Reservoir Induced Deformation Analysis for Several Filling and Operational Scenarios at the Grand Ethiopian Renaissance Dam Impoundment
Abstract
:1. Introduction
2. Data and Methods
2.1. Reservoir Extents, Volumes, and Loads
2.2. SNREI Deformation
3. Results
3.1. Initial Impoundment
3.2. Seasonal Operations
4. Discussion
4.1. Initial Impoundment
4.2. Seasonal Operations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zhang, Y.; Erkyihum, S.T.; Block, P. Filling the GERD: Evaluating Hydroclimatic Variability and Impoundment Strategies for Blue Nile Riparian Countries. Water Int. 2016, 41, 593–610. [Google Scholar] [CrossRef]
- Abtew, W.; Dessu, S.B. The Grand Ethiopian Renaissance Dam on the Blue Nile; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
- Bureau of Reclamation, U.S. Department of Interior. Land and Water Resources of the Blue Nile Basin, Ethiopia; Main Report and Appendices; U.S. Government Printing Office: Washington DC, USA, 1964.
- Ahmed, A.T.; Elsanabary, M.H. Environmental and Hydrological Impacts of Grand Ethiopian Renaissance Dam on the Nile River. Int. Water Technol. J. 2015, 5, 260–271. [Google Scholar]
- Mulat, A.G.; Moges, S.A.; Moges, M.A. Evaluation of multi-storage hydropower development in the upper Blue Nile River (Ethiopia): Regional perspective. J. Hydrol. Reg. Stud. 2018, 16, 1–14. [Google Scholar] [CrossRef]
- Sharaky, A.M.; Hamed, K.H.; Mohamed, A.B. Model-Based Optimization for Operating the Ethiopian Renaissance Dam on the Blue Nile River; Springer: Cham, Switzerland, 2017. [Google Scholar]
- Liersch, S.; Koch, H.; Hattermann, F.F. Management Scenarios of the Grand Ethiopian Renaissance Dam and Their Impacts under Recent and Future Climates. Water 2017, 9, 728. [Google Scholar] [CrossRef] [Green Version]
- Melesse, A.M.; Abtew, W.; Setegn, S.G. Nile River Basin: Ecohydrological Challenges, Climate Change and Hydropolitics; Springer Science & Business Media: New York, NY, USA, 2014. [Google Scholar]
- Abtew, W.; Melesse, A.M.; Dessalegne, T. Spatial, inter and intra-annual variability of the Upper Blue Nile Basin rainfall. Hydrol. Process. Int. J. 2009, 23, 3075–3082. [Google Scholar] [CrossRef]
- Wheeler, K.G.; Basheer, M.; Mekonnen, Z.T.; Eltoum, S.O.; Mersha, A.; Abdo, G.M.; Zagona, E.A.; Hall, J.W.; Dadson, S.J. Cooperative Filling Approaches for the Grand Ethiopian Renaissance Dam. Water Int. 2016, 41, 611–634. [Google Scholar] [CrossRef]
- Beyene, A. Reflections on the Grand Ethiopian Renaissance Dam. Horn Afr. News 2013, 14, 2016. [Google Scholar]
- Zhang, L.; Yang, D.; Liu, Y.; Che, Y.; Qin, D. Impact of impoundment on groundwater seepage in the Three Gorges Dam in China based on CFCs and stable isotopes. Environ. Earth Sci. 2014, 72, 4491–4500. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, Y.; Zhang, L.; Wang, Q. Groundwater level prediction of landslide based on classification and regression tree. Geod. Geodyn. 2016, 7, 348–355. [Google Scholar] [CrossRef] [Green Version]
- Paronuzzi, P.; Rigo, E.; Bolla, A. Influence of filling–drawdown cycles of the Vajont reservoir on Mt. Toc slope stability. Geomorphology 2013, 191, 75–93. [Google Scholar] [CrossRef]
