CrossRef] [Green Version]
- Cieślak, I.; Biłozor, A.; Szuniewicz, K. The Use of the CORINE Land Cover (CLC) Database for Analyzing Urban Sprawl. Remote Sens. 2020, 12, 282. [Google Scholar] [CrossRef] [Green Version]
- Cieślak, I.; Szuniewicz, K.; Pawlewicz, K.; Czyża, S. Land Use Changes Monitoring with CORINE Land Cover Data. IOP Conf. Series: Mater. Sci. Eng. 2017, 245, 052049. [Google Scholar] [CrossRef] [Green Version]
- Amato, F.; Tonini, M.; Murgante, B.; Kanevski, M. Fuzzy definition of Rural Urban Interface: An application based on land use change scenarios in Portugal. Environ. Model. Softw. 2018, 104, 171–187. [Google Scholar] [CrossRef]
- Titisari, T.; Maheshwari, D.B.; Hagare, D. Defining rural–urban interfaces for understanding ecohydrological processes in West Java, Indonesia: Part II. Its application to quantify rural–urban interface ecohydrology. Ecohydrol. Hydrobiol. 2018, 18, 37–51. [Google Scholar] [CrossRef]
- Treitz, P. Remote sensing for mapping and monitoring land-cover and land-use change. Prog. Plan. 2004, 61, 267. [Google Scholar] [CrossRef]
- Alqurashi, A.F.; Kumar, L. Investigating the Use of Remote Sensing and GIS Techniques to Detect Land Use and Land Cover Change. Adv. Remote Sens. 2013, 2, 193–204. [Google Scholar] [CrossRef] [Green Version]
- Rogan, J.; Chen, D.M. Remote Sensing Technology for Mapping and Monitoring Land-Cover and Land-Use Change. Prog. Plan. 2004, 61, 301–325. [Google Scholar] [CrossRef]
- Łachwa, A. Fuuzy World of Collections, Numbers, Relationships, Facts, Rules and Decisions; Academic Publishing Offcer Exit: Warsaw, Poland, 2001. (In Polish) [Google Scholar]
- Piegat, A. Fuzzy Modeling and Control; Academic Publishing Officer Exit: Warsaw, Poland, 1999. [Google Scholar]
- Molecki, B. Genetic Algorithms and Fuzta Logic; Wrocław University of Science and Technology: Wrocław, Poland, 1998. (In Polish) [Google Scholar]
- Antrop, M.; Van Eetvelde, V. Holistic aspects of suburban landscapes: Visual image interpretation and landscape metrics. Landsc. Urban Plan. 2000, 50, 43–58. [Google Scholar] [CrossRef]
- Vermeulen, F.; Antrop, M.; Hageman, B.; Wiedemann, T. Ancient Roads and Fields in Northwestern Gaul—A GIS-Based Analysis. In Proceedings of the Computing Archaeology for Understanding the Past. CAA 2000. Computer Applications and Quantitative Methods in Archaeology, Ljubljana, Slovenia, 18–21 April 2020. [Google Scholar]
- Bieda, A. Increase in the number of submitted maps for design purposes as a determinant of proper spatial planning policy. J. Water Land Dev. 2017, 34, 65–75. [Google Scholar] [CrossRef] [Green Version]
No | Land-Use Types | Degree of Membership in a Set of Urban Functions (MU) |
---|---|---|
1 | Single-family homes | 0.69 |
2 | Multi-family housing | 1.00 |
3 | Services | 0.92 |
4 | Sports and recreational areas | 0.66 |
5 | Commercial facilities with a sales area larger than 2000 m2 | 0.90 |
6 | Agricultural land | 0.09 |
7 | Orchards and horticulture farms | 0.26 |
8 | Auxiliary services for farms, breeding centres, horticulture farms, forests and fish farms | 0.10 |
9 | Farmstead buildings in crop, livestock and horticulture farms | 0.16 |
10 | Industrial plants and warehouses | 0.97 |
11 | Mining areas | 0.34 |
12 | Forests | 0.20 |
13 | Organised green spaces | 0.68 |
14 | Natural (unorganised) green spaces | 0.35 |
15 | Gardens | 0.45 |
16 | Cemeteries | 0.51 |
17 | Marine surface waters | 0.20 |
18 | Inland surface waters | 0.20 |
19 | Public roads | 0.82 |
20 | Internal roads | 0.80 |
21 | Water transport routes | 0.52 |
22 | Technical infrastructure | 0.66 |
23 | Special areas—military, police | 0.76 |
24 | Construction sites | 0.64 |
Year | Number of Primary Fields with Urban Functions | Percentage of Primary Fields with Urban Functions | Total Area Characterised by Urban Functions |
---|---|---|---|
2005 | 156 | 15.41 % | 3120 ha |
2010 | 172 | 17.00 % | 3440 ha |
2017 | 185 | 18.28 % | 3700 ha |
No | Land-Use Type | 2005–2010 (%) | 2010–2017 (%) | 2005–2017 (%) |
---|---|---|---|---|
1 | Single-family homes | 9.38 | 8.87 | 18.25 |
2 | Multi-family housing | 3.01 | 2.89 | 5.90 |
3 | Services | 0.49 | 1.08 | 1.57 |
6 | Agricultural land | −9.34 | −19.92 | −29.26 |
7 | Orchards and horticulture farms | −1.28 | −0.27 | −1.55 |
10 | Industrial plants and warehouses | 1.84 | 0.51 | 2.35 |
12 | Forests | −2.43 | −7.56 | −9.99 |
13 | Organised green spaces | −1.09 | −0.23 | −1.32 |
14 | Natural (unorganised) green spaces | −3.12 | −6.69 | −9.81 |
15 | Gardens | −0.19 | −1.43 | −1.62 |
19 | Public roads | 0.97 | 3.4 | 4.37 |
20 | Internal roads | 0.75 | 0.52 | 1.27 |
24 | Construction sites | 0.33 | 15.55 | 15.88 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Biłozor, A.; Cieślak, I.; Czyża, S. An Analysis of Urbanisation Dynamics with the Use of the Fuzzy Set Theory—A Case Study of the City of Olsztyn. Remote Sens. 2020, 12, 1784. https://doi.org/10.3390/rs12111784
Biłozor A, Cieślak I, Czyża S. An Analysis of Urbanisation Dynamics with the Use of the Fuzzy Set Theory—A Case Study of the City of Olsztyn. Remote Sensing. 2020; 12(11):1784. https://doi.org/10.3390/rs12111784
Chicago/Turabian StyleBiłozor, Andrzej, Iwona Cieślak, and Szymon Czyża. 2020. "An Analysis of Urbanisation Dynamics with the Use of the Fuzzy Set Theory—A Case Study of the City of Olsztyn" Remote Sensing 12, no. 11: 1784. https://doi.org/10.3390/rs12111784