- Zhang, M.; Dong, Y.; Sun, P. Impact of reservoir impoundment-caused groundwater level changes on regional slope stability: A case study in the Loess Plateau of Western China. Environ. Earth Sci. 2012, 66, 1715–1725. [Google Scholar] [CrossRef]
- Fredlund, D.G.; Rahardjo, H. Soil Mechanics for Unsaturated Soils; John Wiley & Sons: New York, NY, USA, 1993. [Google Scholar]
- Xia, M.; Ren, G.M.; Zhu, S.S.; Ma, X.L. Relationship between landslide stability and reservoir water level variation. Bull.Eng. Geol. Environ. 2015, 74, 909–917. [Google Scholar] [CrossRef]
- Allen, C.R. Reservoir-induced earthquakes and engineering policy. Rev. Geofísica 1980, 13, 20–24. [Google Scholar]
- Talwani, P. On the nature of reservoir-induced seismicity. In Seismicity Associated with Mines, Reservoirs and Fluid Injections; Springer: Berlin/Heidelberg, Germany, 1997; pp. 473–492. [Google Scholar]
- Kerr, R.A.; Stone, R. A human trigger for the great quake of Sichuan? Science 2009, 323, 322. [Google Scholar]
- Ge, S.; Liu, M.; Lu, N.; Godt, J.W.; Luo, G. Did the Zipingpu reservoir trigger the 2008 Wenchuan earthquake? Geophys. Res. Lett. 2009, 36. [Google Scholar] [CrossRef]
- Gahalaut, K.; Gupta, S.; Gahalaut, V.K.; Mahesh, P. Influence of Tehri Reservoir Impoundment on Local Seismicity of Northwest Himalaya. Bull. Seismol. Soc. Am. 2018, 108, 3119–3125. [Google Scholar] [CrossRef]
- Chander, R.; Chander, K. Probable influence of Tehri reservoir load on earthquakes of the Garhwal Himalaya. Curr. Sci. 1996, 70, 291–299. [Google Scholar]
- Enzminger, T.L.; Small, E.E.; Borsa, A.A. Accuracy of snow water equivalent estimated from GPS vertical displacements: A synthetic loading case study for western US mountains. Water Resour. Res. 2018, 54, 581–599. [Google Scholar] [CrossRef]
- Tregoning, P.; Watson, C.; Ramillien, G.; McQueen, H.; Zhang, J. Detecting hydrologic deformation using GRACE and GPS. Geophys. Res. Lett. 2009, 36. [Google Scholar] [CrossRef] [Green Version]
- Dumka, R.; Choudhury, P.; Gahalaut, V.K.; Gahalaut, K.; Yadav, R.K. GPS Measurements of Deformation Caused by Seasonal Filling and Emptying Cycles of Four Hydroelectric Reservoirs in India. Bull. Seismol. Soc. Am. 2018, 108, 2955–2966. [Google Scholar] [CrossRef]
- Neelmeijer, J.; Schöne, T.; Dill, R.; Klemann, V.; Motagh, M. Ground Deformations around the Toktogul Reservoir, Kyrgyzstan, from Envisat ASAR and Sentinel-1 Data—A Case Study about the Impact of Atmospheric Corrections on InSAR Time Series. Remote Sens. 2018, 10, 462. [Google Scholar] [CrossRef] [Green Version]
- Madson, A.; Sheng, Y.; Song, C. ICESat-derived lithospheric flexure as caused by an endorheic lake’s expansion on the Tibetan Plateau and the comparison to modeled flexural responses. J. Asian Earth Sci. 2017, 148, 142–152. [Google Scholar] [CrossRef]
- Gahalaut, V.K.; Yadav, R.K.; Sreejith, K.M.; Gahalaut, K.; Bürgmann, R.; Agrawal, R.; Sati, S.P.; Bansal, A. InSAR and GPS measurements of crustal deformation due to seasonal loading of Tehri reservoir in Garhwal Himalaya, India. Geophys. J. Int. 2017, 209, 425–433. [Google Scholar] [CrossRef]
- Borsa, A.A.; Agnew, D.C.; Cayan, D.R. Ongoing drought-induced uplift in the western United States. Science 2014, 345, 1587–1590. [Google Scholar] [CrossRef] [PubMed]
- Kraner, M.L.; Holt, W.E.; Borsa, A.A. Seasonal nontectonic loading inferred from cGPS as a potential trigger for the M6. 0 South Napa earthquake. J. Geophys. Res. Solid Earth 2018, 123, 5300–5322. [Google Scholar] [CrossRef]
- Tadono, T.; Ishida, H.; Oda, F.; Naito, S.; Minakawa, K.; Iwamoto, H. Precise global DEM generation by ALOS PRISM. Isprs Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2014, 2, 71. [Google Scholar] [CrossRef] [Green Version]
- NASA/METI/AIST/Japan Spacesystems; U.S./Japan ASTER Science Team. ASTER Global Digital Elevation Model; NASA EOSDIS Land Processes DAAC: Washington, DC, USA, 2009. [Google Scholar]
- Farr, T.G.; Rosen, P.A.; Caro, E.; Crippen, R.; Duren, R.; Hensley, S.; Kobrick, M.; Paller, M.; Rodriguez, E.; Roth, L.; et al. The shuttle radar topography mission. Rev. Geophys. 2007, 45. [Google Scholar] [CrossRef] [Green Version]
- Zwally, H.J.; Schutz, R.; Hancock, D.; Dimarzio, J. GLAS/ICESat L2 Global Land Surface Altimetry Data, Version 34; National Snow & Ice Data Center: Boulder, CO, USA, 2014; p. 10. [Google Scholar]
- Tadono, T.; Nagai, H.; Ishida, H.; Oda, F.; Naito, S.; Minakawa, K.; Iwamoto, H. Generation of the 30 m-Mesh Global Digital Surface Model by ALOS PRISM. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, 41, 157–162. [Google Scholar] [CrossRef]
- Laske, G.; Masters, G.; Ma, Z.; Pasyanos, M. Update on CRUST1. 0—A 1-degree global model of Earth’s crust. In Geophysical Research Abstracts; EGU General Assembly: Vienna, Austria, 2013. [Google Scholar]
- Kustowski, B.; Ekström, G.; Dziewoński, A. Anisotropic shear-wave velocity structure of the Earth’s mantle: A global model. J. Geophys. Res. Solid Earth 2008, 113. [Google Scholar] [CrossRef]
- Chen, J.; Pan, E.; Bevis, M. Accurate computation of the elastic load Love numbers to high spectral degree for a finely layered, transversely isotropic and self-gravitating Earth. Geophys. J. Int. 2017, 212, 827–838. [Google Scholar] [CrossRef]
- Pan, E.; Chen, J.Y.; Bevis, M.; Bordoni, A.; Barletta, V.R.; Molavi Tabrizi, A. An analytical solution for the elastic response to surface loads imposed on a layered, transversely isotropic and self-gravitating Earth. Geophys. Suppl. Mon. Not. R. Astron. Soc. 2015, 203, 2150–2181. [Google Scholar] [CrossRef] [Green Version]
- Love, A.E.H. Some Problems of Geodynamics: Being an Essay to which the Adams Prize in the University of Cambridge was Adjudged in 1911; CUP Archive: Cambridge, UK, 1911. [Google Scholar]
- Munk, W.H.; MacDonald, G.J. The rotation of the earth: A geophysical discussion. In The Rotation of the Earth: A Geophysical Discussion; Munk, W.H., MacDonald, G.J.F., Eds.; First Published 1960; Cambridge University Press: Cambridge, UK, 1975; xix + 323p. [Google Scholar]
- Farrell, W. Deformation of the Earth by surface loads. Rev. Geophys. 1972, 10, 761–797. [Google Scholar] [CrossRef]
- Melini, D.; Gegout, P.; Spada, G.; King, M. A Regional ElAstic Rebound Calculator. 2015. Available online: http://hpc.rm.ingv.it/rear/REAR-v1.0-User-Guide.pdf (accessed on 21 March 2020).
- Melini, D.; Spada, G.; Gegout, P.; King, M.A. REAR—A Regional ElAstic Rebound Calculator, User Manual for Version 1.0. 2014. Available online: https://www.researchgate.net/publication/275340197_REAR_a_Regional_ElAstic_Rebound_calculator (accessed on 21 March 2020).
- Kaufmann, G.; Amelung, F. Reservoir-induced deformation and continental rheology in vicinity of Lake Mead, Nevada. J. Geophys. Res. Solid Earth 2000, 105, 16341–16358. [Google Scholar] [CrossRef]
- Wang, H. Surface vertical displacements and level plane changes in the front reservoir area caused by filling the Three Gorges Reservoir. J. Geophys. Res. Solid Earth 2000, 105, 13211–13220. [Google Scholar] [CrossRef]
- Mulat, A.G.; Moges, S.A. Assessment of the impact of the Grand Ethiopian Renaissance Dam on the performance of the High Aswan Dam. J. Water Resour. Prot. 2014, 6, 583. [Google Scholar] [CrossRef] [Green Version]
- IpoE. International Panel of Experts (IPoE). Grand Ethiopian Renaissance Dam Project, Final Report; IpoE: Addis Ababa, Ethiopia, 2013. [Google Scholar]
- Jameel, A.L. The Grand Ethiopian Renaissance Dam: An Opportunity for Collaboration and Shared Benefits in the Eastern Nile Basin; Amicus Brief; World Water and Food Security Lab: Cambridge, MA, USA, 2014; pp. 1–17. [Google Scholar]
DSM | All: Mean Difference (SD) | 1°: Mean Difference (SD) | 3°: Mean Difference (SD) | 5°: Mean Difference (SD) | 10°: Mean Difference (SD) |
---|---|---|---|---|---|
ALOS | 4.61 m | 3.85 m | 3.74 m | 3.82 m | 3.77 m |
(26.73 m) | (1.69 m) | (4.15 m) | (20.93 m) | (20.18 m) | |
ASTER | 8.16 m | 6.32 m | 6.04 m | 6.42 m | 6.88 m |
(27.20 m) | (4.29 m) | (5.73 m) | (21.28 m) | (20.65 m) | |
SRTM_1arc | 5.47 m | 4.56 m | 4.74 m | 4.84 m | 4.75 m |
(26.71 m) | (2.09 m) | (4.28 m) | (20.87 m) | (20.13 m) | |
SRTM_3arc_nonVoid | 7.22 m | 4.60 m | 4.86 m | 5.07 m | 5.34 m |
(27.17 m) | (2.23 m) | (4.46 m) | (20.92 m) | (20.24 m) | |
SRTM_3arc_yesVoid | 7.22 m | 4.60 m | 4.86 m | 5.07 m | 5.34 m |
(27.17 m) | (2.23 m) | (4.46 m) | (20.92 m) | (20.24 m) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Madson, A.; Sheng, Y. Reservoir Induced Deformation Analysis for Several Filling and Operational Scenarios at the Grand Ethiopian Renaissance Dam Impoundment. Remote Sens. 2020, 12, 1886. https://doi.org/10.3390/rs12111886
Madson A, Sheng Y. Reservoir Induced Deformation Analysis for Several Filling and Operational Scenarios at the Grand Ethiopian Renaissance Dam Impoundment. Remote Sensing. 2020; 12(11):1886. https://doi.org/10.3390/rs12111886
Chicago/Turabian StyleMadson, Austin, and Yongwei Sheng. 2020. "Reservoir Induced Deformation Analysis for Several Filling and Operational Scenarios at the Grand Ethiopian Renaissance Dam Impoundment" Remote Sensing 12, no. 11: 1886. https://doi.org/10.3390/rs12111886